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Abstract

Although dialogue systems based on the Seq2Seq model
have achieved success, they suffer from tending to generate
general responses. Recent works have shown that selecting
external knowledge is helpful for dialogue systems to gener-
ate informative and diverse responses. However, selecting
appropriate knowledge from an unlabeled knowledge set,
which is referred to as unsupervised knowledge selection,
remains a tricky challenge. Therefore, we propose a dual
contrastive method, which utilizes two source-target pairs
which are based on the same knowledge set to construct
dual contrasts. Specifically, for a source utterance, we con-
sider its paired and unpaired target response as a positive
and negative sample, then obtain the positive and negative
posterior distribution over the knowledge candidates set,
respectively. Then we lead the prior distribution to be close
to the positive posterior distribution and distant from the
negative one. Similarly, the posterior distribution is treated
with the same criterion. Experimental results show that our
method improves generated responses in terms of BLUE,
DISTINCT, and knowledge utilization. Our codes are avail-
able at https://github.com/CaoXiang1997/DualCL4UKS.

1. Introduction

A dialogue system aims to produce an appropriate re-
sponse given a post as its input. Recently, the genera-
tive method based on the encoder-decoder frame [4] has
attracted considerable attention for generating fluent re-
sponses [15, 17]. However, it tends to generate general and
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boring responses like ”I don’t know”, lending conversations
into unattractive and boring situations.

Existing works have shown that leveraging external
knowledge is helpful for dialogue systems to improve infor-
mativeness and diversity of generated responses [6, 10, 14].
External knowledge is sometimes in the form of multiple
utterances in a set of knowledge [19, 5]. Intuitively, ex-
ternal knowledge builds an information bridge for dialogue
systems from the source to the target. However, not all utter-
ances in the knowledge set help models generate appropri-
ate responses, and manual annotations are often expensive.
Therefore, it is necessary to select appropriate knowledge
from an unlabeled knowledge set, referred to as unsuper-
vised knowledge selection.

For unsupervised knowledge selection, a tricky chal-
lenge is the lack of supervisory signals. Several works
proposed attentive methods which use attention mecha-
nism [10] or its more powerful varieties [14] to calculate
the probability distribution over the knowledge set and se-
lect knowledge softly. However, those attentive methods
only relied on the distant supervisory signal from the cross-
entropy loss between the generated response and the target
response to supervise knowledge selection, helpless to the
lack of the supervisory signal. [10] attempted to use target
response to compute posterior distribution as guidance for
prior distribution, but still didn’t provide a strong enough
supervisory signal.

In this paper, inspired by previous works on contrastive
learning [2, 7], we propose a dual contrastive method for
unsupervised knowledge selection. From contrastive learn-
ing, the model benefits from the contrast between positive
samples and negative samples. We think that appropriately
selected knowledge is helpful for the model to distinguish
positive samples from negative ones. Specifically, for a
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source utterance, we consider its paired target response as
the positive response and an unpaired target response as the
negative response, compute positive and negative posterior
distribution on the positive and negative response, respec-
tively, and lead the prior distribution to be close to the posi-
tive posterior distribution and distant from the negative one.
Similarly, we utilize the same criterion for the posterior dis-
tribution. Our contributions are listed as follows.

• As far as we know, we are the first to introduce con-
trastive learning into unsupervised knowledge selec-
tion, which provides an alternative solution for the la-
bel unavailability issue.

• We propose a dual contrastive method for un-
supervised knowledge selection, which learns
prior/posterior distribution from contrasts between
positive and negative posterior/prior distributions.

• Experimental results show that our method outper-
forms other existing competitive methods on diversity
and knowledge incorporation of generated responses
and almost flats on other metrics.

2. Related Work

Sequence to sequence (Seq2Seq) models [4] promote the
development of dialogue systems, but it suffers from gener-
ating general responses. Recently, some works utilize ex-
ternal knowledge to help dialogue systems generate diverse
and informative responses. In some early works [6, 12], the
model encoded external text entirely into a vector, which
led to irrelevant knowledge noise in generated responses.
Therefore, unsupervised knowledge selection became a re-
search hotspot whereas the lack of labels. [10] proposed a
prior-posterior framework that computes posterior distribu-
tion by the ground-truth response and drives the prior distri-
bution to approach the posterior distribution. [14] proposed
a global-to-local knowledge selection mechanism where the
global knowledge selection module forms a topic transi-
tion vector and the local knowledge selection module se-
lect knowledge at each decoding step under the guidance of
the topic transition vector. [16] proposed a teacher-student
framework where the teacher builds response-aware docu-
ment memory given the ground-truth response and the stu-
dent learns response-anticipated document memory from
the teacher. [3] introduced knowledge distillation to ad-
dress the exposure bias issue of knowledge selection. [11]
proposed recurrent knowledge interaction among decoding
steps and introduced a knowledge copy mechanism to copy
words from external knowledge. [8] proposed a sequen-
tial latent model which uses sequential latent to model the
knowledge selection process in multi-turn dialogue genera-
tion.

However, existing works use one single source-target
pair to select knowledge, ignoring the difference between
knowledge selected by two source-target pairs. That re-
sults in more attention to the common information than the
special information of knowledge candidates, which is bad
for the model to incorporate relevant knowledge and gen-
erate diverse responses. In this paper, We propose a dual
contrastive method for unsupervised knowledge selection,
which leads the model to learn the difference in knowledge
selection between two source-target pairs and generate re-
sponses based on specially selected knowledge.

3. Model

As presented in Figure 1, the architecture overview of
our model is generally based on a sequence-to-sequence
frame. We let

{
(xi, yi)

}n

i=1
denote a set of multi-turn di-

alogue, where n is the turn number, and xi and yi are the
source utterance and the target utterance of the i-th turn,
respectively. K =

{
kj
}N

j=1
denotes a set of knowledge ut-

terances, where N is the number of utterances in K, and kj

is the j-th knowledge utterance. Our model’s goal is to se-
lect correct a knowledge utterance kj from K and generate
appropriate responses yi for each xi.

3.1. Base Architecture

Our method is based on an encoder-decoder architecture
with a prior-posterior knowledge selector which uses the
posterior distribution to guide the prior distribution.

Encoder We implement a source encoder with a bidirec-
tional gated recurrent unit (GRU), which encode source ut-
terance xi into a forward hidden state

−→
h i

x and a backward
hidden state

←−
h i

x for each xi. We concatenate the last hidden
states in two directions into hi

x as the representation vector
of xi as follows.

−→
h t = GRU(xi

t,
−→
h t−1) (1)

←−
h t = GRU(xi

t,
←−
h t+1) (2)

hi
x = [

−→
h i

|xi|;
←−
h i

1] (3)

where [; ] represents vector concatenation, |xi| represents
the token number of xi. In this way, we encode xi as hi

x for
each i.

We implement a knowledge encoder with the same struc-
ture as the source encoder, but they don’t share any parame-
ters. Similarly, we concatenate the last hidden states of two
directions into an overall vector hj

k for each kj . Moreover,
we use the knowledge encoder to encode yi as hi

y for each
i.
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Figure 1. The architecture overview of our model. In this figure, we only show contrasts where the
i-th turn (xi, yi) is the positive sample and the j-th turn (xj , yj) is the negative one.

Knowledge Selector The goal of the knowledge selector
is to select appropriate knowledge from the knowledge set.
Inspired by [10], we set two modes for the knowledge se-
lector – the prior and posterior modes. In the prior mode, the
knowledge selector computes a prior distribution pix using
the source utterance xi. In the posterior mode, the knowl-
edge selector computes a posterior distribution pix using the
target utterance yi. The knowledge selector is implemented
with attention mechanism [1] as follows.

p(k|z) = softmax(hz · [h1
k, · · · , hn

k ]) (4)

where z ∈
{
xi
}n

i=1
∪
{
yi
}n

i=1
is the representation vec-

tor of an source or target utterance. For convenience, we
use pix and piy as simplifications of p(k|xi) and p(k|yi), re-
spectively.

In the training phase, we use the posterior distribution
as knowledge selection distribution to sample a knowledge
utterance. In the testing phase, we have no choice but to
use the prior distribution, because the target utterance is to
be generated and can not be used to compute the posterior
distribution.

To ensure the knowledge selector work in the testing
phase, we use the posterior distribution to guide the prior
distribution in the training phase. Therefore, we introduce
the Kullback-Leibler Divergence (KLD) loss to minimize
the distance between the prior distribution and the posterior
distribution.

ℓiKLD = KLD(piy||pix) = piy log
piy
pix

(5)

When the knowledge selection distribution p(k)is given,

the selected knowledge utterance sk ∼ p(k) is sampled ac-
cording to it.

Decoder The decoder integrates the selected knowledge
hi
sk and generates response word by word. We use a hierar-

chical gated fusion unit (HGFU) [18] to implement it. An
HGFU consists of two GRUs, which are fed by the word
generated in the last step yt−1 and the selected knowledge
hK , respectively, as follows.

siy,t = GRU(emb(yiy,t−1), s
i
t−1, c

i
t)

sik,t = GRU(hi
sk, s

i
t−1, c

i
t)

(6)

where emb is the embedding layer, sit−1 is the last hid-
den state of the decoder, cit is the attentive context vector.

Then, HGFU combines the syt and skt with a soft gate g
as follows.

sit = gṡiy,t + (1− g)⊙ sik,t (7)

g is computed by syt and skt through multilayer percep-
trons and control the their contributions to the final hidden
state st.

The word is sampled from a distribution computed by sit
and cit as follows.

yit ∼ pit = softmax(Wo[s
i
t; c

i
t]) (8)

where Wo is the parameters of the output layer.



Loss Function We introduce the negative-log likeli-
hood(NLL) loss to measure the difference between the re-
sponse generated by the model and the target response as
follows.

ℓiNLL = − 1

|yi|

|yi|∑
t=1

log p(yit|yit−1, x
i, ski) (9)

Like [10], we introduce the bag-of-words(BOW) loss to
ensure the accuracy of the selected knowledge as follows.

ℓiBOW = − 1

m

m∑
t=1

log p(yt|k) (10)

Therefore, the total loss function of our model is as fol-
lows.

ℓ = ℓKS + ℓNLL + ℓBOW (11)

3.2. Dual Contrastive Knowledge Selector

We think that an appropriately selected knowledge is
helpful not only for approaching the target response but
also for distinguishing the target response from other re-
sponses. Therefore, we propose two kinds of contrastive
loss as follows. For the posterior distribution piy , we use the
prior distribution pix of the same turn as the positive and the
prior distributions

{
pjx

}n

j=1,j ̸=i
of other turns as the nega-

tives. Then, we minimize the distance of piy from the posi-
tive prior distribution pix and maximize the average distance
of piy from the negative prior distributions

{
pjx

}n

j=1,j ̸=i
. In

this way, We introduce the prior contrast and propose the
prior contrastive loss as follows.

ℓiPRIOR = piy log
piy

p(k|xi
− 1

n− 1

n∑
j=1,j ̸=i

piy log
piy

pjx

= −piy(log pix −
1

n− 1

n∑
j=1,j ̸=i

log pjx)

(12)

To ensure ℓPRIOR is positive, we change it to its final
form as follows.

ℓiPRIOR = −piy[log pix+
1

n− 1

n∑
j=1,j ̸=i

log(1− pjx)] (13)

Similarly, for the prior distribution pix, we use the pos-
terior distribution piy of the same turn as the positive and
the posterior distributions

{
pjy
}n

j=1,j ̸=i
of other turns as the

negatives. Then, we minimize the distance of pix from the

positive posterior distribution piy and maximize the aver-
age distance of piy from the negative posterior distributions{
pjy
}n

j=1,j ̸=i
. In this way, we introduce the posterior con-

trast and propose the posterior contrastive loss as follows.

ℓiPOST = piy log
piy

p(k|xi
− 1

n− 1

n∑
j=1,j ̸=i

pjy log
pjy
pix

= [piy log p
i
y −

1

n− 1

∑
j=1,j ̸=i

pjy log p
j
y]

− [piy log p
i
x −

1

n− 1

∑
j=1,j ̸=i

pjy log p
i
x]

(14)

For the whole multi-turn dialogue, we have

n∑
i=1

[piy log p
i
y −

1

n− 1

∑
j=1,j ̸=i

pjy log p
j
y] = 0 (15)

Therefore, ℓiPOST can be simplified as follows.

ℓiPOST = −piy log pix +
1

n− 1

∑
j=1,j ̸=i

pjy log p
i
x (16)

Similarly, we change ℓiPOST to ensure it is positive as
follows.

ℓiPOST = −piy log pix−
1

n− 1

∑
j=1,j ̸=i

pjy log(1−pix) (17)

Overall, the total loss function of knowledge selection is
as follows.

ℓiKS = ℓiKL + α · ℓiPRIOR + β · ℓiPOST (18)

where α and β are coefficients to control the contribution
of ℓiPRIOR and ℓiPOST , respectively.

4. Experiments

4.1. Experiment Settings

Datasets We carry experiments on two open-domain
knowledge-grounded dialogue datasets, namely Per-
sonaChat [19] and Wizard-of-Wikipedia [5]. Although
Wizard-of-Wikipedia has labels for knowledge selection,
we did not use them because we focus on improvements in
unsupervised knowledge selection.

Baselines We compared our models with the following
baselines.



Table 1. Automatic Evaluation on PersonaChat and Wizard-of-Wikipedia.
Datasets Models BLEU-1 / 2 / 3 Distinct-1 / 2 / 3 Knowledge-R / P / F1

PersonaChat
Seq2Seq 0.1764 / 0.0725 / 0.0315 0.0136 / 0.1015 / 0.2908 0.0062 / 0.0206 / 0.0095
PostKS 0.1736 / 0.0720 / 0.0326 0.0136 / 0.0968 / 0.2676 0.0098 / 0.0407 / 0.0158

our model 0.1799 / 0.0739 / 0.0333 0.0144 / 0.1011 / 0.2804 0.0110 / 0.0430 / 0.0176

Wizard-of-Wikipedia
(Test Seen)

Seq2Seq 0.1802 / 0.0608 / 0.0248 0.0480 / 0.2575 / 0.5468 0.0175 / 0.2427 / 0.0327
PostKS 0.1936 / 0.0679 / 0.0278 0.0487 / 0.2642 / 0.5539 0.0245 / 0.3381 / 0.0457

our model 0.1961 / 0.0686 / 0.0281 0.0500 / 0.2759 / 0.5709 0.0248 / 0.3255 / 0.0461

Wizard-of-Wikipedia
(Test Unseen)

Seq2Seq 0.1735 / 0.0560 / 0.0227 0.0397 / 0.2148 / 0.4849 0.0143 / 0.1827 / 0.0264
PostKS 0.1805 / 0.0575 / 0.0221 0.0325 / 0.2077 / 0.4951 0.0208 / 0.2557 / 0.0384

our model 0.1808 / 0.0585 / 0.0228 0.0318 / 0.2001 / 0.4805 0.0210 / 0.2620 / 0.0388

Table 2. The ablation results on the PersonaChat dataset of our model.
Models BLEU-1 / 2 / 3 Distinct-1 / 2 / 3 Knowledge-R / P / F1

our model 0.1799 / 0.0739 / 0.0333 0.0144 / 0.1011 / 0.2804 0.0110 / 0.0430 / 0.0176
w/o prior contrast 0.1745 / 0.0725 / 0.0330 0.0146 / 0.0995 / 0.2748 0.0102 / 0.0414 / 0.0163

w/o posterior contrast 0.1785 / 0.0737 / 0.0333 0.0144 / 0.0991 / 0.2739 0.0109 / 0.0437 / 0.0175

• Seq2Seq [4] is an attentive seq2seq model that does
not have access to external knowledge.

• PostKS [10] is an attentive seq2seq that selects knowl-
edge with the posterior distribution in the training
phase and the prior distribution in the testing phase.

Implementation. We use a bidirectional GRU with
400 hidden states for each layer as our encoder and 1-
layer GRUs with 800 hidden states in our decoder. All en-
coders and decoders do not share any parameters. We set
the word embedding size to be 300 and initialized it using
GloVe [13]. We use a vocabulary table that has no more
than 20,000 words. We use an Adam optimizer [9], where
the batch size of 16, and the learning rate is 5e-4. In the
first five epochs, we minimize the BOW loss only for pre-
training the knowledge selector. In the remaining epochs,
we minimize the sum of all losses. We evaluated our model
on the validation set every 100 steps and stopped training
when the model did not update the minimal loss for a whole
epoch.

Evaluation. We adopted several automatic metrics to
perform the evaluation. BLEU-1/2 and Distinct-1/2 are two
widely used metrics for evaluating the quality and diversity
of generated responses. Due to the lack of labels, the qual-
ity of selected knowledge is hard to be measured directly.
Following [10], we use Kownledge-R/P/F1 to evaluate the
knowledge quality of generated responses via measuring the
relevancy between generated responses and the knowledge
set. Specifically, given the set of non-stop words in a re-
sponse Y and in the knowledge set K, denoted by WY and
WK , Knowledge-R/P/F1, denoted by R/P /F1 respectively,
are defined as follows.

R =
|WY

⋂
WK |

|WK |
(19)

P =
|WY

⋂
WK |

|WY |
(20)

F1 = 2 · R · P
R+ P

(21)

4.2. Evaluation Results.

Effect of Dual Contrastive Learning The evalua-
tion results are summarized in Table 1. Bold numbers
show the best results among all models. We observe
that our model outperforms baseline models in terms of
knowledge utilization of generated responses on almost
all datasets. For example, Knowledge-R/P/F1 on Per-
sonaChat is increased from 0.0098/0.0407/0.0158 (PostKS)
to 0.0110/0.0430/0.0176 (our model), indicating the im-
provement in terms of the quality of knowledge selection.

Ablation Study The ablation results on PersonaChat of
our model are reported in Table 2. We observe that both
prior and posterior contrast contribute to our model because
the performance degrades without any of them. By com-
parison, the prior contrast contributes more, where we think
the reason is that the prior distribution is directly used in the
testing phase. The prior contrast directly increases knowl-
edge selection compared to the posterior contrast.



5. Conclusion

This paper proposes a dual contrastive method for unsu-
pervised knowledge selection in dialogue systems, which
is the first work that introduces contrastive learning into
knowledge selection in dialogue systems. Experiment re-
sults show that our model has improved on diversity and
knowledge incorporation of generated responses. As for
future work, we plan to extend our contrastive method to
Transformer-based architecture.
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