
A divide & conquer approach to until and until
stable model checking
Canh Minh Do, Yati Phyo, and Kazuhiro Ogata

School of Information Science
Japan Advanced Institute of Science and Technology (JAIST)

Nomi, Ishikawa 923-1211 Japan
{canhdominh,yatiphyo,ogata}@jaist.ac.jp

Abstract—The paper describes a technique to mitigate the
notorious state space explosion in model checking. The technique
is called a divide & conquer approach to until and until stable
model checking. As indicated by the name, the technique is
dedicated to until and until stable properties that are expressed
as φ1 U φ2 and φ1 U □φ2, respectively, where φ1, φ2 are
state propositions. For real-time system analysis, some interesting
systems requirements are expressed as until and until stable
properties. For example, a clock is running and shows a correct
time until a certain time has passed or until the clock stops due to
an empty battery or other failures. Therefore, it is worth focusing
on the properties. For each property, we prove a theorem that
the proposed technique is correct and design an algorithm based
on the theorem to support the technique.

Index Terms—until properties, until stable properties, linear
temporal logic (LTL), model checking.

I. INTRODUCTION

Model checking [1] is an automatic verification technique
for verifying finite-state hardware and software systems. It has
proven to be a tremendously successful technique to verify
requirements for a variety of systems. However, there are still
some challenges to tackle in model checking, one of them
is the state space explosion, the most annoying one. Many
techniques are devised to mitigate the problem, such as ordered
binary decision diagrams [2], partial order reduction [3], and
abstraction [4]–[6]. Such techniques mitigate the problem to
some extent, but the problem still remains and often prevents
some model checking experiments from being carried out.

To address the problem, our research group came up with
a divide & conquer approach to model checking leads-to
properties [7] expressed as φ1 ⇝ φ2, conditional stable
properties [8] expressed as φ1 ⇝ □φ2, and eventual (or even-
tually) properties [9] expressed as ♢φ, where φ,φ1, φ2 are
state propositions. Although leads-to properties, conditional
stable properties, and eventual properties can be expressed
in LTL, it is necessary to individually prove the correctness
of each of the three divide & conquer approaches to leads-
to, eventual, and conditional stable model checking, come up
with each algorithm. This is because it is not straightforward
to uniformly deal with the three different properties so as
to mitigate the state space explosion. Likewise, it is not

This research was partially supported by JSPS KAKENHI Grant Number
JP19H04082.

DOI reference number: 10.18293/SEKE2022-058

straightforward to deal with until and until stable properties
that are expressed φ1 U φ2 and φ1 U □φ2, respectively, where
φ1, φ2 are state propositions. Hence, it is meaningful to prove
the correctness of the divide & conquer approach to until and
until stable model checking and design each algorithm for each
property so as to mitigate the state space explosion.

Real-Time Maude (RT-Maude) [10] is a language and tool
supporting the formal specification and analysis of real-time
and hybrid systems where time information is taken into
account. RT-Maude is implemented in Maude [11] as an
extension of Full Maude [12]. RT-Maude specifications are
executable and simulate the progress in systems under analysis
by timed rewriting. Tick rules are used to formalize the time
advance in systems in which the time increment is given in
the form of either a concrete value or a variable. The former is
called time-deterministic and is used in discrete time domains,
while the latter is called time-nondeterministic because the
time increment is an arbitrary number that will be decided
based on the time sampling strategy (time mode) specified
by users among some time sampling strategies supported by
RT-Maude, and is used in dense time domains. RT-Maude
supports time-bounded linear temporal logic model checking
that can analyze all behaviors of a system from a given
initial state up to a certain duration. By restricting model
checking up to a certain duration, the set of reachable states
is a finite set so that model checking experiments can be
carried out. RT-Maude usually uses some properties specified
in LTL to express systems requirements among which until and
until stable properties are used [10], [13]. Besides, RT-Maude
supports dedicated commands to check for until and until
stable properties, meaning that until and until stable properties
are interesting properties in real-time systems. Furthermore,
the reachable state space of a real-time system is often
huge because the behavior of the system changes over time.
Therefore, it is worth focusing on mitigating the state space
explosion in until and until stable model checking.

This paper describes an ongoing work that extends the
divide & conquer approach so as to handle until and until
stable properties expressed as φ1 U φ2 and φ1 U □φ2, respec-
tively, where φ1, φ2 are state propositions. Until properties
informally say that the first argument is true until its second
argument is true, which is required to happen. Until stable
properties informally say that the first argument is true until

its second argument is true and continues to be true (stable)
subsequently, which is required to happen. We can see that
if until stable properties hold, then until properties also hold.
In this paper, for each property, we prove a theorem that the
proposed technique is correct and design an algorithm based
on the theorem to support the technique. A basic idea of the
technique is that the reachable state space from each initial
state is split into multiple layers, generating multiple sub-state
spaces, and conducting model checking experiments for each
sub-state space. If the size of each sub-state space is much
smaller than the one of the original reachable state space, it
is feasible to conduct model checking experiments with the
approach even though it is infeasible to do so for the original
reachable state space due to the state space explosion. That
is the key to mitigating the state space explosion in model
checking with the technique.

The rest of the paper is organized as follows. Sect. II
mentions some preliminaries. Sect. III proves a theorem for
the divide & conquer approach to until model checking.
Sect. IV describes an algorithm that is constructed based on the
theorem. Sect. V proves a theorem for the divide & conquer
approach to until stable model checking. Sect. VI describes an
algorithm that is constructed based on the theorem. Sect. VII
mentions some existing related work. Sect. VIII finally con-
cludes the paper together with some future directions.

II. PRELIMINARIES

Definition 1 (Kripke structures). A Kripke structure K ≜
⟨S, I,T ,A,L⟩ consists of a set S of states, a set I ⊆ S
of initial states, a left-total binary relation T ⊆ S × S over
states, a set A of atomic propositions and a labeling function
L whose type is S → 2A. An element (s, s′) ∈ T is called a
(state) transition from s to s′ and may be written as s→K s′.

An infinite sequence s0, s1, . . . , si, si+1, . . . of states is
called a path of K iff for any natural number i, (si, si+1) ∈ T .
Let π be s0, s1, . . . , si, si+1, . . . and some notations on π
are defined as follows: π(i) is si; πi is si, si+1, . . .; πi is
s0, s1, . . . , si, si, si, . . .; π(i,j) is si, si+1, . . . , sj , sj , sj , . . . if
i ≤ j and si, si, si, . . . otherwise; π(i,∞) is πi, where i, j are
natural numbers. A path π of K is called a computation of K
iff π(0) ∈ I . Let PK be the set of all paths of K. Let P (K,s)

be {π | π ∈ PK , π(0) = s}, where s ∈ S. Let P b
(K,s) be

{πb | π ∈ P (K,s)}, where s ∈ S and b is a natural number.
Note that P∞

(K,s) is P (K,s).

Definition 2 (Syntax of LTL). The syntax of linear temporal
logic (LTL) is as follows: φ ::= a | ⊤ | ¬φ | φ ∨ φ | ⃝
φ | φ U φ, where a ∈ A.

Definition 3 (Semantics of LTL). For any Kripke structure
K, any path π of K and any LTL formula φ, K, π |= φ is
inductively defined as follows:

• K, π |= a iff a ∈ L(π(0))
• K, π |= ⊤
• K, π |= ¬φ1 iff K, π ̸|= φ1

• K, π |= φ1 ∨ φ2 iff K, π |= φ1 and/or K, π |= φ2

• K, π |=⃝φ1 iff K, π1 |= φ1

• K, π |= φ1 U φ2 iff there exists a natural number i such
that K, πi |= φ2 and for each natural number j < i,
K, πj |= φ1

where φ1 and φ2 are LTL formulas. Then, K |= φ iff K, π |=
φ for all computations π of K. Let True denote K, π |= ⊤,
which always holds.

⊥ ≜ ¬⊤ and some other connectives are defined as follows:
φ1 ∧ φ2 ≜ ¬((¬φ1) ∨ (¬φ2)), φ1 ⇒ φ2 ≜ (¬φ1) ∨ φ2,
φ1 ⇔ φ2 ≜ (φ1 ⇒ φ2) ∧ (φ2 ⇒ φ1), ♢φ1 ≜ ⊤ U φ1,
□φ1 ≜ ¬(♢¬φ1) and φ1 ⇝ φ2 ≜ □(φ1 ⇒ ♢φ2). ⃝, U , ♢,
□ and⇝ are called next, until, eventually, always and leads-to
temporal connectives, respectively. State propositions are LTL
formulas such that they do not have any temporal connectives.
Until stable properties can be expressed as φ1 U □φ2, where
φ1, φ2 are state propositions. Although it is unnecessary to
define the semantics for φ1 U □φ2, we define it as follows:

• K, π |= φ1 U □φ2 iff there exists a natural number i
such that K, πi |= □φ2 and for each natural number
j < i, K, πj |= φ1.

III. MULTIPLE LAYER DIVISION OF UNTIL MODEL
CHECKING

Proposition 1. Let K be any Kripke structure. If φ is any
state proposition, then (K, π |= φ) ⇔ (K, π′ |= φ) for any
paths π & π′ of K such that π(0) = π′(0).

Proof. The first state π(0) decides if K, π |= φ holds.

Lemma 1. Let φ1, φ2 be any state propositions of K. Let k be
any natural number. Then, (K, πk |= φ1 U φ2) ⇒ (K, π |=
φ1 U φ2).

Proof. If K, πk |= φ1 U φ2, then there exists i ≤ k such
that K, πi

k |= φ2, which is equivalent to K, πi |= φ2 from
Proposition 1, and for each j < i,K, πj

k |= φ1, which is
equivalent to K, πj |= φ1 from Proposition 1. Hence, K, π |=
φ1 U φ2.

Lemma 2. Let φ1, φ2 be any state propositions of K. Let k
be any natural number. Then, (K, πk |= □φ1) ∧ (K, πk |=
φ1 U φ2)⇒ (K, π |= φ1 U φ2).

Proof. If K, πk |= □φ1, then for each i′ ≤ k,K, πi′

k |= φ1,
which is equivalent to K, πi′ |= φ1 from Proposition 1 (1). If
K, πk |= φ1 U φ2 then there exists i ≥ k such that K, πi |=
φ2 and for each j such that k ≤ j < i,K, πj |= φ1 (2). From
(1) and (2), we have K, π |= φ1 U φ2.

Lemma 3 (Two layer division of φ1 U φ2). Let φ1, φ2 be any
state propositions of K. Let k be any natural number. Then,

(K, π |= φ1 U φ2)
⇔ [(K, πk |= φ1 U φ2)⇒ True] ∧

[(K, πk ̸|= φ1 U φ2)⇒ (K, πk |= □φ1) ∧
(K, πk |= φ1 U φ2)]

Proof. (1) Case “only if” (⇒): The case is split into two cases:
(1.1) K, πk |= φ1 U φ2 and (1.2) K, πk ̸|= φ1 U φ2. In

(1.1), it is obvious. In (1.2), from the assumption, there exists
i such that K, πi |= φ2 and for each j < i, K, πj |= φ1.
Because K, πk ̸|= φ1 U φ2, then k < i. Hence, (K, πk |=
□φ1) ∧ (K, πk |= φ1 U φ2).

(2) Case “if” (⇐): The case is split into two cases: (2.1)
K, πk |= φ1 U φ2 and (2.2) K, πk ̸|= φ1 U φ2. In (2.1),
K, π |= φ1 U φ2 from Lemma 1. In (2.2), K, π |= φ1 U φ2

from Lemma 2.

Definition 4 (UntilL). Let L be any non-zero natural number,
k be any natural number and d be any function such that d(0)
is 0, d(x) is a natural number for x = 1, . . . , L and d(L+1)
is ∞.

1) 0 ≤ k < L− 1

UntilL(K, π, φ1, φ2, k)

≜ [(K, π(d(k),d(k+1)) |= φ1 U φ2)⇒ True] ∧
[(K, π(d(k),d(k+1)) ̸|= φ1 U φ2)
⇒ (K, π(d(k),d(k+1)) |= □φ1) ∧

UntilL(K, π, φ1, φ2, k + 1)]

2) k = L− 1

UntilL(K, π, φ1, φ2, k)

≜ [(K, π(d(k),d(k+1)) |= φ1 U φ2)⇒ True] ∧
[(K, π(d(k),d(k+1)) ̸|= φ1 U φ2)
⇒ (K, π(d(k),d(k+1)) |= □φ1) ∧

(K, π(d(k+1),d(k+2)) |= φ1 U φ2)]

Theorem 1 (L+ 1 layer division of φ1 U φ2). Let L be any
non-zero natural number. Let d(0) be 0, d(x) be any natural
number for x = 1, . . . , L and d(L + 1) be ∞. Let φ1, φ2 be
any state propositions of K. Then,

(K, π |= φ1 U φ2)⇔ UntilL(K, π, φ1, φ2, 0)

Proof. By induction on L.
• Base case (L = 1): It follows from Lemma 3.
• Induction case (L = l + 1): We prove the following:

(K, π |= φ1 U φ2)⇔ Untill+1(K, π, φ1, φ2, 0)

Let dl+1 be d used in Untill+1(K, π, φ1, φ2, 0) such that
dl+1(0) = 0, dl+1(i) is an arbitrary natural number for
i = 1, . . . , l + 1 and dl+1(l + 2) = ∞. The induction
hypothesis is as follows:

(K, π |= φ1 U φ2)⇔ Untill(K, π, φ1, φ2, 0)

Let dl be d used in Untill(K, π, φ1, φ2, 0) such that
dl(0) = 0, dl(i) is an arbitrary natural number for
i = 1, . . . , l and dl(l + 1) = ∞. Because dl+1(i) is
an arbitrary natural number for i = 1, . . . , l + 1, we
suppose that dl+1(1) = dl(1) and dl+1(i + 1) = dl(i)
for i = 1, . . . , l. Because π is any path of K, π can be
replaced with πdl(1). If so, we have the following as an
instance of the induction hypothesis:

(K, πdl(1) |= φ1 U φ2)⇔ Untill(K, πdl(1), φ1, φ2, 0)

From Definition 4, Untill(K, πdl(1), φ1, φ2, 0) is
Untill+1(K, π, φ1, φ2, 1) because dl(0) = dl+1(0) = 0,
dl(1) = dl+1(1) and dl(i) = dl+1(i+ 1) for i = 1, . . . , l
and dl(l + 1) = dl+1(l + 2) = ∞. Therefore, the
induction hypothesis instance can be rephrased as
follows:

(K, πdl+1(1) |= φ1 U φ2)⇔ Untill+1(K, π, φ1, φ2, 1)

From Definition 4, Untill+1(K, π, φ1, φ2, 0) is

[(K, π(dl+1(0),dl+1(1)) |= φ1 U φ2)⇒ True] ∧
[(K, π(dl+1(0),dl+1(1)) ̸|= φ1 U φ2)
⇒ (K, π(dl+1(0),dl+1(1)) |= □φ1) ∧

Untill+1(K, π, φ1, φ2, 1)]

which is

[(K, π(dl+1(0),dl+1(1)) |= φ1 U φ2)⇒ True] ∧
[(K, π(dl+1(0),dl+1(1)) ̸|= φ1 U φ2)
⇒ (K, π(dl+1(0),dl+1(1)) |= □φ1)∧

(K, πdl+1(1) |= φ1 U φ2)]

because of the induction hypothesis instance. From
Lemma 3, this is equivalent to K, π |= φ1 U φ2.

IV. A DIVIDE & CONQUER APPROACH TO UNTIL MODEL
CHECKING ALGORITHM

An algorithm can be constructed based on Theorem 1,
which is shown as Algorithm 1. For each initial state s0 ∈ I ,
unfolding s0 by using T such that each node except for s0 has
exactly one incoming edge, an infinite tree whose root is s0
is made. The infinite tree may have multiple copies of some
states. Such an infinite tree can be divided into L+ 1 layers,
generating multiple sub-state spaces, and conducting model
checking experiments for each sub-state space. If the set of
reachable states is finite, the number of different states in each
layer and each sub-state space is finite. Theorem 1 makes it
possible to check K |= φ1 U φ2 in a stratified way in that for
each layer l ∈ {1, . . . , L + 1}, we can check K, s, d(l) |= φ

for each s ∈ {π(d(l − 1)) | π ∈ P
d(l−1)
(K,s0)

}, where d(0) is 0,
d(x) is a non-zero natural number for x = 1, . . . , L, d(L+1)
is ∞, and φ is φ1 U φ2 or □φ1.
US and US′ are variables to which sets of states are set.

Initially, US contains all initial states in I at line 1. For each
layer l = 0, 1, . . . , L in the first forall loop, we need to do as
follows. Firstly, US′ that is used to collect states at each layer
is set to an empty set at line 3. Secondly, the code fragment
at lines 4 – 10 checks φ1 U φ2 for each path that starts with
each state in US. If the path satisfies the formula, we do
not need to take the path into account. Otherwise, we check
whether the path satisfies □φ1 at line 7. If so, the last state of
the path is then added to US′ at line 8. Otherwise, the path
is a counterexample and Algorithm 1 returns Failure. Finally,
US′ is assigned to US for the next layer at line 11.

Just after the first forall loop in Algorithm 1, US contains
the set of states located at bottom of the Lth layer by checking
φ1 U φ2 and □φ2 for some paths obtained from intermediate

Algorithm 1: A divide & conquer approach to until
model checking

input : K – a Kripke structure
φ1, φ2 – state propositions
L – a non-zero natural number
d – a function such that d(x) is a non-zero
natural number for x = 1, . . . , L

output: Success (K |= φ1 U φ2) or Failure
(K ̸|= φ1 U φ2)

1 US ← I
2 forall l ∈ {1, . . . , L} do
3 US′ ← {}
4 forall s ∈ US do
5 forall π ∈ P

d(l)
(K,s) do

6 if K, π ̸|= φ1 U φ2 then
7 if K, π |= □φ1 then
8 US′ ← US′ ∪ {π(d(l))}
9 else

10 return Failure
11 US ← US′

12 forall s ∈ US do
13 forall π ∈ P (K,s) do
14 if K, π ̸|= φ1 U φ2 then
15 return Failure
16 return Success

layers (1st to Lth layers). For the final layer L+1, we check
φ1 U φ2 for each path that starts with each state in US in the
code fragment at lines 12 – 15. If there is a path that does not
satisfy the formula, Algorithm 1 returns Failure. Otherwise,
Algorithm 1 returns Success at the end.

V. MULTIPLE LAYER DIVISION OF UNTIL STABLE MODEL
CHECKING

Lemma 4. Let φ be any state proposition of K. Let k be any
natural number. Then, (K, π |= □φ) ⇔ (K, πk |= □φ) ∧
(K, πk |= □φ).

Proof. Because φ is a state proposition, whether it holds only
depends on the first state of a given path. If (K, π |= □φ),
then φ holds for π(i) for all i, and vice versa. If K, πk |= □φ
and K, πk |= □φ, then φ holds for π(i) for i = 0, . . . , k and
φ holds for π(i) for i = k, . . ., respectively, and therefore φ
holds for π(i) for all i, and vice versa.

Lemma 5. Let φ1, φ2 be any state propositions of K.
(K, π |= □φ2)⇒ (K, π |= φ1 U □φ2).

Proof. From the assumption, K, π0 |= □φ2.

Lemma 6. Let φ1, φ2 be any state propositions of K. Let k
be any natural number. Then, (K, πk |= □φ1) ∧ (K, πk |=
φ1 U □φ2)⇒ (K, π |= φ1 U □φ2).

Proof. If (K, πk |= □φ1), then for each i′ ≤ k,K, πi′

k |= φ1,
which is equivalent to K, πi′ |= φ1 from Proposition 1 (1).

If K, πk |= φ1 U □φ2, then there exists i ≥ k such that
K, πi |= □φ2 and for each j such that k ≤ j < i, K, πj |= φ1

(2). From (1) and (2), we have K, π |= φ1 U □φ2.

Lemma 7. Let φ1, φ2 be any state propositions of K. Let k be
any natural number. Then, (K, πk |= φ1 U □φ2)∧ (K, πk |=
□φ2)⇒ (K, π |= φ1 U □φ2).

Proof. If K, πk |= φ1 U □φ2, then there exists i ≤ k such
that K, πi

k |= □φ2, which is equivalent to K, πi′

k |= φ2 for
each i′ ≥ i (note that πi′

k = πk
k if i′ ≥ k), which implies

K, πi′ |= φ2 for k ≥ i′ ≥ i from proposition 1, and for
each j < i,K, πj

k |= φ1, which is equivalent to K, πj |= φ1

from Proposition 1 (1). If (K, πk |= □φ2), then K, πi |=
φ2 for each i ≥ k (2). From (1) and (2), we have K, π |=
φ1 U □φ2.

Lemma 8 (Two layer division of φ1 U □φ2). Let φ1, φ2 be
any state propositions of K. Let k be any natural number.
Then,

(K, π |= φ1 U □φ2)
⇔ [(K, πk |= □φ1)⇒ (K, πk |= φ1 U □φ2)] ∧

[(K, πk ̸|= □φ1)⇒ (K, πk |= φ1 U □φ2) ∧
(K, πk |= □φ2)]

Proof. (1) Case “only if” (⇒): The case is split into two
cases: (1.1) K, πk |= □φ1 and (1.2) K, πk ̸|= □φ1. From
the assumption, there exists i such that K, πi |= □φ2 and
for each j < i, K, πj |= φ1. In (1.1), if k < i, then
K, πk |= φ1 U □φ2. Otherwise, if k ≥ i,K, πk |= □φ2

from lemma 4. Hence, K, πk |= φ1 U □φ2 from lemma 5.
In (1.2), from the assumption, k ≥ i. K, πk |= □φ2 from
lemma 4. We also have K, πk |= φ1 U □φ2 because there
exists such i in the assumption.

(2) Case “if” (⇐): The case is split into two cases: (2.1)
K, πk |= □φ1 and (2.2) K, πk ̸|= □φ1. In (2.1), K, π |=
φ1 U φ2 from Lemma 6. In (2.2), K, π |= φ1 U φ2 from
Lemma 7.

Definition 5 (UStableL). Let L be any non-zero natural
number, k be any natural number and d be any function such
that d(0) is 0, d(x) is a natural number for x = 1, . . . , L and
d(L+ 1) is ∞.

1) 0 ≤ k < L− 1

UStableL(K, π, φ1, φ2, k)

≜ [(K, π(d(k),d(k+1)) |= □φ1)
⇒ UStableL(K, π, φ1, φ2, k + 1)] ∧

[(K, π(d(k),d(k+1)) ̸|= □φ1)
⇒ (K, π(d(k),d(k+1)) |= φ1 U □φ2) ∧

(K, πd(k+1) |= □φ2)]

2) k = L− 1

UStableL(K, π, φ1, φ2, k)

≜ [(K, π(d(k),d(k+1)) |= □φ1)
⇒ (K, π(d(k+1),d(k+2)) |= φ1 U □φ2)] ∧

[(K, π(d(k),d(k+1)) ̸|= □φ1)
⇒ (K, π(d(k),d(k+1)) |= φ1 U □φ2) ∧

(K, πd(k+1) |= □φ2)]

Theorem 2 (L+1 layer division of φ1 U □φ2). Let L be any
non-zero natural number. Let d(0) be 0, d(x) be any natural
number for x = 1, . . . , L and d(L + 1) be ∞. Let φ1, φ2 be
any state propositions of K. Then,

(K, π |= φ1 U □φ2)⇔ UStableL(K, π, φ1, φ2, 0)

Proof. By induction on L.
• Base case (L = 1): It follows from Lemma 8.
• Induction case (L = l + 1): We prove the following:

(K, π |= φ1 U □φ2)⇔ UStablel+1(K, π, φ1, φ2, 0)

Let dl+1 be d used in UStablel+1(K, π, φ1, φ2, 0) such
that dl+1(0) = 0, dl+1(i) is an arbitrary natural number
for i = 1, . . . , l+ 1 and dl+1(l+ 2) =∞. The induction
hypothesis is as follows:

(K, π |= φ1 U □φ2)⇔ UStablel(K, π, φ1, φ2, 0)

Let dl be d used in UStablel(K, π, φ1, φ2, 0) such that
dl(0) = 0, dl(i) is an arbitrary natural number for
i = 1, . . . , l and dl(l + 1) = ∞. Because dl+1(i) is
an arbitrary natural number for i = 1, . . . , l + 1, we
suppose that dl+1(1) = dl(1) and dl+1(i + 1) = dl(i)
for i = 1, . . . , l. Because π is any path of K, π can be
replaced with πdl(1). If so, we have the following as an
instance of the induction hypothesis:

(K, πdl(1) |= φ1 U □φ2) ⇔ UStablel(K, πdl(1), φ1, φ2, 0)

From Definition 5, UStablel(K, πdl(1), φ1, φ2, 0) is
UStablel+1(K, π, φ1, φ2, 1) because dl(0) = dl+1(0) =
0, dl(1) = dl+1(1), and dl(i) = dl+1(i + 1) for
i = 1, . . . , l, and dl(l+1) = dl+1(l+2) =∞. Therefore,
the induction hypothesis instance can be rephrased as
follows:

(K, πdl+1(1) |= φ1 U □φ2) ⇔ UStablel+1(K, π, φ1, φ2, 1)

From Definition 5, UStablel+1(K, π, φ1, φ2, 0) is

[(K, π(dl+1(0),dl+1(1)) |= □φ1)
⇒ UStablel+1(K, π, φ1, φ2, 1)] ∧

[(K, π(dl+1(0),dl+1(1)) ̸|= □φ1)
⇒ (K, π(dl+1(0),dl+1(1) |= φ1 U □φ2) ∧

(K, πdl+1(1) |= □φ2)]

which is

[(K, π(dl+1(0),dl+1(1)) |= φ1 U □φ2)
⇒ (K, πdl+1(1) |= φ1 U □φ2)] ∧

[(K, π(dl+1(0),dl+1(1)) ̸|= φ1 U □φ2)
⇒ (K, π(dl+1(0),dl+1(1)) |= φ1 U □φ2) ∧

(K, πdl+1(1) |= □φ2)]

because of the induction hypothesis instance. From
Lemma 8, this is equivalent to K, π |= φ1 U □φ2.

VI. A DIVIDE & CONQUER APPROACH TO UNTIL STABLE
MODEL CHECKING ALGORITHM

An algorithm can be constructed based on Theorem 2,
which is shown as Algorithm 2. For each initial state s0 ∈ I ,
the reachable state space from s0 is divided into L+1 layers,
generating multiple sub-state spaces, and conducting model
checking experiments for each sub-state space. Theorem 2
makes it possible to check K |= φ1 U □φ2 in a stratified
way in that for each layer l ∈ {1, . . . , L + 1}, we can check
K, s, d(l) |= φ for each s ∈ {π(d(l − 1)) | π ∈ P

d(l−1)
(K,s0)

},
where d(0) is 0, d(x) is a non-zero natural number for
x = 1, . . . , L, d(L + 1) is ∞, and φ is □φ1, or □φ2, or
φ1 U □φ2.
CxS, CxS′, NCxS, and NCxS′ are variables to which

sets of states are set. Initially, CxS contains all initial states
in I at line 1 while NCxS is set to an empty set at line
2. For each layer l = 0, 1, . . . , L in the first forall loop, we
need to do as follows. Firstly, CxS′ and NCxS′ that are
used to collect states at each layer are set to an empty set
at lines 4 and 5, respectively. Secondly, the code fragment at
lines 6 – 14 checks □φ1 for each path that starts with each
state in CxS. If the path satisfies the formula, the last state
of the path is added to CxS′ at line 9. Otherwise, we check
whether the path satisfies φ1 U □φ2 at line 11. If so, the last
state of the path is added to NCxS′ at line 12. Otherwise,
the path is a counterexample and Algorithm 2 returns Failure
at line 14. Thirdly, the code fragment at lines 15 – 20 checks
□φ2 for each path that starts with each state in NCxS. If the
path satisfies the formula, the last state of the path is added to
NCxS′ at line 18. Otherwise, the path is a counterexample
and Algorithm 2 returns Failure at line 20. Finally, CxS′ and
NCxS′ are assigned to CxS and NCxS for the next layer
at lines 21 and 22, respectively.

Just after the first forall loop in Algorithm 2, CxS and
NCxS contains the sets of states located at bottom of the
Lth layer by checking □φ1, φ1 U φ2, and □φ2 for some paths
obtained from intermediate layers (1st to Lth layers). For the
final layer L+1, we check φ1 U □φ2 for each path that starts
with each state in CxS in the code fragment at lines 23 –
26. Meanwhile, we check □φ2 for each path that starts with
each state in NCxS in the code fragment at lines 27 – 30.
If there is a path that does not satisfy the formula concerned,
Algorithm 2 returns Failure. Otherwise, Algorithm 2 returns
Success at the end.

VII. RELATED WORK

SAT/SMT-based bounded model checking (BMC) is an ef-
fective technique to mitigate the state space explosion problem
in model checking. BMC can find a flaw located within
some reasonably shallow depth k for each initial state by
formalizing the verification problem into an equisatisfiable
conjunctive normal form (CNF) formula that can be analyzed
by a SAT/SMT solver. An extension of SAT/SMT-based BMC
to model check concurrent programs is Lazy Sequentialization
(Lazy-CSeq) [14]. Given a concurrent program P together

Algorithm 2: A divide & conquer approach to until
stable model checking

input : K – a Kripke structure
φ1, φ2 – state propositions
L – a non-zero natural number
d – a function such that d(x) is a non-zero
natural number for x = 1, . . . , L

output: Success (K |= φ1 U □φ2) or Failure
(K ̸|= φ1 U □φ2)

1 CxS ← I
2 NCxS ← ∅
3 forall l ∈ {1, . . . , L} do
4 CxS′ ← {}
5 NCxS′ ← {}
6 forall s ∈ CxS do
7 forall π ∈ P

d(l)
(K,s) do

8 if K, π |= □φ1 then
9 CxS′ ← CxS′ ∪ {π(d(l))}

10 else
11 if K, π |= φ1 U □φ2 then
12 NCxS′ ←NCxS′ ∪ {π(d(l))}
13 else
14 return Failure
15 forall s ∈NCxS do
16 forall π ∈ P

d(l)
(K,s) do

17 if K, π |= □φ2 then
18 NCxS′ ←NCxS′ ∪ {π(d(l))}
19 else
20 return Failure
21 CxS ← CxS′

22 NCxS ←NCxS′

23 forall s ∈ CxS do
24 forall π ∈ P (K,s) do
25 if K, π ̸|= φ1 U □φ2 then
26 return Failure
27 forall s ∈NCxS do
28 forall π ∈ P (K,s) do
29 if K, π ̸|= □φ2 then
30 return Failure
31 return Success

with two parameters u and r that are the loop unwinding
bound and the number of round-robin schedules, respectively,
they first generate an intermediate bounded program Pu by
unwinding all loops and inlining all function calls in P with
u as a bound except for those used for creating threads.
Pu then is transformed into a sequential program Qu,r that
simulates all behaviors of Pu within r round-robin schedules.
Qu,r is then transformed into a propositional formula that
can be analyzed by a SAT/SMT solver. When the size of the
system under test is large, the propositional formula becomes
complex and the performance of the SAT/SMT solver is
degraded or the model checking may become infeasible. To

make it possible to conduct model checking experiments. They
decompose the set of execution traces of concurrent programs
into symbolic subsets [15] so that the single formula is divided
into multiple smaller propositional sub-formulas, which then
are possibly analyzed by the SAT/SMT solver independently.
Their technique is able to deal with safety properties, while our
technique is able to deal with until and until stable properties,
a class of liveness properties.

VIII. CONCLUSION

We have described the divide & conquer approach to until
and until stable model checking in which for each property, we
have proved a theorem that the proposed technique is correct
and designed an algorithm based on the theorem to support the
technique. As one piece of our future work, we will build a tool
supporting the proposed technique and conduct case studies in
real-time systems, particularly with RT-Maude, demonstrating
that the proposed technique and tool are useful.

REFERENCES

[1] E. M. Clarke, T. A. Henzinger, H. Veith, and R. Bloem, Eds.,
Handbook of Model Checking. Berlin, Heidelberg: Springer, 2018.
[Online]. Available: https://doi.org/10.1007/978-3-319-10575-8

[2] R. E. Bryant and C. Meinel, Ordered Binary Decision Diagrams.
Boston, MA: Springer US, 2002, pp. 285–307. [Online]. Available:
https://doi.org/10.1007/978-1-4615-0817-5 11

[3] E. M. Clarke, O. Grumberg, M. Minea, and D. A. Peled, “State space
reduction using partial order techniques,” Int. J. Softw. Tools Technol.
Transf., vol. 2, no. 3, pp. 279–287, 1999.

[4] E. M. Clarke, O. Grumberg, and D. E. Long, “Model checking and
abstraction,” ACM Trans. Program. Lang. Syst., vol. 16, no. 5, pp. 1512–
1542, 1994.

[5] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith,
“Counterexample-guided abstraction refinement for symbolic model
checking,” J. ACM, vol. 50, no. 5, pp. 752–794, 2003.

[6] J. Meseguer, M. Palomino, and N. Martı́-Oliet, “Equational abstrac-
tions,” Theor. Comput. Sci., vol. 403, no. 2-3, pp. 239–264, 2008.

[7] Y. Phyo, C. M. Do, and K. Ogata, “A divide & conquer approach
to leads-to model checking,” The Computer Journal, 2021. [Online].
Available: https://doi.org/10.1093/comjnl/bxaa183

[8] ——, “A divide & conquer approach to conditional stable model
checking,” in 18th ICTAC, 2021, pp. 105–111. [Online]. Available:
https://doi.org/10.1007/978-3-030-85315-0 7

[9] M. N. Aung, Y. Phyo, C. M. Do, and K. Ogata, “A divide & conquer
approach to eventual checking,” Mathematics, vol. 9, p. 368, 2021.
[Online]. Available: https://doi.org/10.3390/math9040368

[10] P. C. Ölveczky, “Real-time maude and its applications,” in Rewriting
Logic and Its Applications, S. Escobar, Ed. Cham: Springer Interna-
tional Publishing, 2014, pp. 42–79.

[11] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer,
and C. L. Talcott, Eds., All About Maude, ser. LNCS. Springer, 2007,
vol. 4350.

[12] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer,
and C. Talcott, “Full maude: Extending core maude,” 01 2007, pp. 559–
597.

[13] P. C. Ölveczky, M. Keaton, J. Meseguer, C. L. Talcott, and S. Zabele,
“Specification and analysis of the aer/nca active network protocol suite
in real-time maude,” in Proceedings of the 4th International Conference
on Fundamental Approaches to Software Engineering, ser. FASE ’01.
Berlin, Heidelberg: Springer-Verlag, 2001, p. 333–348.

[14] O. Inverso, E. Tomasco, B. Fischer, S. La Torre, and G. Parlato,
“Bounded verification of multi-threaded programs via lazy sequential-
ization,” ACM Trans. Program. Lang. Syst., vol. 44, no. 1, dec 2021.

[15] O. Inverso and C. Trubiani, “Parallel and distributed bounded model
checking of multi-threaded programs,” in Proceedings of the 25th
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, ser. PPoPP ’20. New York, NY, USA: Association for
Computing Machinery, 2020, p. 202–216.

https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1007/978-1-4615-0817-5_11
https://doi.org/10.1093/comjnl/bxaa183
https://doi.org/10.1007/978-3-030-85315-0_7
https://doi.org/10.3390/math9040368

	Introduction
	Preliminaries
	Multiple Layer Division of Until Model Checking
	A Divide & Conquer Approach to Until Model Checking Algorithm
	Multiple Layer Division of Until Stable Model Checking
	A Divide & Conquer Approach to Until Stable Model Checking Algorithm
	Related Work
	Conclusion
	References

