
An efficient discrimination discovery method
for fairness testing

Shinya Sano
Dept. of Info. and Comp. Sci.

Keio University
Yokohama, Japan

sanoshin@doi.ics.keio.ac.jp

Takashi Kitamura
Nat. Inst. of Advanced Industrial

Science and Technology
Tokyo, Japan

t.kitamura@aist.go.jp

Shingo Takada
Dept. of Info. and Comp. Sci.

Keio University
Yokohama, Japan

michigan@ics.keio.ac.jp

Abstract—With the increasing use of machine learning
software in our daily life, software fairness has become a growing
concern. In this paper, we propose an individual fairness testing
technique called KOSEI. Individual fairness is one of the central
concepts in software fairness. Testing individual fairness aims
to detect individual discriminations included in the software.
KOSEI is based on AEQUITAS by Udeshi et al., a landmark
fairness testing technique featuring a two-step search strategy of
global and local search. KOSEI improves the local search part of
AEQUITAS, based on our insight to overcome the limitations of
the local search of AEQUITAS. Our experiments show that KOSEI
outperforms AEQUITAS by orders of magnitude. KOSEI, on
average, detects 5,084.8% more discriminations than AEQUITAS,
in just 7.5% of the execution time.

Index Terms—software testing, algorithm fairness, machine
learning

I. INTRODUCTION

With the increasing use of machine learning (ML) software
in our daily life, software fairness has become a growing
concern. A famous example is the COMPAS software, which
computes risk-assessment scores for recidivism of defendants.
It assists in the sentencing process; however, the software
makes biased and discriminatory mistakes [1]. For example,
the software is likely to falsely rate more black defendants to
be risky than white defendants.

Individual fairness is a key concept in software fairness. It is
often referred to with the concept of individual discrimination.
Individual discrimination occurs when ML software gives
different results to two similar individuals that differ in
protected attributes. Protected attributes represent attributes
often tied to social bias, e. g., gender, race, or age.

Testing ML software for individual fairness is one approach
to validate software fairness. It has recently been under active
investigation, with various algorithms being proposed. For
example, some use random sampling techniques [1], some
use probabilistic searches [2], some apply the technique of
gradient-based adversarial sampling [3], some apply symbolic
execution [4], and some apply constraint solving [5].

In this paper, we tackle black-box individual fairness testing,
proposing a technique called KOSEI1 (Keeper Of Systematic
Equality Investigation). KOSEI is based on AEQUITAS, a

DOI reference number: 10.18293/SEKE2022-064
1Japanese word which means fairness

landmark technique for black-box individual fairness testing,
developed by Udeshi et al. [2]. A characteristic feature of
AEQUITAS is that its testing algorithm is structured into two
phases of global and local search to leverage the robustness
of ML algorithms for efficiently detecting discriminations.
The two-phased structure of the algorithm has become the
basis of many crucial algorithms (e. g., [3], [4]). Focusing
on improving the second phase of the algorithm (called local
search), KOSEI aims to obtain a higher detecting ability of
individual discriminations. Our evaluation of KOSEI shows
that KOSEI outperforms AEQUITAS by orders of magnitude.
KOSEI detects, on average, 5,084.8% more discriminations
than AEQUITAS in just 7.5% of the execution time. Our
evaluation also confirms that our technical refinements realize
the performance gain.

The paper is organized as follows. Section II reviews
individual fairness testing and AEQUITAS by Udeshi et al. [2].
In Section III, we propose our method, KOSEI. In Section IV,
we evaluate KOSEI through experiments. We discuss threats
to validity in Section V. Section VI discusses related work.
Finally, Section VII concludes this paper.

II. BACKGROUND

This section reviews individual fairness testing (referring to
[6]) and AEQUITAS [2].

A. Individual fairness testing

Let P = {p1, p2, · · · , pn} be a set of attributes (or
parameters), for n ∈ N. We use pi to indicate the i-th attribute
in P . Each attribute pi(∈ P) is associated with a set of
values, called the domain of pi, denoted by Dom(pi), such
that (Dom(pi))i∈n is pairwise disjoint. The input space I of
a set of attributes P is the Cartesian product of the domains
of p1, p2 · · · pn(∈ P), i. e., I = Dom(p1)×Dom(p2)× · · · ×
Dom(pn). An element I of I is a data item, which we may
also call a test case. We use Ik as the value of the k-th attribute
of input I ∈ I. We also introduce Pprotected ⊆ P as the set
of protected attributes (e. g., gender, race, age). We interpret a
ML classifier, whose input space is I, as function f ; i. e., we
use f(I) to denote the result (i. e., decision) that the trained
classifier f makes for input I .

Definition 1 (Discriminatory data and Fairness [2]): Let
f be a classifier under test, γ be the pre-determined
discrimination threshold (e.g. chosen by the user), and I ∈ I.
Assume I ′ ∈ I such that there exists a non-empty set
Q ⊆ Pprotected and for all q ∈ Q, Iq ̸= I ′q and for all
p ∈ P \Q, Ip = I ′p. If |f(I)− f(I ′)| > γ , then I is called a
discriminatory data item of the classifier f and is an instance
that manifests the violation of (individual) fairness in f .

Example 1: We use the Census Income (aka, Adult)
dataset [7] as the running example. Its task is to predict if
the income of an adult exceeds $50, 000 per year. The dataset
contains 32,561 training instances with 13 attributes each. The
following example shows a numeric-represented data instance
x:

x : [4, 0, 6, 6, 0, 1, 2, 1, 1̇, 0, 0, 40, 30]

The first attribute represents ‘age’, whose domain is {0..9}
(where value ‘4’, for instance, means age from 40 to 49 years);
the ninth represents ‘gender’, whose domain is ‘male (0)’ and
‘female (1)’. The running example considers ‘gender’ (with a
dot) as the protected attribute.

Classifier f inputs a data item of the Census data set and
returns ‘1’ if the income of an adult exceeds $50, 000 per
year, and ‘0’ otherwise. According to Definition 1, the data
item x is discriminatory, for the classifier f , the protected
(i. e., ‘gender’) attribute, and γ = 0, if f(x) ̸= f(x′) with

x′ : [4, 0, 6, 6, 0, 1, 2, 1, 0̇, 0, 0, 40, 30].

Observe that x′ differs from x only in the ‘gender’ attribute.

B. AEQUITAS

We review the algorithm of AEQUITAS, focusing on its
two-phase-structured algorithm, perturbation, and an algorithm
component called local search.

1) Two-phase-structured algorithm: The algorithm of
AEQUITAS is structured into the two phases of global and
local search. The algorithm starts with the global search,
which randomly searches the input space of a ML classifier.
Following the global search, the local search searches nearby
the discriminatory data detected in the global search.

This two-phase structure of the algorithm is designed
to detect discriminatory data effectively, leveraging the
robustness of ML classifiers. The robustness of ML classifiers
means that similar prediction is likely to be produced for
similar data. So, first, the global search scans the whole input
space widely to find different kinds of discriminatory data.
Then, the local search searches the vicinities of discriminatory
data found in the global search using perturbation to find more
discriminatory data.

2) Perturbation : Given a data item, perturbation creates a
similar data item by adding small changes to it. For example,
Definition 2 gives the perturbation of AEQUITAS.

Definition 2 (perturbation): Perturbation g is a function g :
I × (P \ Pprotected) × Γ → I where Γ = {−1,+1}. If I ′ =
g(I, p, δ) where I ∈ I, p ∈ P \ Pprotected and δ ∈ Γ, then
I ′p = Ip + δ, and I ′q = Iq for all q ∈ P \ {p}.

Algorithm 1: Local Search Of Aequitas:
local_search(Dglobal , f , limit)

Data: discriminatory data (Dglobal), classifier(f), local
iteration limit (limit)

Result: Discriminatory data (Dlocal)
1 Procedure local_search(Dglobal, f, limit)
2 σpr[p]← 1

|P ′| for all p ∈ Pnon_protected

3 σv[p]← 0.5 for all p ∈ Pnon_protected
4 for I ∈ Dglobal do
5 for i in (0, limit) do
6 // apply perturbation to I
7 Select p ∈ Pnon_protected with σpr[p]
8 Select δ with σv[p]
9 I[p]← I[p] + δ

10 if eval_disc(I) then Dlocal ← Dlocal ∪ {I}
11 update_prob(I, p,Dlocal, δ)

12 return Dglobal ∪Dlocal

Algorithm 2: eval_disc(I)
Data: A data item (I)
Result: Boolean

1 Procedure eval_disc(I)
2 ▷ I(d) extends I with all values of Pprotected

3 I(d) ← {I ′|∀p ∈ Pnon_protected.Ip = I ′p}
4 if ∃I ′ ∈ I(d), |f(I)− f(I ′)| > γ then return True
5 else return False

Observe that the perturbation adds a change of only -1 or
+1 to one attribute of a given data item. As the local search
scans the vicinity of discriminatory data passed by the global
search, the perturbation stipulates the ‘vicinity’ of data.

3) Local search : Algorithm 1 shows the local search
algorithm of AEQUITAS. The algorithm takes three objects
as the input (1) f : the ML classifier under test, (2) Dglobal:
a set of discriminatory data (passed from the global search),
and (3) limit: the number of local iterations. The output is
discriminatory data found in the local search.

The algorithm begins with preparing lists σpr and σv . Given
an attribute p, σpr[p] shows the probability that p is selected
to be perturbed. σv[p] shows the probability that p is perturbed
by δ = −1, while (1− σv[p]) shows the probability that p is
perturbed by δ = +1.

After the initialization of σpr and σv , the algorithm applies
a perturbation (line 7 – line 9) to each data item (line 4)
in the given discriminatory data (Dglobal) for the limit
times (line 5). A perturbation chooses an attribute and the
direction of perturbation, respectively based on σpr (line 7)
and σv (line 8). For each perturbed data item, the algorithm
evaluates if it is discriminatory or not (line 10) using the
evaluation function (Algorithm 2). Finally, the data item
evaluated as discriminatory is added to Dlocal (line 10). Based
on evaluation results, the algorithm updates both σpr and σv

for tuning the probabilities. Three strategies (random, semi-
directed, and fully-directed) are provided for this probability
update. We do not look into the details in this paper because
our proposed technique is not very relevant to the strategies.

Example 2: Consider applying the local search of
AEQUITAS to the following data item x:

x : [7, 4, 26, 1, 4, 4, 0, 0, 0̇, 1, 5, 73, 1]

Suppose the local search algorithm, for the first iteration (i. e.,
for the first perturbation), chooses the third attribute and the
direction of ‘+1’ (respectively based on probabilities recorded
in σpr and σv). It thus generates the following data item x′,
and check if it is discriminatory, where note that the value of
the third attribute has changed from 26 to 27:

x′
1 : [7, 4, 27, 1, 4, 4, 0, 0, 0̇, 1, 5, 73, 1].

For the second iteration, the algorithm works based on this
newly generated data item x′

1. Suppose it chooses the 12th
attribute and direction of ‘+1’. It thus generates and evaluates
the following perturbed data item x′

2:

x′
2 : [7, 4,27, 1, 4, 4, 0, 0, 0̇, 1, 5, 74, 1]

For the third iteration, where it works on the new data x′
2,

suppose it chooses the fifth attribute and direction of ‘−1’. It
thus generates and evaluates the following perturbed data item
x′
3:

x′
3 : [7, 4,27, 1, 3, 4, 0, 0, 1̇, 1, 5,74, 1]

The algorithm continues similarly until the number of
iterations reaches the specified limit.

III. KEEPER OF SYSTEMATIC EQUALITY INVESTIGATION

This section proposes an individual fairness testing
technique named Keeper Of Systematic Equality Investigation
(KOSEI). KOSEI is based on AEQUITAS; it inherits the two-
phase structured search strategy (global and local search) of
AEQUITAS but improves the local search algorithm. We state
the limitations of AEQUITAS’s local search, explain technical
details of KOSEI, and discuss its advantages.

A. Limitation of AEQUITAS’s local search algorithm

1) AEQUITAS’s local search algorithm searches space,
where there may be little discriminatory data.: First, the
algorithm equally searches vicinities of discriminatory data
passed from the global search. Suppose, for example,
discriminatory data passed by the global search contain two
data d1 and d2, in the vicinities of which there are 10 and
1000 discriminatory data, respectively. Even though searching
the vicinity of d2 is likely to find more discriminatory data,
the algorithm spends an equal amount of search resources
(specified as a limit of local search) on d1 and d2.

Second, the algorithm may search not only the vicinities
of discriminatory data but also those of non-discriminatory
data. Note that the algorithm sequentially applies perturbation
to generated data, regardless of whether that data is
discriminatory or not. For example, suppose x′

1 (generated by

the discriminatory data item x by perturbation) in Example 2
is not discriminatory; the algorithm searches the vicinity of
x′
1, by applying perturbation and evaluates the perturbed data

item.
2) AEQUITAS’s local search may waste search resources

by evaluating duplicated data.: First, the perturbation process
is based on the probabilistic choice of parameter-values; thus,
the algorithm may generate a data item that has previously
been generated. However, AEQUITAS does not avoid such
duplications, which causes its inefficiency.

Specifically, the second is more concerned with
the algorithm implementation design. The AEQUITAS
implementation of Algorithm 1 (coded in Python) is
realized using the basin-hopping optimization function2. This
implementation design seems to aim to detect discriminatory
data efficiently. However, as we observe in our experiments
of executing AEQUITAS, the implementation generates quite
a few duplicated data during its executions (as is also pointed
out in [2]-page 9).

B. Two key mechanisms of our local search

We explain the two key mechanisms in the local search of
KOSEI: i. e., perturbation and dynamic update of search space.

1) Perturbation : The concept of perturbation of KOSEI
inherits that of AEQUITAS (Definition 2); i. e., the perturbation
of KOSEI changes the value of only one attribute of a
given data item by −1/ + 1. However, KOSEI uses this
perturbation concept differently from AEQUITAS. It applies the
perturbation to all the unprotected attributes one by one instead
of probabilistically choosing one attribute like in AEQUITAS.

Example 3: The following shows data obtained by applying
the perturbation to the data item x:

x : [7, 4, 26, 1, 4, 4, 0, 0, 0̇, 1, 5, 73, 1]
x′
1 : [6, 4, 26, 1, 4, 4, 0, 0, 0̇, 1, 5, 73, 1]

x′
2 : [8, 4, 26, 1, 4, 4, 0, 0, 0̇, 1, 5, 73, 1]

x′
3 : [7,3, 26, 1, 4, 4, 0, 0, 0̇, 1, 5, 73, 1]

x′
4 : [7,5, 26, 1, 4, 4, 0, 0, 0̇, 1, 5, 73, 1]

...
x′
22 : [7, 4, 26, 1, 4, 4, 0, 0, 0̇, 1, 5, 73,2]

The bold numerics indicate attributes to which the
perturbation has been applied. For example, x′

1 is generated
by perturbating the first (unprotected) attribute (i. e., ‘age’) of
x to the direction of −1; x′

2 is generated by perturbating the
first attribute of x to the direction of +1; x′

3 is generated by
perturbating the second attribute (‘work class’) of x to the
direction of −1. The number of data obtained from one data
item x is at most #P ′ ∗ |δ|, where #P ′ is the number of
unprotected attributes and |δ| = |{−1,+1}| = 2. Note that
some data generated by perturbation will be invalid and hence
will be excluded if the perturbed value in the perturbed data
is out of its attribute domain.

2https://docs.scipy.org/doc/scipy-1.8.0/html-scipyorg/reference/

Algorithm 3: Local search of KOSEI
Data: Same as Algorithm 1
Result: Same as Algorithm 1

1 Procedure local_search(Dglobal, f, limit)
2 // initialize seed data D and Dtotal

3 // Dtotal is a global variable
4 D ← Dglobal

5 for i in (0, limit) do
6 d← D.pop()
7 for p ∈ Pnon_protected do
8 for δ ∈ {−1,+1} do
9 d′ ← d; d′[p]← d[p] + δ

10 if d′[p] ∈ Dom(p) then continue
11 if d′ ∈ Dtotal then continue
12 if eval_disc(d′) then
13 // dynamic update of seed data D
14 D.push(d′)

15 Dtotal ← Dtotal ∪ {d′}

16 return D

2) Dynamic update of seed data : Naively, the number
of local iterations would be the number of non-protected
attributes times 2. In our running example, this iteration limit
would be 24 (=12 x 2). However, this would severely limit the
search space. Furthermore, in AEQUITAS, users can specify
a local iteration limit (by variable limit in Algorithm 1),
typically 1000 or 2000. These values are much higher than
the naive value of 24 stated above. This suggests we need to
consider cases where a user-specified local iteration limit is
much higher than the naive number of local iterations.

KOSEI is designed to dynamically update the discriminatory
data (called seed data) that the local search works on to bridge
this gap. Although the local search of KOSEI starts working
on discriminatory data passed by the global search as seed
data, on detecting a new discriminatory data item, it appends
that data item to the seed data so that the newly-detected data
item can also be an object of the local search. KOSEI searches
vicinities of discriminatory data detected in the global search
and those of newly detected discriminatory data during the
local search. The local search thus terminates when it reaches
the iteration limit specified by users or when there is no more
seed data.

C. Local search algorithm of KOSEI

Algorithm 3 shows the local search algorithm of KOSEI,
which incorporates the two key mechanisms.

Note first that since the proposed local search offers an
alternative to that of AEQUITAS, its input and output are
designed the same as those of AEQUITAS’s local search (in
Algorithm 1).

The algorithm sets seed data D with the discriminatory
data Dglobal (to be passed by the global search) at line 4. It
next iterates the following procedure for the number of times

specified by ‘limit’: Dequeueing the first data item from the
seed dataset D, it applies the perturbation (as explained in
Section III-B1). That is, for each attribute of the dequeued
data item, it perturbs the value of the attribute by ‘−1/+1’.
In doing so, the perturbed data item is checked to see if it is
valid (line 10) and if it has been evaluated previously (line 11,
where Dtotal remembers the list of previously evaluated data).
Next, the data item that passed these checks is evaluated
for whether it is discriminatory or not (line 12). If it is
evaluated discriminatory, it is appended to the list of seed data
(line 14). Finally, the evaluated data (regardless of whether it
is discriminatory or not) is added to Dtotal (line 15).

D. Advantages of KOSEI

KOSEI improves the limitations of the local search
algorithm of AEQUITAS, discussed in Section III-A.

The first improvement is on the limitation that AEQUITAS’s
local search scans a search space, where there may be little
discriminatory data (as stated in Section III-B1). The local
search of KOSEI searches all the neighbors of a given data
item, where all the neighbors of a data item mean all the
perturbed data of a data item defined in Definition 2. Note,
meanwhile, the local search of AEQUITAS does not necessarily
work in this way according to its probabilistic search. This
strategy of KOSEI aims to search data that are more likely
to be discriminatory. The dynamic updating of seed data of
KOSEI also can contribute to this aspect. Recall the two data
d1 and d2 in Section III-A, around which there are respectively
10 and 1000 discriminatory data. In this situation, KOSEI
may spend more search resources on d2 than d1 since its
dynamic updating mechanism updates the seed data with more
discriminatory data around d2. KOSEI is also guaranteed to
search the neighbors of discriminatory data only, which is not
guaranteed in AEQUITAS.

The second is the limitation of wasting search resources to
evaluate duplicated data. The local search of KOSEI carefully
avoids evaluating duplicated data (as clarified in line 11 in
Algorithm 3). Moreover, KOSEI is implemented without using
the basin-hopping optimization function, which is heavily used
in the AEQUITAS implementation. The optimization function’s
implementation demands a large amount of execution time
since it evaluates many data evaluated in previous iterations,
resulting in the inefficiency of detecting discriminatory data.

IV. EVALUATION

We conducted experiments to evaluate KOSEI. For the
evaluation, we pose the two research questions (RQs).

RQ1 Does KOSEI find more discriminatory data than
AEQUITAS, at a reasonable execution cost?

RQ2 Does KOSEI generate test cases likely to be
discriminatory and avoid duplicated data, better than
AEQUITAS?

RQ1 is the main RQ since the goal of this paper is
to improve AEQUITAS. RQ2 investigates if and how much
our improvement on local search improves the limitations of
AEQUITAS, as we discussed in Section III-A.

TABLE I
COMPARISON OF KOSEI AND AEQUITAS (RQ1)

Dataset Classifier #Discriminatory data Time (s) #Test cases Precision (%) Duplicated evaluation (%)
Aequitas KOSEI Pct (%) Aequitas KOSEI Pct (%) Aequitas KOSEI Aequitas KOSEI Aequitas

1
Census Income

DT 2,147.5 25,434.9 1,184.4 57.6 5.8 10.0 26,970.5 35,205.3 8.1 71.9 95.01
2 MLPC 8,110.2 369,629.5 4,557.6 6,105.9 609.4 10.0 26,279 515,406 33.6 71.7 99.76
3 RF 7,506.9 231,275.2 3,080.8 4,465.1 357.9 8.0 48,838.8 333,604.5 16.6 69.4 99.06
4

Statlog
DT 2,135.6 34,031.9 1,593.6 109.4 9.9 9.0 23,986.9 42,405.2 9.2 80.3 97.75

5 MLPC 1,498.2 101,092.7 6,747.6 1,371.6 52.3 3.8 17,522.9 316,411 9.0 32.0 99.84
6 RF 8,727.8 379,656.3 4,350.0 14,442.0 820.8 5.7 25,202.4 707,607.1 34.6 53.6 99.85
7

Bank Marketing
DT 8,374.2 206,718.3 2,468.5 440.2 36.5 8.3 79,605.3 276,798.6 11.8 74.7 98.68

8 MLPC 1,654.8 187,076.4 11,305.1 746.9 53.8 7.2 8,001.3 302,790.9 21.4 61.8 99.88
9 RF 7,481.0 783,700.6 10,475.9 18,380.9 1,010.1 5.5 16,273.9 1,209,985.7 46.1 64.8 99.94

Average 5,084.8 7.5 21.2 64.5 98.86

A. Experimental environment and settings

We implemented KOSEI with Python 2.7.18, extending
AEQUITAS and using the scikit-learn library [8]. The code for
KOSEI is available at: “https://github.com/sskeiouk/KOSEI”.

For a fair comparison, we use the same settings used in [2]
[6], as follows: three datasets (Census Income3, Statlog4, Bank
Marketing5), three classifiers (Decision Tree (DT), MLPC,
Random Forest (RF)), and protected attributes (‘gender’ for
Census Income and Statlog, and ‘age’ for Bank Marketing).

For AEQUITAS, we use the fully-directed search variant
since it is shown that the variant performs best among the three
variants [2]. The iteration limits for global and local search
(i. e., global and local iteration limit) are set to 2000, which
are also the settings used in [2]. We ran ten executions for
each configuration of experiments and took their average. All
experiments were executed on a laptop machine with Apple
M1, 16GB of RAM, running macOS Big Sur 11.4.

B. [RQ1] Does KOSEI find more discriminatory data than
AEQUITAS, at a reasonable execution cost?

Table I shows the results of experiments to compare KOSEI
and AEQUITAS. The rows represent configurations of datasets
and classifiers. The columns represent the number of detected
discriminatory data (‘#Discriminatory data’) and execution
time (‘Time’). The result shows that KOSEI’s performance
was orders of magnitude better than AEQUITAS. KOSEI
detects more discriminatory data than AEQUITAS, by 5084.8%
on average, for all nine configurations, and up to 11305.1%
(for the eighth configuration).

The results also show that KOSEI requires less execution
time than AEQUITAS. KOSEI runs faster than AEQUITAS, by
13.3 times on average, and KOSEI is faster by up to 26.3 times
(for the fifth configuration).

Answer for RQ1� �
Yes. The discrimination detecting ability of KOSEI is
5084.8% stronger than AEQUITAS. Also, KOSEI runs
13.3 times faster than AEQUITAS.� �

3https://archive.ics.uci.edu/ml/datasets/adult
4https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
5https://archive.ics.uci.edu/ml/datasets/bank+marketing

C. [RQ2] Does KOSEI generate test cases likely to be
discriminatory and avoid duplicated data, better than
AEQUITAS?

We measure the number of test cases generated by KOSEI
and AEQUITAS and calculate hit ratios (i. e., precisions) of
discriminatory data over generated test cases. The ‘#Test
cases’ and ‘precision (%)’ columns in Table I respectively
show them. As stated in [3], [4], AEQUITAS generates and
evaluates many duplicated data, which may cause inefficiency
of the technique. Therefore, we measured the ratio of
duplicated data over all the data evaluated in AEQUITAS,
shown in the ‘Duplicated evaluation (%)’ column.

The results confirm that the precisions of KOSEI are higher
than those of AEQUITAS by 3.04 (= 64.5/21.2) times on
average. From the ‘Duplicated evaluation (%)’ column, we
also observe that 98.8 % of evaluated data are duplicated.
Note that KOSEI avoided evaluations of duplicated data due
to the algorithm design (line 11 in Algorithm 3).

Answer for RQ2� �
Yes. KOSEI generates test cases more likely to be
discriminatory than AEQUITAS, by 3.04 times on average.
In addition, in AEQUITAS, 98.8 % of evaluated data are
duplicated, while in KOSEI, all duplicated evaluations are
avoided.� �

V. THREATS TO VALIDITY

This section discusses the main validity threats of our study.
a) Datasets, classifiers, and protected attributes used in

experiments: Our evaluation experiments use the same settings
used in [2] [6]: three datasets (Census, Statlog, and Bank),
three classifiers (DT, MLPC, RF), and one protected attribute
(‘gender’, ‘age’). As with any experiments, the number of
configurations is a threat, so additional experiments with more
datasets, classifiers, and different protected attributes (e.g.,
’Race’) would strengthen the generalization. Note, however,
that it is not easy to consider all configurations in experiments
since the number of configurations increases exponentially
due to combinations. Experiments in other fairness testing
studies thus also pick several datasets, classifiers, and protected
attributes instead of thorough configurations.

b) Comparison with other techniques: Our study
evaluates KOSEI by comparing it against only AEQUITAS;
that is, we did not compare it with other black-box individual
fairness testing techniques, such as SG [4] and VBT [5].
The focus of the study is on improving AEQUITAS, and
thus evaluation experiments were designed accordingly. Also,
fair comparison with SG and VBT is not easy since their
implementation details are not equivalent; e. g., KOSEI (based
on AEQUITAS) uses Scikit-Learn, while VBT and SG use
TensorFlow for ML library.

c) Construct validity: We implemented KOSEI
by extending the AEQUITAS code, obtained from
“https://github.com/sakshiudeshi/Aequitas”. Despite our
best efforts to pursue the code quality of KOSEI, it cannot be
guaranteed that the code is free of bugs, as always. Therefore,
we make the KOSEI code available online so that anyone can
inspect its validity.

VI. RELATED WORK

Galhotra et al. [1] developed an individual fairness testing
technique based on this abstract concept of individual fairness
introduced by Dwork et al. [9]. They realize it by treating two
individuals as similar if they are identical except for protected
attributes. This simple treatment of individual similarity has
been widely accepted, as most studies on individual fairness
testing (discussed below) are based on this concept of
individual similarity. This work also proposed algorithms for
the individual fairness testing, called THEMIS, which are
basically based on simple random testing.

Aggarwal et al. [4] proposed an individual fairness testing
technique, called SG, that uses a symbolic execution technique
[10]. Symbolic execution was initially developed for program
analysis to systematically search the input space in order
to cover input space efficiently. SG applies this technique
to individual fairness testing to gain its efficacy. It is also
noteworthy that SG also structures its algorithm with the global
and local search phases, inspired by AEQUITAS.

Morales et al. [6] proposed an individual fairness testing
technique named CGFT, which focused on the global search
of AEQUITAS. While AEQUITAS used random testing in the
global search, CGFT proposed using combinatorial testing
(CT) [11], which has a diverse sampling ability, resulting in
an improvement in the discrimination detecting ability.

Sharma and Wehrheim [5] proposed Verification-Based
Testing (VBT). Its key idea is to detect discriminatory data
by encoding the property of individual fairness and the
approximated ML classifier under test into a logical formula
and solving the encoded constraint with a constraint solver.

While the techniques mentioned above (i. e., [1], [2], [4]–
[6]) are all featured with a black-box testing approach,
Zhang et al. [3] proposed a white-box approach to individual
fairness testing. Specifically, it targets ML classifiers based

on Deep Neural Networks (DNN). Their algorithm, called
ADF, is inspired by a gradient technique to detect adversarial
examples. However, this technique differs from ours in that it
is only applicable to DNN based ML classifiers.

VII. CONCLUSION AND FUTURE WORK

This paper proposed a black-box individual fairness testing
technique called KOSEI. KOSEI is based on AEQUITAS and is
realized by improving the local search of AEQUITAS based on
its limitations identified by our insight. Experiments show that
the performance gain of KOSEI compared with AEQUITAS is
orders of magnitude; KOSEI, on average, detects 50.8 times
more discriminations than AEQUITAS. Experiments also show
that the performance gain is due to our technical improvement
based on our insight.

There are many directions to extend this work. The first is
to extend experiments with more datasets, more classifiers,
and different kinds of protected attributes (e. g., race) for
further generalization. The second direction is to evaluate
KOSEI, comparing it with other techniques, such as SG [4] and
VBT [5]. Another direction is to evaluate the use of detected
discriminatory data for re-training classifiers to improve its
fairness, as attempted in [2]. Finally, we also plan to combine
the improvement of the local search of KOSEI with other
techniques, such as with CGFT [6], which improves the global
search of AEQUITAS.

ACKNOWLEDGEMENT

This paper is based on results obtained from a project,
JPNP20006, commissioned by the New Energy and Industrial
Technology Development Organization (NEDO).

REFERENCES

[1] S. Galhotra, Y. Brun, and A. Meliou, “Fairness testing: testing software
for discrimination,” in Proceedings of ESEC/FSE’17, 2017, pp. 498–510.

[2] S. Udeshi, P. Arora, and S. Chattopadhyay, “Automated directed fairness
testing,” in Proceedings of ASE’18, 2018, pp. 98–108.

[3] P. Zhang, J. Wang, J. Sun, G. Dong, X. Wang, X. Wang, J. S. Dong,
and T. Dai, “White-box fairness testing through adversarial sampling,”
in Proceedings of ICSE’20, 2020, pp. 949–960.

[4] A. Aggarwal, P. Lohia, S. Nagar, K. Dey, and D. Saha, “Black
box fairness testing of machine learning models,” in Proceedings of
ESEC/SIGSOFT FSE’19, 2019, pp. 625–635.

[5] A. Sharma and H. Wehrheim, “Automatic fairness testing of machine
learning models,” in Proceedings of ICTSS’20, 2020, pp. 255–271.

[6] D. P. Morales, T. Kitamura, and S. Takada, “Coverage-guided fairness
testing,” in Proceesing of ICIS’21, 2021, pp. 183–199.

[7] D. Dua and C. Graff, “UCI machine learning repository,” 2017.
[Online]. Available: http://archive.ics.uci.edu/ml

[8] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal of
Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[9] C. Dwork, M. Hardt, T. Pitassi, O. Reingold, and R. Zemel, “Fairness
through awareness,” in Proceedings of ITCS’12, 2012, pp. 214–226.

[10] K. Sen, D. Marinov, and G. Agha, “CUTE: a concolic unit testing engine
for C,” in Proceedings of FSE’05, 2005, pp. 263–272.

[11] R. Kuhn and R. Kacker, Introduction to Combinatorial Testing.
Chapman & HallCRC, 2013.

http://archive.ics.uci.edu/ml

	Introduction
	Background
	Individual fairness testing
	Aequitas
	Two-phase-structured algorithm
	Perturbation
	Local search

	Keeper Of Systematic Equality Investigation
	Limitation of Aequitas's local search algorithm
	Aequitas's local search algorithm searches space, where there may be little discriminatory data.
	Aequitas's local search may waste search resources by evaluating duplicated data.

	Two key mechanisms of our local search
	Perturbation
	Dynamic update of seed data

	Local search algorithm of KOSEI
	Advantages of KOSEI

	Evaluation
	Experimental environment and settings
	[RQ1] Does KOSEI find more discriminatory data than Aequitas, at a reasonable execution cost?
	[RQ2] Does KOSEI generate test cases likely to be discriminatory and avoid duplicated data, better than Aequitas?

	Threats to Validity
	Related work
	Conclusion and Future Work
	References

