
Unlearnable Examples: Protecting Open-Source
Software from Unauthorized Neural Code Learning

Zhenlan Ji, Pingchuan Ma, Shuai Wang
The Hong Kong University of Science and Technology

{zjiae,pmaab,shuaiw}@cse.ust.hk

Abstract—The vast volume of “free” code maintained on
open-source code management systems significantly simplifies the
process of producing and sharing open-source software. Recently,
we have seen a growing trend in which these open-source software
is being used for neural code learning without authorization.
Note that open-source software does not necessarily imply “un-
restricted usage,” e.g., software under the BSD license requires
users to retain the copyright notice and credit the software’s
developers.

The unauthorized use of software for (commercial) neural
code learning models has raised copyright concerns. This paper,
for the first time, provides approaches for protecting open-
source software from unauthorized neural code learning via
unlearnable examples. Our proposed technique applies a set
of lightweight transformations toward a program before it is
open-source released. When these transformed programs are
used to train models, they mislead the model into learning
the unnecessary knowledge of programs, then fail the model
to complete original programs. The transformation methods are
sophisticatedly designed to ensure that they do not impair the
general readability of protected programs, nor do they entail a
huge cost. We focus on code autocompletion as a representative
downstream task of unauthorized neural code learning. We
demonstrate highly encouraging and cost-effective protection
against neural code autocompletion.

I. INTRODUCTION

Recent advances in deep neural networks (DNNs) have
resulted in advancements in computer vision (CV) and natural
language processing (NLP) applications. Recently, there has
been a surge of interest in using neural networks to solve a
variety of software engineering (SE) tasks by learning from
codes, including program synthesis [10], autocompletion [15],
and code summarization [2]. For example, GitHub recently
released Copilot [8], with the aim to provide an “AI pair
programmer” capable of automatically generating programs
from natural language specifications.

The major success of neural code learning is attributed
in part to the availability of large-scale corpus [15]. For
instance, Copilot is trained on massive amounts of open-
source code, including public code collected from GitHub [3].
Nonetheless, a widespread concern is that some datasets
were amassed without mutual consent [16]. In fact, it has
been extensively noted that Copilot may leak sensitive code
snippets when performing auto programming [23]. And, as
its developers admit, Copilot uses all public Github code for
training regardless of license [11], thus likely breaching the

DOI reference number: 10.18293/SEKE2022-066

copyright of lots of open-source software. In this paper, we
refer to the use of code as training data without consent as
“unauthorized utilization.” Note that “open-source” software
does not necessarily grant model owners like GitHub the right
to sell the software content, nor does it grant model owners
the right to distribute/use open-source software. In short, these
neural code learning applications have raised primary concerns
about unauthorized usages of open-source software.

There are solutions to protect private data against unautho-
rized machine learning. Recent work, in particular, generated
unlearnable images via adversarial transformations [9], [24],
[4], fooling the model into believing that there is nothing
that can be learned from the transformed images. This work
advocates for a focus on creating unlearnable examples of
code that are difficult for neural code learning models to
learn and, meanwhile, exhibit identical functionality and high
readability to humans. However, in comparison to images, it is
more difficult to practically enforce unlearnability on software
with “adversarial transformations,” because arbitrarily flipping
a token in a program may change its semantics and even
impose grammatical errors. Existing techniques (e.g., software
obfuscation) used to protect software from exploitations are
often heavyweight, which significantly impair the readability
and is thus undesirable for open-source software.

In this paper, we design a set of lightweight semantics-
preserving transformations toward software. Users who plan to
open-source release their software can first locally launch our
transformations toward their programs before releasing them.
Given the inadequacy of a single transformation, we form
an iterative transformation process and identify an optimal
transformation sequence using multi-armed bandits. We em-
ploy a commonly-used code embedding model to guide local
transformation, with the aim of maximizing the embedding
distance between a transformed program and its clean version
while preserving a modest edit distance (to retain readability).
Users can then release the transformed program, and when
the released program is used as training data for neural code
learning (which is generally not avoidable for open-source
software), these transformed programs deceive downstream
applications like autocompletion by constantly learning faulty
knowledge. Thus, the transformed program though remains ac-
cessible to the open-source community, becomes unlearnable
from the perspective of unauthorized neural models.

We use CodeBERT [7] as the local model to guide the
transformation. We deceive CodeGPT [12], a SOTA code

autocompletion model trained on the POJ-104 dataset [15]
with one or several programs that have been transformed by
our work. The evaluation shows that the transformed programs
can achieve a high success rate of creating unlearnable exam-
ples, greatly reducing the accuracy of CodeGPT (to nearly
“random”), while maintaining decent readability and a small
runtime cost.
Contributions. We summarize our contributions as follows:
1) conceptually, we advocate for a new focus on protecting
software against unauthorized neural code learning, a growing
concern in the open-source community, 2) technically, we pro-
pose a set of lightweight transformations to transform software
in a semantics- and readability-preserving manner. The optimal
transformation sequence toward a program is determined using
multi-armed bandits, and 3) we demonstrate empirically that
transformed programs effectively mislead unauthorized neural
code autocompletion with negligible cost.
Open Source. We release our code at https://github.com/
ZhenlanJi/Unlearnable Code.

II. RELATED WORK

Mitigating Data Privacy Leakage. The majority of work
on reducing model training data privacy leaks is based on
federated learning [13]. Rather than sharing the training data,
owners of training data share the model updates to jointly
train a model. Contemporarily, differential privacy assures
that a trained model does not learn raw training data [6].
In contrast, our work focuses on a more challenging sce-
nario: protecting open-source software from being learned
by unauthorized neural models. That is, the deep learning
models are not trusted in our scenario, and it is unclear
if they have utilized any privacy-preserving techniques like
differential privacy. Recent efforts have been made to protect
the privacy of photos with adversarial transformations against
facial recognition [24], [4]. We protect open-source software,
a timely albeit under-explored subject. We propose a general
framework that produces unlearnable programs that can be
used to mitigate unauthorized code embedding applications.
Protecting Unauthorized Code Usage. Some prior research
focuses on identifying code authorship [1]. Nevertheless, pro-
tecting unauthorized usage of open-source software, though
having raised widespread concern, is rarely discussed. One
contemporary research inserts unusable code snippets (“dead-
code”) to impede unauthorized code usage [20]. Nonetheless,
inserting deadcode, e.g., a special function that is never
executed (referred to as “watermark” in their paper), is gen-
erally easy to be recognized and removed. Transformations
proposed in this work are stealthy and hard to elide, meaning
that our approach is more robust and effective in defeating
unauthorized code usage.

III. APPROACH OVERVIEW

Research Challenge. Existing works generate “unlearnable”
photos by applying adversarial transformations [24], [4]. These
approaches, however, are inapplicable to software. Software is
written in a structured manner, where transforming arbitrary

bytes in a program can easily break its functionality. On
the other end of the spectrum, software obfuscations tech-
niques [5] transform software into an unreadable form, which
may be used to defend unauthorized utilization. However,
obfuscations can largely hamper software readability and
distribution in the open-source community and consequently is
not widely used. In sum, we aim to deliver a lightweight and
effective method, such that software is transformed without
impeding its functionality, retaining high readability, while
making it “unlearnable.”
Assumption and Objective. We aim to design a set of
transformations, particularly toward software. These transfor-
mations change the program source code in a semantics-
preserving manner while retaining readability and execution
speed. This way, we protect open-source software against
unauthorized neural code learning, which is jeopardizing copy-
right of open-source software for unauthorized usages.

While authors may have no direct access to the unauthorized
neural code models, they can set up SOTA code embedding
models like CodeBERT locally to guide transformations. How-
ever, once the transformed software is released as open-source,
authors cannot prevent unauthorized usage, which will include
the released software as part of their training data. We establish
a practical objective for protection, such that the released soft-
ware, after local transformation, cannot be correctly matched
to its original version in front of representative neural code
learning applications like code autocompletion. In the rest of
the paper, we use “clean version” to refer to the original,
untransformed program to ease the reading.

TABLE I
TRANSFORMATION METHODS.

Class Methods Abbreviations

Identifier
Level

identifier replacement IR
identifier synonym IS
character synonym CS

Constant
Level

int rewrite INT
float rewrite FLT

string rewrite STR

Statement
Level

int def. insert IDI
float def. insert FDI
string def. insert SDI
single line insert SLI

A. Semantics-Preserving transformation

This research designs a set of transformation methods for
programs. Each method provides a semantics-preserving trans-
formation, in the sense that the transformed output, another
piece of software, retains the original functionality. We further
clarify that all transformation methods are intended to provide
simple and incremental transformations, while heavyweight
transformations can undermine the readability of open-source
software. Table I lists all designed transformation methods.
Identifier Level. We first parse a program to extract all
identifiers (i.e., variable names). We then design three transfor-
mation methods on extracted identifiers. Identifier replacement
(IR) randomly replaces a subset of identifiers with random

https://github.com/ZhenlanJi/Unlearnable_Code
https://github.com/ZhenlanJi/Unlearnable_Code

strings. Identifier synonym (IS) is built on the basis of Word-
Net [14], a large-scale lexical database. We query WordNet
for a given identifier i to see if i and its synonyms exist; if
so, we replace i with a randomly selected synonym. Compared
with IR, IS can better preserve the readability of transformed
programs. We also propose character synonym (CS) which
uses hardcoded rules to replace a single-character identifier
with another character, e.g., i → j.

As discussed in Sec. II, many code embedding models
regard program statements as sentences, with identifiers (and
also constants; see below) treated as tokens. This allows
software to be smoothly processed via NLP techniques. Ac-
cordingly, we envision that identifier-level rewriting, though
lightweight and retains readability to a large extent, will
be useful in token-level transformation and deceiving neural
models. This intuition is supported in our evaluation (Sec. V).

Constant Level. Additionally, we also propose three schemes
to transform constants extracted in a program without breaking
the semantics. Int rewrite (INT) converts an integer into an
arithmetic expression. For instance, after applying IR, the
C statement a = a + 10 will be converted into a = a +
121 - 21, where “121” and “21” are two randomly-decided
constants that will guarantee to yield “10”. Similarly, we
design a transformation scheme, namely float rewrite (FLT),
to convert floating point numbers into arithmetic expressions.
As for strings, our scheme string rewrite (STR) converts a
char* constant in C (or string constant in C++) into
two substrings, where the original string is recovered during
runtime by calling the libc function strdup followed by
calling another libc function strcat.

Existing DNN-based authorship identification and code
clone detection gain from matching “magic numbers,” which
denote representative constants [18]. As a result, transforming
constants should be effective in misleading the model. More-
over, as mentioned in Sec. II, some code embedding techniques
learn the program abstract syntax tree (AST). Accordingly,
by converting constants to expressions, we obscure the AST
without largely impeding readability.

Statement Level. We also design methods to extend existing
statements or insert new statements. For the IDI, FDI, and
SDI schemes, we split an existing declaration statement of
integer, float, or string variables into multiple declarations. For
instance, IDI adds one extra statement with integer arithmetic
computation, ensuring that the result is equal to the original
declarations. Similarly, FDI and SDI insert new statements
that perform floating-point arithmetics or string manipulations
without changing the original functionality. In contrast, SLI
generates and inserts new declarations at random, whose
declared variables are never used in subsequent computation.

While the semantics is retained during transformation, the
newly-inserted statements can complicate program AST and
control flow graphs. We anticipate that neural code learning
models that rely on AST or program structural-level informa-
tion will struggle to understand the transformed programs.

Algorithm 1: Protection framework.
Input: Clean Program s, Transformation Sequence Length K,

Sample Size M , Batch Size m, Exploration Factor ε,
Discounting Factor γ

Output: transformed Program ŝ
1 ŝ← s;
2 foreach k ← 1, · · · ,K do
3 D ← [0]|T |; // initialize expectation distribution
4 S ← ∅; // transformed software set
5 foreach t← 1, · · · ,M/m do
6 T ← ∅;
7 foreach i← 1, · · · ,m do
8 t← random() with probability of γi−1ε;
9 t← argmaxtDt with probability of 1− γi−1ε;

10 T ← T ∪ {t};
11 end
12 transform ŝ with all t ∈ T and update D;
13 record all transformed program to S;
14 end
15 ŝ← argmaxs∈S f(s);
16 end
17 return ŝ

IV. FRAMEWORK DESIGN

Motivation. Each transformation scheme complicates program
structures to some degrees, and different schemes may achieve
a synergistic effect by iteratively modifying a program, with
the output of each iteration, a transformed program, serving
input of the next iteration. As a result, the applied transforma-
tion sequences (we have ten transformation methods) create
a vast search space, 10K , where K represents the number of
iterations applied to the input. We formulate searching for the
optimal transformation sequence as an optimization process,
where statistical methods can help to promptly explore the
search space and find optimal sequences.
Framework. The input of our pipeline is a program s. Let the
local embedding model (e.g., CodeBERT) be E , we iteratively
transform s into ŝ until ŝ manifests a large embedding distance
and also a small edit distance with s. This way, the “identity”
of s will be hidden, given that ŝ is seen as irrelevant to s in
the view of M while similar to s in view of humans (by edit
distance). Users can then release ŝ. Soon we will show that ŝ
will be protected from disclosing the information of s even if
code autocompletion models are trained over ŝ.

Alg. 1 illustrates the protection workflow. For each iter-
ation, we search for an optimal transformed software with
ε-Greedy (line 3–15) such that a predefined objective func-
tion is maximal. Note that since transforming software is
stochastic (e.g., the choice of synonyms is random), the
effectiveness of each transformation method forms a random
variable. Therefore, it requires extensive sampling to derive
an optimal transformed software. Our sampling strategy is
largely enlightened by ε-Greedy in standard multi-armed
bandit problem. In this setting, the sampling strategy is pro-
gressively refined and favors the transformation methods that
have good historical performance. First, it samples a batch of
transformation methods: it 1) takes a random method with
the probability of ε (line 8) or 2) takes the best method
(w.r.t. historical expectation on f) with the probability of

1− ε (line 9). Typically, the former case explores all possible
transformation methods, while the latter seeks to maximize
the expected value of f . Alg. 1 collects samples in T and
transforms ŝ with each t ∈ T respectively, and updates the
table of expected value per batch (line 12–13). We define the
objective function f as:

f(ŝ; s) =
l2-norm(E(ŝ), E(s))
edit-dist(ŝ, s)

(1)

where l2-norm measures the euclidean distance of trans-
formed ŝ and its clean version, while edit-dist measures
the edit distance between them. By doing so, we presume
Alg. 1 will gradually find ŝ with sufficiently long euclidean
distance while retaining a small edit distance with s.
Hyper-parameters. Alg. 1 takes hyper-parameters. K denotes
the length of the transformation sequence (i.e., how many iter-
ations are allowed to transform s); M denotes the sample size
for deciding one single transformation method in ε-Greedy.
m is defined as the batch size, where the distribution table
is updated per batch (in contrast to per sample). ε is the
exploration rate that balances exploration and exploitation
in ε-Greedy, and γ is the discounting factor that reduces
the probability of exploration when the distribution is well
captured by prior trials. Overall, larger K and M indicate
more intensive transformation. For the current implementation,
we set K = 15 and M = 256. Our evaluation shows
that this configuration enables a reasonable tradeoff between
effectiveness and cost. Users are encouraged to configure these
two hyper-parameters according to their own usage scenarios.
For m, ε, and γ, they are all common settings for ε-Greedy,
where m = 64, ε = 1, and γ = 0.5 in our implementation.

V. EVALUATION

Neural Embedding. We use CodeBERT, a SOTA code em-
bedding model to guide our local transformation shown in
Alg. 1. We have introduced the high-level concept behind
CodeBERT in Sec. II. We emphasize, however, that our
protection pipeline is orthogonal to specific embedding models
used during local transformation.
Test Dataset. We use POJ-104 [15], a widely-used dataset
containing 52,000 C/C++ programs written for 104 tasks.
These programs implement programming assignments by stu-
dents (e.g., two sum). While programs belonging to the same
task share identical functionality, programs in different tasks
are irrelevant. On average, each POJ-104 program contains
about 36 lines of code (exclude white space and comments),
whose length is comparable or outperforms the program
datasets used by relevant works [21], [22], [25].
Code Autocompletion. We measure how the transformed
programs can successfully mislead unauthorized code auto-
completion models when being exposed. This is a timely
topic, where modern code autocompletion tools like Copilot
have raised concerns by training code on GitHub without
distinguishing licenses. We use CodeGPT [12], a transformer-
based code autocompletion model, for this task. CodeGPT
extends the standard GPT-2 model structure and demonstrates
that it performs at a SOTA level in this line of research [12].

Setup & Metrics. We measure when training CodeGPT
using our transformed programs, whether the transformed
program can be successfully protected from being used for
self-completion. Let the training split of POJ-104 contain
N programs, we measure three setups: randomly selecting
{1, 20%, 40%} programs and replacing them with their trans-
formed versions using our approach. Note that “1” indicates
that only one program is being transformed. We then train
three CodeGPT models with these three training datasets. We
consider two baselines: 1) B1, which uses the original training
dataset to train CodeGPT, and 2) B2, which replaces those
transformed {1, 20%, 40%} programs with irrelevant POJ
programs. Ideally, CodeGPT trained using our transformed
programs would behave similarly to B2 while deviating sig-
nificantly from B1, showing that the identities of protected
programs have been successfully hidden.

To assess autocompletion, the standard approach randomly
splits a program p into two pieces, p1 and p2, and uses p1 as
the model input to determine whether the model-generated
piece p′2 matches p2. Autocompletion models are typically
assessed in terms of their one-line, three-line, and five-line
completion accuracy, such that we match the first one line,
three lines, and five lines of p′2 and p2. To “match” two code
snippets, both edit similarity (ES) and exact match (EM) are
employed, with ES computing the tree edit similarity between
the two code snippets (higher is better), and EM requiring
an exact match between the two code snippets. We clarify
that these two metrics are consistent used in measuring the
performance of CoedXGLUE [12].
Model Training. Our learning and testing were conducted on
a server machine with an Intel Xeon E5-2683 v4 CPU at 2.40
GHz with 256 GB of memory and two Nvidia 2080 GPU
cards. The machine runs Ubuntu 18.04. Note that we use a
pre-trained CodeBERT model to compute code embeddings.
We share the same hyperparameters with CodeXGLUE to
train the CodeGPT model. To benchmark the performance
of our trained model, we also evaluate it on dataset py150
provided by CodeXGLUE. The result shows that our model
has a comparative performance on py150 with CodeXGLUE’s
official report. The average training cost for each CodeGPT
model is about five hours. It takes about one minute to
transform one program using methods in Sec. IV.

A. Generating transformed Code Samples

TABLE II
AVERAGE EMBEDDING DISTANCE AND EDIT DISTANCE OF 1)

TRANSFORMED PROGRAMS AND THEIR CLEAN VERSIONS; 2) SAME CLASS
PROGRAMS; AND 3) CROSS CLASS PROGRAMS.

transformed vs. Clean Same Class Cross Class
Embedding Dist. 3.54 3.54 4.29
Edit Dist. 138.2 480.7 587.8

transformation. We first compute and compare the average
embedding distance and edit distance between transformed
programs and corresponding clean versions in Table II. Fur-
thermore, given that programs in POJ-104 are annotated with
different classes, we also report pairwise distance among

programs of the same class or cross classes. Our approach
effectively increases the difference between transformed and
clean versions of the programs in CodeBERT’s view, while
retaining a reasonable edit distance.

The edit distance between the transformed and clean pro-
grams is much lower than that between programs of the
same class. Programs from different classes implement distinct
tasks, resulting in even longer edit distance. This reveals
the high similarity in the view of users. We present further
discussions on readability below in Table IV. In short, our
transformation is shown to be effective in misleading neural
code embedding, whose effectiveness will be further illustrated
by defeating CodeGPT in Sec. V-B.

TABLE III
TRANSFORMATION DISTRIBUTION.

transformation Portion transformation Portion
IR 26.6% STR 6.3%
IS 3.1% IDI 3.7%
CS 14.1% FDI 0.1%
INT 29.3% SDI 0.8%
FLT 1.1% SLI 14.8%

Distribution of Applied transformations. As shown in
Table I, we implement ten transformation methods. Recall
that, in Alg. 1, a transformation method is retained, in case
it effectively reduces embedding distance without primarily
undermining the edit distance. Table III reports the distribution
of successfully retained transformations. Overall, we interpret
that all proposed methods (except FDI) are applied for a non-
trivial amount of iterations. Identifier-level and constant-level
transformations are particularly effective to deceive Code-
BERT. To compute embeddings, CodeBERT extracts a large
number of string and integer constants (including variable
names) from input programs. Accordingly, by transforming
identifiers and constants, CodeBERT can be effectively de-
ceived. Note that the IS scheme is used less frequently. IS
replaces a variable name with its synonym by querying Word-
Net. We find that a considerable fraction of variable names
lack entries or synonyms in WordNet. Recall FLT extends
a floating number into an arithmetic expression, and FDI
rewrites a declaration statement for floating point variables.
POJ-104 programs rarely use floating numbers. According to
our observation, another reason that impedes the usage of
statement-level transformations (IDI, FDI, SDI) is that they
induce a higher edit distance, thereby undermining readability.

TABLE IV
AVERAGE SIMILARITY DECIDED BY JPLAG COMPARING TRANSFORMED

PROGRAMS AND THEIR CLEAN VERSIONS.

transformed vs. Clean Same Class Cross Class
67.5% 4.4% 0.4%

Readability. The “readability” of software is often subjective
and difficult to quantify. In addition to the edit distance, which
our pipeline optimizes for, we provide another metric for the
readability of transformed programs using conventional code
similarity analyzers. At this point, we use a popular similarity
checker called JPlag [17]. JPlag is widely used to detect code

plagiarism based on syntactic and code structure-level features.
Thus, using JPlag to evaluate code similarity provides a more
complete picture of the readability of transformed code. JPlag
can be configured locally prior to use. We also looked at
another well-known tool, Moss [19]. Nonetheless, its remote
server frequently fails to respond.

We assess randomly selected samples within POJ-104 as
a baseline (same setting as Table II). We find that when
randomly selected code samples from different classes are
compared, the baseline similarity between them is only 0.4%,
demonstrating that JPlag is capable of successfully distinguish-
ing distinct programs. Note that JPlag can also distinguish
programs belonging to the same class (for example, two quick
sort programs) as long as their implementations are sufficiently
distinct (average similarity 4.4%). In contrast, transformed
programs exhibit a high degree of similarity to their clean
versions, with an average similarity score of 67.5%. As a
result, we interpret that these transformations do not primarily
harm open-source software’s “readability” and disseminability.

Cost. Our proposed transformations are functionality preserv-
ing, meaning that the transformed programs manifest identical
functionality with their clean versions by design. Nevertheless,
our transformations insert new code fragments into the pro-
grams, imposing additional performance penalty. We manually
write non-trivial test cases for POJ-104 programs to assess
performance penalty. We use a common performance analysis
tool on Linux, perf, to measure the cost of (transformed)
programs. In general, we report that the transformed pro-
grams become negligibly slow (on average less than 1%),
if at all detectable. This is not surprising, as our methods
primarily change symbols (variable names) and statements in a
lightweight manner. Symbols are removed during compilation
and hence have no effect on execution. In terms of statement-
level changes, we find that many of them are optimized
out during compilation. We interpret the cost evaluation as
encouraging, illustrating that our transformation would incur
negligible extra cost.

TABLE V
ASSESSING THE PERFORMANCE OF CODEGPT. B1 AND B2 ARE TWO

BASELINE SETTINGS CLARIFIED IN THE SETUP & METRICS PARAGRAPH.
UE (UNLEARNABLE EXAMPLE) DENOTES OUR RESULTS. “ES” STANDS

FOR EDIT DISTANCE (A MORE TOLERATE METRIC OF CODE SIMILARITY),
WHEREAS “EM” STANDS FOR EXACT MATCH.B2(20%, 40%, 1) AND UE

(20%, 40%, 1) CORRESPOND TO REPLACE 20%, 40%, 1 OF CLEAN
TRAINING PROGRAMS WITH OUR TRANSFORMED VERSIONS. UE IS

EXPECTED TO CLOSE TO B2 FOR HIGH PROTECTION ABILITY.

Method
1 line 3 lines 5 lines

ES EM ES EM ES EM
B1 73.9% 42.4% 71.2% 21.4% 68.3% 10.9%

B2(20%) 68.8% 34.9% 67.3% 15.9% 64.9% 7.2%
UE (20%) 69.3% 35.5% 67.7% 16.2% 65.2% 7.6%
B2(40%) 68.6% 34.5% 66.7% 15.6% 64.3% 6.7%
UE (40%) 68.4% 33.6% 66.7% 15.6% 64.2% 7.0%
B2(1) 74.3% 48.8% 65.8% 10.2% 62.7% 0.9%
UE (1) 73.9% 45.8% 65.7% 10.8% 63.6% 2.2%

B. Mitigating Code Autocompletion

Table V reports the results of mitigating CodeGPT in
different settings. When more lines are checked, CodeGPT’s
accuracy decreases. This is reasonable, as matching three or
five lines implies a more difficult task than matching one line.

Recall that B1 feeds CodeGPT with programs in its train-
ing dataset for self-completion, denoting the “upper bound”
of accuracy. Table V reports promising results where the
protected programs (three “UE” rows) are far from the B1.
More importantly, the “UE” rows are extremely close to their
corresponding B2 rows. As previously clarified, Baseline2
denotes the “lower bound” of accuracy, as it replaces the
transformed programs in the training dataset with irrelevant
programs. Therefore, the evaluation results illustrate that,
after transformation, protected programs behave similarly to
randomly-picked programs, successfully deceiving the auto-
completion model.

The 8th and 9th rows (B2(1) and UE (1)) denote inserting
only one transformed program in the training dataset and
feeding its clean version to CodeGPT (as noted in Setup &
Metrics, we will randomly cut the input program into two and
feed CodeGPT with the upper cut). This is a realistic setting,
given that authors may want to protect their own piece of
software before uploading it to GitHub. Though only changing
one piece of training data, it already largely undermines
the accuracy of CodeGPT when performing autocompletion
toward the upper half of its clean version.
Clarification. We also clarify that the accuracy of CodeGPT
in matching other programs (which may be also within the
training data) has only negligible change (around 1%; par-
ticularly for the evaluation setting where 40% training data
are transformed) compared with B1. In summary, though
it is generally hard (if at all avoidable) to prevent open-
source software from being used as training data, information
regarding the open-source software will not be leaked via
autocompletion after applying our protection.
Case study. We provide an code example to illustrate
the effectiveness of our approach to impede autocomple-
tion at https://github.com/ZhenlanJi/Unlearnable Code/blob/
main/example.pdf.

VI. CONCLUSION

In this paper, we propose to mitigate unauthorized neural
code learning from using open-source software. We design a
set of lightweight transformations and explore optimal trans-
formation sequences using multi-armed bandits. Our evalua-
tion demonstrates that transformed programs can successfully
deceive a SOTA code autocompletion model, CodeGPT.

ACKNOWLEDGEMENT

We are grateful to the anonymous reviewers for their valu-
able comments. The work is supported in part by NVIDIA
Academic Hardware Grant Program. Shuai Wang is the cor-
responding author of this paper.

REFERENCES

[1] Mohammed Abuhamad, Tamer AbuHmed, Aziz Mohaisen, and DaeHun
Nyang. Large-scale and language-oblivious code authorship identifica-
tion. In CCS, 2018.

[2] Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav. code2seq:
Generating sequences from structured representations of code. ICLR.

[3] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde,
Jared Kaplan, Harri Edwards, Yura Burda, Nicholas Joseph, Greg
Brockman, et al. Evaluating large language models trained on code.
arXiv preprint arXiv:2107.03374, 2021.

[4] Valeriia Cherepanova, Micah Goldblum, Harrison Foley, Shiyuan Duan,
John Dickerson, Gavin Taylor, and Tom Goldstein. LowKey: leveraging
adversarial attacks to protect social media users from facial recognition.
arXiv preprint arXiv:2101.07922, 2021.

[5] Christian Collberg, Clark Thomborson, and Douglas Low. A taxonomy
of obfuscating transformations. Technical report, Department of Com-
puter Science, The University of Auckland, New Zealand, 1997.

[6] Cynthia Dwork. Differential privacy. In International Colloquium on
Automata, Languages, and Programming, pages 1–12. Springer, 2006.

[7] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng,
Ming Gong, Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. Code-
BERT: A pre-trained model for programming and natural languages.
arXiv preprint arXiv:2002.08155, 2020.

[8] GitHub. Copilot, 2021.
[9] Hanxun Huang, Xingjun Ma, Sarah Monazam Erfani, James Bailey,

and Yisen Wang. Unlearnable examples: Making personal data unex-
ploitable. arXiv preprint arXiv:2101.04898, 2021.

[10] Chen Liang, Jonathan Berant, Quoc Le, Kenneth D Forbus, and Ni Lao.
Neural symbolic machines: Learning semantic parsers on freebase with
weak supervision. In ACL, 2017.

[11] Andrew Liu. Copilot, 2021.
[12] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy,

Ambrosio Blanco, Colin Clement, Dawn Drain, Daxin Jiang, Duyu Tang,
et al. Codexglue: A machine learning benchmark dataset for code
understanding and generation. arXiv preprint arXiv:2102.04664, 2021.

[13] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. Communication-efficient learning of deep
networks from decentralized data. In Artificial Intelligence and Statistics,
pages 1273–1282. PMLR, 2017.

[14] George A Miller. WordNet: a lexical database for english. Communi-
cations of the ACM, 1995.

[15] Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. Convolutional neural
networks over tree structures for programming language processing. In
AAAI, 2016.

[16] Hammond Pearce, Baleegh Ahmad, Benjamin Tan, Brendan Dolan-
Gavitt, and Ramesh Karri. An empirical cybersecurity evaluation of
github copilot’s code contributions. arXiv preprint arXiv:2108.09293.

[17] Lutz Prechelt, Guido Malpohl, Michael Philippsen, et al. Finding
plagiarisms among a set of programs with JPlag. J. UCS, 8(11):1016.

[18] Erwin Quiring, Alwin Maier, and Konrad Rieck. Misleading authorship
attribution of source code using adversarial learning. In USENIX
Security, 2019.

[19] Saul Schleimer, Daniel S Wilkerson, and Alex Aiken. Winnowing: local
algorithms for document fingerprinting. In SIGMOD, 2003.

[20] Zhensu Sun, Xiaoning Du, Fu Song, Mingze Ni, and Li Li. Coprotector:
Protect open-source code against unauthorized training usage with data
poisoning. arXiv preprint arXiv:2110.12925, 2021.

[21] Jeffrey Svajlenko, Judith F Islam, Iman Keivanloo, Chanchal K Roy,
and Mohammad Mamun Mia. Towards a big data curated benchmark
of inter-project code clones. In ICSME, 2014.

[22] Jeffrey Svajlenko and Chanchal K Roy. Evaluating clone detection tools
with bigclonebench. In ICSME, 2015.

[23] Jake Williams. Copilot privacy leakage, 2021.
[24] Xiao Yang, Yinpeng Dong, Tianyu Pang, Hang Su, Jun Zhu, Yuefeng

Chen, and Hui Xue. Towards face encryption by generating adversarial
identity masks. In ICCV, 2021.

[25] Yaqin Zhou, Shangqing Liu, Jingkai Siow, Xiaoning Du, and Yang
Liu. Devign: Effective vulnerability identification by learning compre-
hensive program semantics via graph neural networks. arXiv preprint
arXiv:1909.03496, 2019.

https://github.com/ZhenlanJi/Unlearnable_Code/blob/main/example.pdf
https://github.com/ZhenlanJi/Unlearnable_Code/blob/main/example.pdf

	Introduction
	Related Work
	Approach Overview
	Semantics-Preserving transformation

	Framework Design
	Evaluation
	Generating transformed Code Samples
	Mitigating Code Autocompletion

	Conclusion
	References

