
Formal Verification of COCO Database
Framework Using CSP

Peimu Li, Jiaqi Yin, Huibiao Zhu*

Shanghai Key Laboratory of Trustworthy Computing,
East China Normal University, Shanghai, China

Abstract—Nowadays, many applications are built on dis-
tributed databases for scalability and high availability. There-
fore, the architecture design of distributed databases needs to
satisfy some functional properties to ensure that the database
can perform transactions reliably and efficiently. COCO is a
distributed OLTP database that supports epoch-based commit
and replication and two variants of optimistic concurrency
control which use physical time or logical time. In this paper, we
first use process algebra CSP to model COCO’s architecture.
Then we use model checker PAT to verify seven properties,
including deadlockfree, consistency, availability, partition tol-
erance (CAP), and basically availability, soft state, eventual
consistency (BASE). The results show COCO’s commit and
replication protocol satisfy the CAP theorem, and two opti-
mistic concurrency control variants satisfy the BASE theorem.

Index Terms—Distributed OLTP Database, Process Algebra,
COCO, Modeling, Verification

I. INTRODUCTION

Many distributed OLTP databases use a shared-nothing
architecture for scale out and data partitioning to achieve the
scalability of data storage [1], [2]. When the data required by
a transaction belongs to multiple data partitions, the system
needs a protocol that can coordinate the collaborative work
of multiple partitions to ensure the normal execution of
the transaction, so a two-phase commit protocol (2PC) is
proposed [3]. It is well known that 2PC causes significant
performance degradation in distributed databases [4]. There
have been some improvements aimed at the defects of
2PC, but most of them require some assumptions which are
difficult to achieve, e.g., read/write sets of each transaction
has to be known before execution [5].

Lu et al. [6] proposed epoch-based commit and repli-
cation, which is an improved protocol based on 2PC, and
implemented it in distributed database COCO. The COCO
database also supports two variants of optimistic concur-
rency control: physical time and logical time OCC, which
can serialize transactions in physical or logical time [7].

The design of a distributed database architecture often
needs to satisfy many functional properties. Fox et al. [8]
put forward the CAP theory based on the characteristics
of distributed systems. This theory explains three properties
that restrict each other in the design of distributed system
architecture: consistency, availability, and partition tolerance.
Any framework can only satisfy two of them, but not all
of them. Pritchett [9] proposed BASE theory, which is a

*Corresponding author: hbzhu@sei.ecnu.edu.cn (H. Zhu).

compromise solution for the design of distributed systems
against limitations of CAP theory. It allows data inconsis-
tency for a period of time and satisfies three properties: basic
availability, soft state and eventually consistency.

At present, the mainstream method of detecting the per-
formance of the database are benchmark testing and load
testing. Benchmark testing refers to a test method that quan-
titatively compares certain specific performance indicators
in the system. Currently, the popular benchmarking tools
include Facebook’s LinkBench [10], Yahoo’s YCSB [11] and
BigDataBench [12]. Load testing is to test performance of
the tested object by continuously increasing the task volume
to the tested object until a certain index reaches or exceeds
the expectation or a certain resource is exhausted.

Actually, for the reason that the test workload and bench-
marks are artificially set, and the test results are directly
affected by the hardware performance, the test results still
can be improved. In order to solve these challenges, this
paper applies a formal method called CSP to verify prop-
erties of the database architecture. CSP [13] is an algebra
theory proposed by C. A. R. Hoare. It is an abstract language
designed to describe process communication in concurrent
systems. We use CSP to abstract the architecture and use
the model checker PAT [14] to check the properties of the
model. In this way, we can reduce the impact of hardware
on the verification process and ensure completeness.

The remainder of this paper is organized as follows. In
Section II, we briefly introduce the epoch-based commit and
replication, two optimistic concurrency controls in COCO
and process algebra CSP. In Section III, we use CSP to
model the commit protocol and two types of concurrency
control in COCO. In Section IV, we implement the achieved
formed model of Section III in PAT, and give the definition
of the properties that need to be verified and the verification
results. Section V concludes the paper and provides some
future work.

II. BACKGROUND

In this section, we introduce the overall architecture of
COCO database and process algebra CSP.

A. Epoch-based Commit and Replication

Epoch-based commit and replication contains two proto-
cols: (1) a commit protocol and (2) a replication protocol.

The commit protocol is used to commit completed
transactions at the end of the current epoch, shown in Fig.

DOI reference number: 10.18293/SEKE2022-072

Fig. 1. Epoch-based commit

1. Epoch-based commit contains a prepare phase and a
commit phase. In the prepare phase, the coordinator node
first sends a preparation message to all other participant
nodes. When a participant node receives the preparation
message, it prepares to commit all transactions in the current
epoch by logging a durable prepared write record with all
the transaction IDs (TIDs) of ready-to-commit transactions
as well as the current epoch number. When a participant
node logs all the necessary write records, it then replies an
acknowledgement to the coordinator.

If any participant node fails to send an acknowledgement
message due to failures, all transactions in the current epoch
must be aborted. Otherwise the coordinator writes a durable
commit record with the global current epoch number, and
increases the global current epoch number. Then the coordi-
nator sends a commit message to all participant nodes. When
a participant node receives a commit message, it commits all
the ready-to-commit transactions in the last epoch. Note that
even if some transactions in the epoch are aborted due to
conflicts, they do not affect the commits of other transactions
in the epoch. At this point, the writes of all ready-to-commit
transactions in the last epoch are visible to all other users.
In the end, all participants send acknowledgement messages
to the coordinator, and then start to execute the transactions
of the next epoch.

The replication protocol is needed to guarantee consis-
tency and availability of the database. The most common
approach is the primary-backup replication. In COCO, atom-
icity and durability are satisfied at the end of the epoch, so
that COCO can perform the replication on backup databases
asynchronously. Therefore, after the data update on the
primary is completed, the primary can release all locks.

B. Physical Time and Logical Time OCC

Physical Time OCC (PT-OCC) and Logical Time OCC
(LT-OCC) are two distributed variants of OCC. In PT-OCC,
the transaction needs to lock the data items in the write set.
A lock request is only sent to the primary replica of each
record. If the data item has been locked by other transactions,
the transaction is directly aborted. If the record is in the
write and read sets of the transaction at the same time, the
transaction will verify whether the TID of the corresponding
record in the read set is consistent with that in the primary.
If the TID is inconsistent, it means that the record was

updated by other transactions during the execution phase,
so the transaction simply aborts.

When the transaction has locked the write set, it begins to
verify its read set. A read verification request is only sent to
the primary replica of each record. If a record in the primary
is locked by other transactions or the TID is inconsistent
with the record in the read set, then the transaction simply
aborts. At the same time, COCO generates a new TID for
the transaction. TID marks the order between transactions.

After successfully verifying the read set, the transaction
writes the result back to the database. A write request is
sent to the primary replica of each record. After the result
is written, the lock of the record in the primary replica is
released immediately, and then the result is written to other
replicas asynchronously.

In LT-OCC, a serialized transaction can read, write
and commit in the space of logical time. Each record
in the database is associated with two logical timestamps
[wts, rts]. Here, wts is the timestamp of the last modifica-
tion time of this record. rts represents the effective time of
this record, which means that it is valid to read this record
at any logical time ts that satisfies wts ≤ ts ≤ rts. The
control flow of the LT-OCC algorithm is basically the same
as that of PT-OCC. The difference is TID is used to identify
transactions in PT-OCC and [wts, rts] is used in LT-OCC.

C. CSP

CSP is a formal language which has an important impact
on the development of Golang. The following is some widely
used CSP syntax:
• SKIP denotes that a process terminates successfully.
• a→ P indicates the process executes action a first, and

then behaves like P .
• P�Q represents the general choice. It behaves like P

or Q, and the environment decides the selection.
• P ||Q stands for concurrent execution of P and Q. The

shared actions must be executed synchronously.
• P |||Q denotes that P interleaves Q.
• c?x → P indicates that a value is recieved through

channel c and process assigns it to variable x, and then
behaves like P .

• c!e → P denotes the process sends the value of
expression e through channel c first, and then behaves
like P .

• P ;Q represents sequential execution, process executes
P , then executes Q after P which first terminates.

• PCbBQ denotes the condition. If b is true, then process
behaves like P . Otherwise process behaves like Q.

III. MODELING COCO DATABASE FRAMEWORK

In this section, we use process algebra CSP to model
COCO architecture. First, we introduce the messages and
channels used in our model, and then we respectively
introduce the CSP models of COCO architecture. COCO ar-
chitecture includes epoch-based commit protocol, replication
protocol and two variants of optimistic concurrency control.

A. Messages and Channels

Before modeling the commit protocol and concurrency
control algorithm in COCO, we need to define the messages,
and channels used for modeling. We define multiple channels
for data interaction between various modules in the COCO
database system. Fig. 2 gives the channels of communication
in COCO:

(a) Channels of Epoch-based Commit

(b) Channels of Optimistic Concurrency Control and Replica-
tion

Fig. 2. Channels of COCO database

In order to define the message conveniently, we define
three message content sets: REQ, ACK and DATA, which
represent content of the request, confirmation and data
messages respectively. Based on the above definitions, we
design multiple types of messages for information exchange
between entities. These messages are defined as follows:

MSG =df MSGreq ∪ MSGack ∪ MSGdata

MSGreq =df {msgreq.C.P.Content | msgreq ∈ TY PE
,C∈Coordinator,P∈Participant,Content∈REQ,}

MSGack =df {msgack.P.C.Content | c ∈ Coordinator
, P ∈ Participant, Content ∈ ACK, }

MSGdata =df {msgdata.P.R.Content | P ∈ Primary,

R ∈ Replica, Content ∈ DATA, }.
In COCO framework, we define MSGreq to represent the

request messages, including six types of requests: prepare,
commit, abort, read, write, and lock. Six types of requests
are in TY PE set. MSGack represents confirmation of the
request message, and MSGdata represents data information
passed by the transaction in the read and write process.

B. Epoch-based Commit and Replication Modeling
The epoch-based commit protocol includes two types

of processes: coordinator and participants. The coordinator
process is modeled as follows:

Coordinator() =df (|||i : {1..N}@ComCorPar[i]!msgprep.

C.P.epoch num→ Skip); (|||i : {1..N}@ComParCor

[i]?msgack.P.C.R C TID → Check{if(msgack ==

No){hasNo = true}} → Skip); decide{if(hasNo ==

true){choice = ABORT}else{choice = COMMIT}}
→ CoordCommitPhase(choice)

CoordCommitPhase(choice) =df

if(choice == COMMIT){
writeCommitRecord→ increaseEpoch{epoch n

um = epoch num+ 1} → Skip;

(|||i : {1..N}@ComCorPar[i]!msgcommit.C.P.epo

ch num− 1→ Skip); (|||i : {1..N}@ComParCor

[i]?msgack.P.C.com TID → Skip);

releaseResults→ Coordinator()

}
else{

(|||i : {1..N}@ComCorPar[i]!msgabort.C.P.epo

ch num→ Skip);

(|||i : {1..N}@ComParCor[i]?msgack.P.C.abor

t TID → Skip);

abort→ Coordinator()

}

In the prepare phase, the coordinator first sends a
MSGprep to N numbers of participants, and then re-
ceives MSGack sent by participant nodes. If there are
participant nodes that cannot commit the transaction, the
choice is assigned to ABORT , otherwise it is assigned to
COMMIT . In the commit phase, if choice == ABORT ,
then the coordinator needs to send MSGabort to all
participant nodes to abort all transactions in this epoch.
After receiving MSGack from all participant nodes, it re-
executes all transactions in the current epoch. If choice ==
COMMIT , coordinator writes a durable commit record
with epoch num, and then increases epoch num. It also
sends MSGcommit to all participant nodes, and then
receives MSGack sent by participant nodes. After com-
pleting above tasks, the coordinator releases results to users
and then executes the commit of the next epoch.

The definition of the participant process is as follows:

Participant(i) =df ComParCor[i]?msgprep.C.P.epoch num

→

logWriteRecord→ ComParCor[i]!Y es.
P.C.R C TID → ParComPhase(i)

�
ComParCor[i]!No.P.C.R C TID

→ ParComPhase(i)

ParComPhase(i) =df ComCorPar[i]?msgreq.C.P.epoch num

→

ComParCor[i]!msgack.P.C.com TID

→ Participant(i)
C(msgreq == msgcommit)B

ComParCor[i]!msgack.P.C.abort TID
→ Participant(i)

In prepare phase, the participant first receives the

MSGprep sent by the coordinator, then if the participant
successfully writes the commit record, a Y es MSGack is
sent directly to the coordinator. Otherwise, the participant
sends No MSGack. In commit phase, the participant
first waits to receive MSGreq from the coordinator. If
MSGreq == MSGcommit, then the participant commits
the result and sends a commit message to the coordinator.
If MSGreq == MSGabort, the participant sends an abort

message. After that, participants and the coordinator
synchronize to enter the next epoch of transaction commit.

Based on the above modeling, an overall epoch-based
commit protocol is defined as follows:

Epoch commit() =df

Coordinator()||(|||i : {1...N}@Participant(i))

The epoch-based commit protocol consists of a
coordinator and several participants. The coordinator
and each participant execute concurrently, and freely
interleave execution between participant processes.

The replication protocol mainly includes two types
of processes, Primary replication and Replica. The
Primary replication is responsible for controlling and
coordinating entire replication execution on the primary
database. Replica is a process that runs on the replica
server and cooperates with the primary. The definitions are
as follows:

Primary replication(records) =df (|||i : {1..N}@ComP

RRE[i]!msgwrite.P.R.records→ ComREPR[i]?ms

gack.R.P.content→ Primary replication(records))

Replica(i) =df ComPRRE[i]?msgwrite.P.R.records→
WriteBack(i, records)→ ComREPR[i]!

msgack.R.P.Y es→ Replica(i)

WriteBack(i, records) =df
Skip

C(records == null)B write{replicai.record = record} →
WriteBack(i, records′)

C(replicai.record.tid < record.tid)B
WriteBack(i, records′)

The WriteBack first determines whether the records

is empty. If it is empty, the process terminates directly.
Otherwise, if the database record’s tid is greater than the
tid of records, it indicates that the record has been updated
by other transactions executed later, so the replica directly
skips this record. Otherwise, it updates the record, and
then calls WriteBack(i, records′). records′ contains all
records elements except the first record.

Replication(records) =df

Primary replication(records)||(|||i : {1...N}@Replica(i))

The overall protocol consists of a primary replication
and N replica processes. The modeling is shown above.

C. PT-OCC and LT-OCC Modeling

OCC can be roughly divided into three phases: (1) locking
the write set, (2) validating the read set, (3) writing back to
the database. However, there is a difference between PT-
OCC and LT-OCC in phase (2), and the other phases are
basically the same. Based on the above facts, we can perform
unified modeling on phases (1) and (3) of the two algorithms,
and model the phase (2) independently.

In the first phase, the transaction sends a MSGlock to the
primary of the record, and then receives the MSGack sent
by the primary. If content == Y es, then the transaction
continues to send the request for the next record, otherwise

the transaction releases locked records and aborts. The
definition of Trans lock and Releaselock are as follows:

Trans lock(i, write set) =df SkipC (write set == null)B
ComTSPR[i]!msglock.T.P.record→ ComPRTS[i]?

msgack.P.T.content→ Trans lock(i, write set′)
C(content == Y es)B

Releaselock(i, lockedRecords)→ Skip

Releaselock(i, records) =df SkipC (records == null)B

release{database.record.locked = false} →
Releaselock(i, records′)

The definition of primary in the first phase is as follows:

Primary lock() =df |||i : {1...N}@ComTSPR[i]?msglock.

T.P.record→ find{if(record /∈ read set){record.tid
= database.record.tid}} →
Locking{database.record.locked = True} →

ComPRTS[i]!msgack.P.T.Y es→ Primary lock()
C(database.record.locked == false∧
record.tid == database.record.tid)B

ComPRTS[i]!msgack.P.T.No→ Primary lock()

If record /∈ read set, primary reads database.record.tid

as the tid of record. If the record is not occupied by others
and record.tid == database.record.tid, the primary can
lock and send Y es to the transaction, otherwise send No.

Next, the algorithm verifies whether the records in the
read set are still valid. We use Primary valid to describe
the behavior of the primary in the validation phase, and its
definition is as follows:

Primary valid() =df |||i : {1...N}@(ComTSPR[i]?

msgvalid.T.P.record→ ComPRTS[i]!msgdata.

P.T.database record→ Primary valid())

Transactions in the verification phase have different be-
haviors under different concurrency control. The verification
phase of the transaction in PT-OCC and LT-OCC are defined
as follows:

Trans valid PT (i, read set) =df SkipC (read set == null)

B

ComTSPR[i]!msgvalid.T.P.record→ ComPRT

S[i]?msgdata.P.T.content→ validate→ Trans valid PT (i, read set′)
C(content.locked == false∧

record.tid == content.record.tid)B
Releaselock(i, lockedRecords)→ Stop

Trans valid LT (i, read set) =df SkipC (read set == null)

B

ComTSPR[i]!msgvalid.T.P.record→ ComPRT
S[i]?msgdata.P.T.content→

validate→ Trans valid LT (i, read set′)
C(record.wts == content.wts∧

(content.rts ≥ record.tid∨
content.locked == false))B

Releaselock(i, lockedRecords)→ Stop

The main difference between the transaction in LT-OCC

and PT-OCC is the condition for judging whether the record
is successfully verified. In LT-OCC, the wts of the record
in the read set of the transaction must be the same as the
wts of the corresponding record in the database. For the
case where the rts of the record is less than the tid of the
transaction, as long as the record has not been locked by

other transactions, the transaction also considers the record
to be valid and the verification is successful.

After verifying all records in read set, the transaction
writes the records in write set into the primary database.
The transaction definition in the write phase is as follows:

Trans write(i, write set) =df

SkipC (write set == null)B ComTSPR[i]!msgwrite.T.P.record→ ComPRT
S[i]?msgack.P.T.content→ ComTSPR[i]!
msgrelease.T.P.write set→ Trans write(

i, write set′)

The transaction first checks whether there are any records in
write set. If not, the write is complete and the transaction
can be terminated at this point. Otherwise, the transaction
sends a write request MSGwrite to the primary, and then
receives the MSGack from the primary. After that, the
transaction sends a request MSGrelease to release the record
lock to the primary, and then tries to write the next record.
The primary definition in write phase is as follows:

Primary write() =df |||i : {1...N}@(ComTSPR[i]?

msgwrite.T.P.record→ write{database.record =

record} → ComPRTS[i]!msgack.P.T.Y es→
ComTSPR[i]?msgrelease.T.P.write set→ Rele

ase(i, record)→ Primary replication(record))

The primary receives the write request MSGwrite from
the transaction, and then writes the record. After success-
fully writing the record, the primary sends a confirmation
message MSGack to the transaction. After receiving the
release request from the transaction, the primary calls the
Release function to release the lock of the record, and then
enters the replication phase.

The overall definition of concurrency control algorithm
includes three parts: transaction, primary and replica. The
definition of Primary is as follows:

Primary() =df Primary lock()|||Primary valid()|||
Primary write()

The definition of Transaction PT in PT-OCC is as
follows. Transaction LT in LT-OCC differs only in the
second phase.

Transaction PT (i, read seti, write seti) =df (Transactio

n lock(i, write seti);Transaction valid PT (i, read

seti);Transaction write(i, write seti))

The definitions of PT-OCC and LT-OCC are as follows:

PT OCC() =df (|||i : {1...N}@Transaction PT (i, rea

d seti, write seti))||Primary()||(|||i : {1...N}@Re

plica(i))

LT OCC() =df (|||i : {1...N}@Transaction LT (i, rea

d seti, write seti))||Primary()||(|||i : {1...N}@Re

plica(i))

Both PT − OCC and LT − OCC are composed of
concurrent execution of multiple transaction, a Primary
and multiple Replica processes.

IV. IMPLEMENTATION AND VERIFICATION

In this section, based on the achieved formed model in
Section III, now we conduct verification of the properties
abstracted from the specification.

A. Properties

a) Deadlockfree: This property refers to the situation
in which processes are never deadlocked. PAT provides
atomic statements to verify deadlockfree.

b) Consistency: This property asserts during the exe-
cution of a transaction, data can only be converted from one
consistency state to another consistency state.

#define Consistency (∧i : {1...N}recordi == last rec

ord) ∨ (∧i : {1...N}recordi == cur record)

#assert Epoch commitl() | = Consistency

c) Availability: It means every request in a distributed
system can be responded to.

#define Availability (hasNo == True ∧ finished ==

True)

#assert Epoch commit() | = Availability

d) Partition Tolerance: It means that when a node or
network partition in a distributed system fails, the entire
system can still provide external services that satisfy con-
sistency and availability.

#define PartitionTolerance finished == True

#assert Epoch commit() | = PartitionTolerance

e) Basically Availability: This property means that
when some requests failure or unpredictable failures occur
in the system, the system can still guarantee the normal
execution of most transactions.

#define BasicallyAvailability (existCrash == True)∧
(available == True)

#assert PT OCC() | = BasicallyAvailability

#assert LT OCC() | = BasicallyAvailability

f) Soft State: This property refers to allowing the data
in the system to have an intermediate state, and this state
does not affect the overall availability of the system.

#define SoftState (∨i : {1...N}recordi! = last rec

ord) ∧ (∨i : {1...N}recordi! = cur record)

#assert PT OCC() | = SoftState

#assert LT OCC() | = SoftState

g) Eventually Consistency: It refers to the fact that all
data copies in the system can finally reach a consistent state
after a period of synchronization without the guarantee of
strong consistency of system data.

#define EventuallyConsistency EG((∧i : {1...N}recor
di == last record) ∨ (∧i : {1...N}recordi == cur

record))

#assert PT OCC() | = EventuallyConsistency

#assert LT OCC() | = EventuallyConsistency

B. Results

We use the model checker PAT to verify the main
frameworks of COCO distributed database such as epoch-
based commit and replication, PT-OCC and LT-OCC. The
verification results are shown in Fig. 3 and Fig. 4. The

Fig. 3. The Verification Results of COCO Database Framework

Fig. 4. The Details of the Partial Verification Results

epoch-based commit protocol executed at the end of the
epoch satisfies the consistency and availability but does
not satisfy the partition tolerance(i.e. the 4th property in
Fig. 3), which is in line with the CAP theory. During an
epoch, the two types of concurrency control satisfy basically
availability, soft state and eventually consistency, which meet
the BASE theory. From the analysis of the above results,
the COCO distributed database guarantees basic availability

within an epoch and at the same time can satisfy strong
consistency at the end of the epoch.

V. CONCLUSION AND FUTURE WORK

COCO is a distributed database that regards the epoch as
the unit of transaction commit and uses optimistic concur-
rency control. This paper used process algebra CSP to model
COCO’s epoch-based commit and replication, physical time
OCC and logical time OCC, and implemented these models
in the model checker PAT. The CAP and BASE theories
put forward the properties that the distributed system ar-
chitecture needs to satisfy, and we verified the properties
of COCO in an epoch cycle. It has been verified that (1)
epoch-based commit and replication satisfy consistency and
availability but not partition tolerance, and (2) PT-OCC and
LT-OCC satisfy basic availability, soft state, and eventually
consistency. This shows that COCO can guarantee high
availability during an epoch cycle, and can also guarantee
consistency at the end of the epoch. In the future, we will
verify the isolation of COCO and sequential consistency of
concurrency control.

VI. ACKNOWLEDGEMENTS

This work was partly supported by the National Key
Research and Development Program of China (Grant No.
2018YFB2101300), the National Natural Science Founda-
tion of China (Grant Nos. 61872145, 62032024), Shanghai
Trusted Industry Internet Software Collaborative Innovation
Center, and the Dean’s Fund of Shanghai Key Laboratory of
Trustworthy Computing (East China Normal University).

REFERENCES

[1] Shute J, Vingralek R, Samwel B, et al. F1: A Distributed SQL
Database That Scales. PVLDB, 2013, 6(11): 1068–1079.

[2] Verbitski A, Gupta A, Saha D, et al. Amazon Aurora: Design Con-
siderations for High Throughput Cloud-Native Relational Databases.
SIGMOD, 2017: 1041–1052.

[3] Mohan C, Lindsay B, and Obermarck R. Transaction Management
in the R* Distributed Database Management System. TODS, 1986,
11(4): 378–396.

[4] Bailis P, Fekete A, Franklin M, Ghodsi A, Hellerstein J, and Stoica
I. Coordination Avoidance in Database Systems. PVLDB, 2014, 8(3):
185–196.

[5] Lin Q, Chang P, Chen G, Ooi B C, Tan K, and Wang Z. Towards a
Non-2PC Transaction Management in Distributed Database Systems.
SIGMOD, 2016: 1659–1674.

[6] Lu, et al. Epoch-based Commit and Replication in Distributed OLTP
Databases. PVLDB, 2021, 14(5): 743-756.

[7] Kung H T and Robinson J T. On Optimistic Methods for Concurrency
Control. TODS, 1981, 6(2): 213–226.

[8] Fox A, Brewer E A. Harvest, Yield, and Scalable Tolerant Systems.
IEEE, 1999: 174-178.

[9] Pritchett D. BASE: An Acid Alternative: In Partitioned Databases,
Trading some Consistency for Availability can Lead to Dramatic
Improvements in Scalability. Queue, 2008, 6(3): 48-55.

[10] Timothy A, et al. LinkBench: a Database Benchmark Based on the
Facebook Social Graph. SIGMOD, 2013: 1185-1196.

[11] Cooper B F, Silberstein A, Tam E, et al. Benchmarking Cloud Serving
Systems with YCSB. SOCC, 2010: 143-154.

[12] Liang F, Feng C, Lu X, et al. Performance Benefits of DataMPI: A
Case Study with BigDataBench. BPOE, 2014: 111-123.

[13] Hoare C A R. Communicating Sequential Processes. Communications
of the ACM, 1978, 21(8): 666-677.

[14] Si Y, Sun J, Liu Y, et al. Model Checking With Fairness Assumptions
using PAT. Frontiers of Computer Science, 2014, 8(1): 1-16.

