
A THG Performance Case Study in the world of E-Commerce

Philip Wilson, Rehman Arshad, James Creedy, Adam Dad, Eloise Slater, Hannah Cusworth

philip.wilson, rehman.arshad, adam.dad, eloise.slater, hannah.cusworth @thehutgroup.com

The Hut Group
Chicago Ave, Voyager House, Manchester, UK

Abstract
THG's in-house e-commerce platform includes a micro-

service aggregator and server-side template renderer (that
we call THG Aggregator for this paper) that handles hun-
dreds of THG websites. It is not uncommon in e-commerce
to entertain thousands of requests per minute and THG
Aggregator uses extensive in-memory (on JVM) caching
to support the performance requirements. This case study
revolves around analysing the performance of this in-house
system on current JDK version (JDK 8) it is running on
and the latest LTS (long term support) version (JDK 11)
to decide the LTS version configurations before migrating
THG Aggregator to that. We analysed parameters like heap
utilisation, GC (garbage collector) pause time and process
usage under different configurations of JDK 8 and 11.
Based on this analysis, we showed different options and
configurations of JVM that can enhance or decrease the
performance of THG Aggregator. We have also conducted
extensive analysis of all these variations on Arm VS Intel to
extract the best combination of instruction set architecture
and JDK variation in terms of the response time of user
requests.
Key Words —E-Commerce, JDK, JVM 1

I. Introduction
THG Aggregator is the heart of THG's e-commerce

operation (Fig. 1). THG Aggregator handles hundreds of
THG websites and act as a major caching and aggregating
entity between the outside world and the internal resources.
This case study revolves around analysing the performance
of THG Aggregator on current JDK version (JDK 8) it is
running on and the latest LTS (long term support) version
(JDK 11) to decide the LTS version configurations before

1DOI reference number: 10.18293/SEKE2022-067

migrating THG Aggregator to that. We have defined a
framework of analysis that can show variations in the
values of parameters like heap usage, total duration of
GC (garbage collector) pauses, app usage etc. based on
different configurations of JVM. Configuration parameters
include parallel GC threads (-XX:ParallelGCThreads), type
of garbage collector, maximum heap size and Stringdedu-
plication etc.

In order to make sure that the patterns of the findings
hold for different number of requests, we have conducted
analysis based on 1, 10, and 100 and n number of requests
whereas, n is the number of requests set via load testing.
Table I shows different configurations used in the analysis,
ranges from v0-v8. The configuration v4 is currently being
used in THG with Java 8. We have compared v0-v4
via our framework of analysis between Java 8 and 11
to show the performance enhancements by hitting the
running configurations of THG Aggregator. From v5-v8,
the configurations were only run against Java 11 to analyse
if these configurations can provide better performance as
compared to v4. Few parameters can also show some
variation based on the current usage and specifications
of a machine therefore, we have conducted each type of
request on multiple machines and use the average values
in our framework of analysis. All the virtual and physical
machines used in this analysis had the same specifications
to rule out any inconsistency in data.

The instances of THG Aggregator used in this research
are not set-up with load balancers and are based on a single
proxy server therefore, actual values of defined parameters
for system in production are way more optimised however,
the test bed created for this analysis is enough to compare
and contrast the different configurations and load testing
for the required analysis.

The remainder of this paper is organised as follows:



GC Configurations
v0 Default Configurations of a JDK Version
v1 -Xmx10240M -Xms10240M
v2 -Xmx10240M -Xms10240M -XX:+UseG1GC
v3 -Xmx10240M -Xms10240M -XX:+UseG1GC -XX:+UseStringDeduplication
v4 -Xmx10240M -Xms10240M -XX:+UseG1GC -XX:+UseStringDeduplication -XX:InitiatingHeapOccupancyPercent=60
v5 -Xmx10240M -Xms10240M -XX:+UseG1GC -XX:+UseStringDeduplication -XX:InitiatingHeapOccupancyPercent=70
v6 v4 + -XX:ParallelGCThreads=16 -XX:ConcGCThreads=4
v7 v4 + -XX:G1MixedGCLiveThresholdPercent=75
v8 v5 + -XX:ParallelGCThreads=16 -XX:ConcGCThreads=4 -XX:G1MixedGCLiveThresholdPercent=75

TABLE I: GC Configurations for THG Aggregator

Mothership
Data Aggregation and Foramtting

Template Rendering
 Caching

THG Aggregator Edge Data Center Cloud

THG Data Center

AccountsSearch Content

Checkout
Handover

Central APIs
and

Databases

Fig. 1: THG Aggregator

Section II defines the framework of analysis used for
comparing the performance of THG Aggregator. Section
III discusses the findings and the analysis. This section
shows multiple tables and graphs to compare and contrast
the running configurations on Java 8 and 11. Section IV
includes the related work which is confined to similar
studies and case reports. Section V is the last section and
it includes conclusion and future work.

This paper can be used as a reference in the world
of e-commerce to conduct performance based analysis of
different versions of JVMs under different configurations.
Some pre-planned analysis like this can ensure the benefits
of migration under different set of configurations to latest
LTS version of Java.
II. Framework of Analysis

Based on the configurations defined in Table. I, we have
divided our analysis framework into two main parts.
• First part is about analysing the important JVM pa-

rameters. Table. II is showing parameters of part 1 of
analysis framework, and they are defined as follows:

– GC Young Config. refers to the garbage collector
used for young generation e.g., in JDK 8, default
one is parallel scavenger whereas, in JDK 11,
default garbage collector is G1 New.

– GC Old Config. refers to the garbage collector used
for old space.

– GC Time Ratio. refers to the ratio between the time
spent in GC and the time spent outside of GC.

– Max. Allocated Heap. refers to the amount of heap
set as the maximum value (-Xmx).

– Max. Young generation size. refers to the size
allocated to young generation.

– Max. heap used. refers to the maximum heap
consumed by a specific configuration on specific
JDK version.

– Max. heap value post GC. refers to the heap
memory a specific configuration holds after a major
GC.

– Total duration of GC pauses. refers to the sum of
all the GC pauses that take place during n number
of requests under specific configurations and JDK
version.

– Longest Pause. refers to the longest pause value
out of all the pauses GC takes under specific
configurations and JDK version.

– CPU Usage: Machine. refers to total utilisation of
the machine's CPU while running an instance of
THG Aggregator under specific configurations and
JDK version.

– CPU Usage: JVM + App. refers to the percentage
of CPU utilisation takes by THG Aggregator and
JVM out of the total percentage of machine usage
e.g., if machine usage is 89.2% and JVM+App
usage is 24.38% then THG Aggregator is taking
27.33% of the usage under that configuration.

• Second part (Part 2) is related to load testing i.e., the
number of requests a specific configuration of THG
Aggregator can handle under defined time. We ran n
number of requests directed to running instances of
THG Aggregator for m number of users and compare



Fig. 2: Machine and JVM+App Usage: THG Aggregator 100 requests using JDK 11

the results handled by different configurations of
JVM to analyse the impact of these configurations on
performance of THG Aggregator. The performance
will be elaborated via tables and graphs in section
III-B.

100 Requests (no-cache) v1 Avg.
JDK 8 JDK 11

GC Young Config. Parallel Scavenger G1 New
GC Old Config. Parallel Old G1 Old
GC Time Ratio 99% 12%

Max. allocated heap 10 GB 10 GB
Max. Young generation size 3.33 GB 1.3mb

Max. heap used 3.18 GB 1.56 GB
Max. Heap value post GC 478mb 451.5mb

Total duration of GC Pauses 2828.18ms 885.73ms
Longest Pause 1298ms 281.49ms

Max CPU Usage: Machine 89.2% 84.4%
Max CPU Usage: JVM+App 24.38% 24.3%

TABLE II: THG Aggregator on JDK 8 VS JDK 11: Avg.
of 100 Requests based on 2 different machines using v1

100 Requests (no-cache) v2 Avg.
JDK 8 JDK 11

GC Young Config. G1 New G1 New
GC Old Config. G1 Old G1 Old
GC Time Ratio 9% 12%

Max. allocated heap 10 GB 10 GB
Max. Young generation size 1.3mb 1.3mb

Max. heap used 2.08 GB 1.71 GB
Max. Heap value post GC 572mb 557.5mb

Total duration of GC Pauses 1210.19ms 1076ms
Longest Pause 251.11ms 332.59ms

Max CPU Usage: Machine 90.2% 73.7%
Max CPU Usage: JVM+App 38.5% 36.45%

TABLE III: THG Aggregator on JDK 8 VS JDK 11: Avg.
of 100 Requests based on 2 different machines using v2

Overall, first part of the analysis was conducted with
variable number of requests directed to running instances
of THG Aggregator with defined configurations of specific
JDK version. The final values of the defined parameters are
the averages taken from running the same configurations
on multiple machines under same load. Same set of re-
quests was used for all the combinations in order to be
consistent across different JDKs and configurations. The
second part of the analysis was conducted against various
sets of n requests with m users spawn up every second to

100 Requests (no-cache) v3 Avg.
JDK 8 JDK 11

GC Young Config. G1 New G1 New
GC Old Config. G1 Old G1 Old
GC Time Ratio 9% 12%

Max. allocated heap 10 GB 10 GB
Max. Young generation size 1.3mb 1.3mb

Max. heap used 1.91 GB 1.97 GB
Max. Heap value post GC 602.5mb 513.5mb

Total duration of GC Pauses 1501ms 759ms
Longest Pause 380.28ms 212.37ms

Max CPU Usage: Machine 89.3% 64.7%
Max CPU Usage: JVM+App 14.9% 18.5%

TABLE IV: THG Aggregator on JDK 8 VS JDK 11: Avg.
of 100 Requests based on 2 different machines using v3

100 Requests (no-cache) v4 Avg.
JDK 8 JDK 11

GC Young Config. G1 New G1 New
GC Old Config. G1 Old G1 Old
GC Time Ratio 9% 12%

Max. allocated heap 10 GB 10 GB
Max. Young generation size 1.3mbGB 1.3mb

Max. heap used 3.31 GB 1.62 GB
Max. Heap value post GC 611.5mb 522mb

Total duration of GC Pauses 1243.68ms 706.70ms
Longest Pause 459.2ms 190.5ms

Max CPU Usage: Machine 76.5% 69.75%
Max CPU Usage: JVM+App 40.7% 25.45%

TABLE V: THG Aggregator on JDK 8 VS JDK 11: Avg.
of 100 Requests based on 2 different machines using v4

see how JVM based optimisations can impact the end user
experience by offering better performance.

III. Findings and Discussion
A. Analysis of JVM Parameters

For part 1 of the analysis and configuration v1, Table.
II is showing 100 requests directed to running instances
of THG Aggregator on JDK 8 and 11 respectively. In the
stated table, default configurations of these JDK versions
were used i..e., JDK 8 runs on parallel scavenger and
parallel old GC configurations VS G1 New and G1 Old
GC configurations of JDK 11. For both JDKs, maximum
allocated heap was 10 GB. JDK 11 used way less heap
than JDK 8 which is due to better heap management in
JDK 11. Overall, JDK 11 performed considerably better



THG Aggregator 100 Requests (no-cache) JDK 11 Based on Avg. of Two Machines
V4 V5 V6 V7 V8

GC Young Config. G1 New G1 New G1 New G1 New G1 New
GC Old Config. G1 Old G1 Old G1 Old G1 Old G1 Old
GC Time Ratio 12% 12% 12% 12% 12%

Max. allocated heap 10 GB 10 GB 10 GB 10 GB 10 GB
Max. Young generation size 1.3mb 1.3mb 1.3mb 1.3mb 1.3mb

Max. heap used 1.62 GB 1.32 GB 1.54 GB 1.48 GB 3.41 GB
Max. Heap value post GC 522mb 514.5mb 356.5mb 552mb 530.5mb

Total duration of GC Pauses 706.70ms 1271.56ms 512.38ms 1374ms 2690.27ms
Longest Pause 190.5ms 356.24ms 242ms 398.5ms 1512.2ms

Max CPU Usage: Machine 69.75% 71.1% 68.2% 90% 78%
Max CPU Usage: JVM+App 25.45% 48.15% 51.45% 50.95% 38.35%

TABLE VI: THG Aggregator on JDK 11: 100 Requests based on different GC Configurations

in heap management, pause times and usage VS JDK 8.
For the configuration v2 (both JDK 8 and 11 were using

G1 in v2) Table. III showed that JDK 11 was still better
in GC total pause duration however, JVM+App utilisation
was 42.68% (i.e., 38.5 is 42.68% of 90.2 which is total
CPU usage in this case) of the machine usage in JDK
8 VS 49.45% in JDK 11 (for 100 requests) i.e., much
improvement was seen in JDK 8 with G1 though overall,
JDK 11 still performed better. All this data was recorded
and profiled via flight recorder and async profiler. Table.
IV showed that the gap between JDK 8 and 11 further
narrowed down in terms of the stated parameters e.g., for
100 requests, JVM+App utilisation was 16.68% in JDK 8
VS 28.59% in JDK 11 i.e., 8 performed better than 11.
Heap utilisation is also neck-to-neck (heap utilisation is
slightly better with JDK 8 100 requests with v3). The only
major difference left between JDK 11 and 8 is the total
duration of GC pauses (759ms VS 1501ms in 100 requests)
that is still far apart in 8 and 11.

For the configuration v4 (Table. I), it was observed that
JVM+App usage was better in JDK 8 (difference of 14%)
with 10 requests but as Table. V showed, JDK 11 took the
considerable lead of more than 16% in 100 requests. Better
heap utilisation and GC pause times validated that running
THG Aggregator on the configuration v4 with JDK 11 is
better than the current running configurations (v4 with JDK
8). From v1-v4, trend is pretty consistent in favour of JDK
11 and overall, JDK 11 always performed better than JDK
8.

It is pretty evident from the analysis so far that JDK 11
is pretty consistent in performing better than JDK 8 except
few occurrences where JDK 8 performed slightly better in
CPU utilisation therefore, we defined configurations v5-
v8 to find out if these configurations can perform better

than the configuration v4 on JDK 11. Table. VI is showing
our analysis for configurations v4-v8 on JDK 11 for 100
user requests directed to running instance of THG Ag-
gregator with stated configurations. These configurations
were selected by combining the JVM flags that can help
in reducing pause time, better heap utilisation and better
machine usage.

According to Table. VI, configuration v6 showed best
GC pause duration value of 512.38ms VS 706.70ms of v4.
V6 also showed minimum value for the longest pause. The
heap utilisation of v6 is slightly higher than v5 and v7. v6's
JVM+App utilisation is 75.43% of the machine utilisation
VS 36.48% in v4 which is the minimum value in the stated
configurations. V6 is set up with 16 ParallelGcThreads and
4 ConcGCThreads as compared to 8 ParallelGcThreads
and 2 ConcGCThreads in v4 therefore, v6 is utilising more
CPU and a little bit more heap but producing the best
results in terms of GC pause duration that can be really
useful in case of thousands of requests at the price of
higher machine utilisation that demands better hardware
overall. V8 was the worst performer (v8 is the aggregation
of all the GC flags from other configurations) with highest
GC pause time, 49.16% of machine utilisation and 3.41
GB of heap utilisation. These results clearly stated that
from GC perspective, v6 is the best configuration at the
price of higher CPU utilisation and v4 has better machine
utilisation at the expense of higher values for GC pause
duration and heap utilisation. Overall, JDK 11 always
performed better with v4 as compared to JDK 8 in terms
of heap utilisation and GC total pause duration.

We went one step further and also analysed and com-
pared 100 requests on running instances of THG Aggre-
gator on Arm and Intel. For that purpose, we used amazon
linux2 on both instances with centos 7. One instance was



THG Aggregator 100 Requests (no-cache) JDK 11 AWS Graviton VS Intel
V0 V1 V2 V3 V4 V5 V6 V7 V8

Arm Intel Arm Intel Arm Intel Arm Intel Arm Intel Arm Intel Arm Intel Arm Intel Arm Intel
GC Young Config. G1 New G1 New G1 New G1 New G1 New G1 New G1 New G1 New G1 New G1 New G1 New G1 New G1 New G1 New G1 New G1 New G1 New G1 New

GC Old Config. G1 Old G1 Old G1 Old G1 Old G1 Old G1 Old G1 Old G1 Old G1 Old G1 Old G1 Old G1 Old G1 Old G1 Old G1 Old G1 Old G1 Old G1 Old
GC Time Ratio 12% 12% 12% 12% 12% 12% 12% 12% 12% 12% 12% 12% 12% 12% 12% 12% 12% 12%

Max. allocated heap 3.89 GB 3.89 GB 10 GB 10 GB 10 GB 10 GB 10 GB 10 GB 10 GB 10 GB 10 GB 10 GB 10 GB 10 GB 10 GB 10 GB 10 GB 10 GB
Max. Young generation size 1.3mb 1.3mb 1.3mb 1.3mb 1.3mb 1.3mb 1.3mb 1.3mb 1.3mb 1.3mb 1.3mb 1.3mb 1.3mb 1.3mb 1.3mb 1.3mb 1.3mb 1.3mb

Max. heap used 998mb 877mb 1.73GB 1.43GB 1.46 GB 3.11GB 2.56 GB 1.45GB 1.54 GB 1.49GB 2.07 GB 1.51GB 2.55 GB 2.05 GB 3.79 GB 1.26 GB 2.35 GB 1.57 GB
Max. Heap value post GC 614mb 622mb 562mb 594mb 606mb 568mb 560mb 626mb 562mb 602mb 595mb 615mb 625mb 584mb 572mb 616mb 484mb 607mb

Total duration of GC Pauses 742.70ms 1187.77ms 722.76ms 1264.38ms 800.50ms 1030ns 796.70ms 1319.17ms 865.89ms 1095.06% 901.35ms 1260.59ms 922.78ms 1356.65ms 686.55ms 1294.8ms 989.95ms 1292.47ms
Longest Pause 80.63ms 95.49ms 153.55ms 201,02ms 179.43ms 254.93ms 242.12ms 259.72ms 240.76ms 222.30ms 208.28ms 304.54ms 283.64ms 260.95ms 177.28ms 195.47ms 265.26ms 259.50ms

Max CPU Usage: JVM + App 84.3% 92.7% 84.7% 94% 86.6% 93.8% 86.1% 91.3% 86.2% 93% 89.1% 95.8% 85.4% 94% 86.6% 99.3% 84% 96.3%

TABLE VII: THG Aggregator 100 Requests: JDK 11 (V0-V8) AWS Graviton VS Intel

running on Arm Graviton and the other one was on intel
X86 architecture. Both instances spinned up with 4 vcpus
and 16GB RAM. No other service was running on these
instances during the profiling i.e., THG Aggregator was
the only source of machine usage other than some basic
OS services. Table. VII is showing the summary of this
analysis. Overall, in all the configurations from v0-v8,
machine utilisation was always higher in Intel as compared
to Arm. Intel showed better readings for heap utilisation
e.g., in v4, v6, v7 and v8 but this parameter alone cannot
compensate the huge difference in total duration of GC
pauses. In case of v6, the difference is 922.78ms(Arm) VS
1356.65ms(Intel) therefore, Arm in general and Arm v6 in
particular still came out as the best overall configuration
for THG Aggregator.

The parameters stated above are important in identify-
ing the performance of a configuration but in the world of
e-commerce, one important parameter of performance is
the ability to entertain specific number of requests under
defined time frame therefore, next section will evaluate
THG Aggregator on v6 and v4 (on Arm based machines)
to analyse how these parameters will be translated into
actual performance of an e-commerce system.

B. Performance Analysis Via Load Test

THG Aggregator Load Test (Arm)
v4 v5 v6 v7 v8 v6 Intel

Time 10 mins 10 mins 10 mins 10 mins 10 mins 10 mins
Total Reqs. 52589 52235 53458 53008 52219 28335
Max. RPS 162 165.6 184.4 170.5 197.9 104.2
Avg. RPS 87.6 86.9 88.9 88.2 86.9 47.2

TABLE VIII: THG Aggregator Load Test: Max. 800 Users

For the load testing, the requests were ranging from
simple user GET end points to the requests related to
checkout basket etc. For all configurations, load test was
conducted for 10 minutes, starting from zero users, spawn-
ing 10 users each second with maximum user limit to 800.
We used THGs Graviton(in-house load tester) and Locust
[10] for running the load test and getting the required data.
Table. VIII is showing the results of our load test.

In the stated table, Time shows total duration for which
we ran the load test, Total Reqs. shows number of requests
entertained in defined time by a specific configuration,
Max. RPS is showing maximum requests per second

during the defined time and Avg. RPS is showing average
requests per second during the load test. We ran the load
test for configurations v4-v8 and as the table shows, v6
is a better performer i.e., better JVM metrics of v6 also
translated into actual performance. V6 entertained 53458
requests with 184.4 Max. RPS and 88.9 Avg. RPS. Second
closest candidate was v7 in terms of total requests but its
average and maximum requests per second were lower than
the v6. V8 is showing better value for Max. RPS but it
cannot compete with v6 on other parameters and v8 was
also one of the worst performers in JVM analysis.

The results were a little different with increasing num-
ber of users though e.g., when load testing was conducted
for 1200 maximum users instead of 800, v4 showed
slightly better results than v6 (52094 total requests on
v4 VS 51870 on v6, 86.5 Avg. RPS on v4 VS 86.2 on
v6). With 1500 maximum users, same trend between v4
and v6 still persisted as v6 has higher number of parallel
and concurrent threads therefore, the slight decline in the
values indicate the bottleneck in CPU usage in the running
instance of THG Aggregator.

For comparison, we also ran Intel v6 to compare it with
Arm v6 and the difference in the outcome is huge. Intel
v6 only entertained 28335 requests against 53458 in Arm
v6. Max. RPS and Avg. RPS of Intel v6 are also quite
poor as compared to the Arm v6 therefore, Arm v6 seems
to be the best configuration in our load test. Same trend
was seen between Arm and Intel after changing user range
multiple times between 400-1500. The user-range beyond
1500 was not realistic as in e-commerce, load balancers
and orchestration tools are used to redirect load to different
instances therefore, ceiling of 1500 was realistic for one
running instance of an e-commerce platform.
IV. Related Work

There are various studies on JVM that analyse and
propose options for fine tuning and optimisation. Our
point of interest revolves around those approaches that
investigate the performance tuning at JVM level in the
domain of web-services in general and e-commerce in
particular e.g., [8] investigates performance overhead of
JVM in data parallel systems, [3] conducts a study to
investigate ageing of JVM from memory depletion point
of view and [4] looks into JVM enhancements for server-
specific performance.



Few approaches are not the case studies but language
oriented e.g., [5] discusses JVM from JIT (Just-In-Time)
point of view to analyse JIT compiler abstraction manage-
ment.

In the domain of e-commerce and micro-services, there
are many case studies that include the performance en-
hancements and performance engineering of Java systems
at JVM or framework level and these are the approaches
that are closest to our approach e.g., [9] discusses the
performance engineering of e-commerce systems but this
approach proposes enhancement at the level of framework
(EJB [2]), not at the level of JVM. [6] looks into per-
formance enhancement of garbage collector in java based
web-services. [1] proposes a simulation model to test and
diagnose issues in production systems and [11] discusses
the enhancements to reduce the run time overheads of JIT
compiler to address the busy traffic at Alibaba.

Other than the optimisations based on JIT and over-
heads, few approaches try to tackle scalability issues via
distributed JVMs. One such approach is JESSICA2 DJVM
[7] that tries to cluster and scale the web application
servers with distributed JVMs. CHAOSMACHINE [12] is
another approach that does not tweak JVM itself but injects
perturbations to JVM via try-catch blocks in order to
extract an analysis of exception handling capabilities of
a code base.

Our approach does not discuss any framework like EJB.
The novelty lies in the fact that our approach involves three
dimensions i.e., JVM, e-commerce and micro-services
whereas, the approaches stated above involve one or two
dimensions out of these three. Our approach also went one
step further and analysed the implications of JVM tweaks
in terms of e-commerce traffic i.e., number of requests
handle by THG Aggregator under defined time frame with
different configurations.

V. Conclusion and Future Work
In this paper, we presented the detailed analysis of an

e-commrece system via our defined framework of analysis.
The results identified the best configuration and concluded
that Arm is the overall better performer under defined
configurations to run THG Aggregator. As a part of the
analysis framework, a comprehensive series of load tests
showed how JVM configurations translated into actual
performance of an e-commerce system.

After running and analysing THG Aggregator under
different configurations, future work involves the analysis
at code level to find out low-performant parts of the code
base. In other words, code-based profiling should be con-
ducted to extract call-graphs and heap dumps. Such a fine-
tuning at code-level along with the JVM-based tuning will
be really valuable in making an e-commerce system more
robust with enhanced performance. Another dimension of
future work revolves around the cost estimation of running

the e-commerce operations. New Arm processors claim to
be more energy efficient and as our results stated, per-
formed better with THG aggregator. Further research can
quantify the difference in running cost against the cost of
replacing the existing hardware and further decisions can
be made regarding future purchases and code optimisations
against a specific hardware.

References

[1] Alberto Avritzer and Elaine J Weyuker. The role of model-
ing in the performance testing of e-commerce applications.
IEEE Transactions on Software Engineering, 30(12):1072–
1083, 2004.

[2] Bill Burke and Richard Monson-Haefel. Enterprise Jav-
aBeans 3.0. ” O’Reilly Media, Inc.”, 2006.

[3] Domenico Cotroneo, Salvatore Orlando, Roberto Pietran-
tuono, and Stefano Russo. A measurement-based ageing
analysis of the jvm. Software Testing, Verification and
Reliability, 23(3):199–239, 2013.

[4] Robert Dimpsey, Rajiv Arora, and Kean Kuiper. Java server
performance: A case study of building efficient, scalable
jvms. IBM Systems Journal, 39(1):151–174, 2000.

[5] Malin Källén and Tobias Wrigstad. Performance of an oo
compute kernel on the jvm: revisiting java as a language
for scientific computing applications. In Proceedings of the
16th ACM SIGPLAN International Conference on Managed
Programming Languages and Runtimes, pages 144–156,
2019.

[6] Hai-Shuan Lam, GSVRK Rao, Chikkanan Eswaran, and
Kok-Seong Ng. Performance comparison of various garbage
collectors on jvm for web services. In 2006 International
Symposium on Communications and Information Technolo-
gies, pages 711–715. IEEE, 2006.

[7] King Tin Lam, Yang Luo, and Cho-Li Wang. A perfor-
mance study of clustering web application servers with dis-
tributed jvm. In 2008 14th IEEE International Conference
on Parallel and Distributed Systems, pages 328–335. IEEE,
2008.

[8] David Lion, Adrian Chiu, Hailong Sun, Xin Zhuang,
Nikola Grcevski, and Ding Yuan. Don’t get caught in
the cold, warm-up your {JVM}: Understand and eliminate
{JVM} warm-up overhead in data-parallel systems. In 12th
{USENIX} Symposium on Operating Systems Design and
Implementation ({OSDI} 16), pages 383–400, 2016.

[9] T-K Liu, Santhosh Kumaran, and J-Y Chung. Performance
engineering of a java-based e-commerce system. In IEEE
International Conference on e-Technology, e-Commerce and
e-Service, 2004. EEE’04. 2004, pages 33–37. IEEE, 2004.

[10] S Pradeep and Yogesh Kumar Sharma. A pragmatic
evaluation of stress and performance testing technologies
for web based applications. In 2019 Amity International
Conference on Artificial Intelligence (AICAI), pages 399–
403. IEEE, 2019.

[11] Fangxi Yin, Denghui Dong, Sanhong Li, Jianmei Guo, and
Kingsum Chow. Java performance troubleshooting and op-
timization at alibaba. In 2018 IEEE/ACM 40th International
Conference on Software Engineering: Software Engineering
in Practice Track (ICSE-SEIP), pages 11–12. IEEE, 2018.

[12] Long Zhang, Brice Morin, Philipp Haller, Benoit Baudry,
and Martin Monperrus. A chaos engineering system for live
analysis and falsification of exception-handling in the jvm.
IEEE Transactions on Software Engineering, 2019.


