
PEM: A Parallel Ensemble Matching Framework
for Content-based Publish/Subscribe Systems

Weidong Zhu†, Yufeng Deng§, Shiyou Qian §∗, Jian Cao§ and Guangtao Xue§
†Xuzhou University of Technology, Jiangsu, China. §Shanghai Jiao Tong University, Shanghai, China.

∗Corresponding author, Email: qshiyou@sjtu.edu.cn

Abstract—Content-based publish/subscribe systems are an ef-
fective paradigm for implementing on-demand event distribution.
Each event needs to be matched against subscriptions to identify
the target subscribers. To improve the matching performance,
many novel data structures have been proposed. However, the
predicates included in subscriptions are handled the same way
in most existing data structures, which is not efficient given the
matching probability of predicates. In this paper, we propose a
parallel ensemble matching framework called PEM, which uses
multiple algorithms with complementary behavior on predicate
matching probabilities. To achieve the performance balance of
parallel matching, we design an elastic subscription classification
method. We implement a prototype of PEM based on two existing
algorithms. The experiment results show that PEM improves the
matching performance by 43%.

I. INTRODUCTION

In the face of data explosion, fine-grained data distribution
services are required in many fields. For example, the stock
market generates massive data every day, for which investors
need to subscribe and receive information on events of interest
[1] [2]. Another example is an intelligent transportation sce-
nario, where a large number of devices are deployed to collect
a large volume of data. Likewise, drivers need a mechanism to
obtain timely congestion and accident information specific to
their driving route [3]. These applications motivate the need for
an efficient way of propagating data from publishers (sources)
to subscribers (destinations).

Content-based publish/subscribe (pub/sub) systems are an
effective paradigm for implementing on-demand event dis-
tribution. To express their interest in data, subscribers first
define subscriptions that usually contain multiple predicates
[4] and then issue them to the broker (server). The publisher
generates events consisting of multiple attribute-value pairs
and sends them to the broker. For each event, the broker needs
to match it with subscriptions to identify the target subscribers
to whom the event information should be forwarded. In this
way, publishers and subscribers are loosely coupled, which is
the most attractive feature of content-based pub/sub systems
[5].

Obviously, event matching is a key component in a content-
based pub/sub system. Given a high-dimensional space, an
event represents a point and a subscription represents a rect-
angle. Event matching is essentially a point enclosure search
problem in nature, which is expensive in high-dimensional

DOI reference number: 10.18293/SEKE2022-051

spaces. To make matters worse, when the number of subscrip-
tions is large, the matching performance degrades, becoming
a potential performance bottleneck.

To improve matching performance, many new data struc-
tures for storing subscriptions have been proposed, such as
trees [6] [7] [8] [9], tables [10] [11] [12] and bloom filters
[13] [14]. These novel data structures support efficient event
matching. However, most existing structures index predicates
in the same way, regardless of their matching probability.
As verified in [15], most matching algorithms suffer from
predicate matching probabilities. Increasing or decreasing the
matching probability will result in performance degradation.
One problem of the matching algorithm with fluctuating
performance is that it cannot guarantee fast and stable data
distribution services.

In this paper, we propose a parallel ensemble matching
algorithm called PEM, which aims to improve and stabilize the
matching performance using a multi-thread strategy. Similar to
COMAT [16] which builds a library with multiple behavior-
complementary matching algorithms, the basic idea of PEM is
to leverage each algorithm by indexing each subscription in the
appropriate algorithm. When matching events, all algorithms
run in parallel, one thread per algorithm. When designing
PEM, two points need to be addressed. First, we need to
classify subscriptions based on the behavior of each algorithm
on the predicate matching probability. Second, to prevent the
overload of a specific algorithm, we need to establish a dy-
namic feedback mechanism to ensure the performance balance
between multiple algorithms. Considering the characteristics
of algorithms and the balance of threads, we design an elastic
subscription classification method in PEM.

We implemented a prototype of PEM and conducted exten-
sive experiments to evaluate its effectiveness and performance.
The experiment results well verify the ability of PEM to
improve and stabilize the matching performance. Compared
with COMAT [16] and the other two baselines REIN [12] and
TAMA [10], the matching time of PEM is improved by 43%,
55% and 47% respectively on average.

The main contributions of this paper are as follows:
• We propose an effective parallel ensemble matching

framework called PEM to take advantage of multiple
algorithms.

• We design an elastic subscription classification mecha-
nism to maintain the performance balance between mul-
tiple threads.



• We implement a prototype of PEM and evaluate its effec-
tiveness and performance through extensive experiments.

The remainder of this paper is organized as follows. We
briefly discuss the related work in Section II. We describe the
design details of PEM in Section III. Section IV elaborates
the implementation of PEM. Section V presents and analyzes
the experiment results. We discuss and conclude the paper in
Section VI and VII respectively.

II. RELATED WORK

In this section, we review the matching algorithms along
two lines: sequential algorithms and parallel algorithms.

A. Sequential Matching Algorithms

Most existing matching algorithms were initially proposed
as sequential, such as TAMA [10], MO-Tree [6], OpIndex
[11], HEM [17] and REIN [12]. To achieve high matching
performance, an efficient data structure for indexing subscrip-
tions is necessary and critical for the matching algorithm.
Classical data structures include matching trees [18] [19] [7],
matching tables [20] [10] [11], binary decision diagrams [21]
[22] and bloom filters [14] [13]. The underlying data structure
of the matching algorithm is responsible for maintaining sub-
scriptions (inserts, deletes and updates) and supporting event
matching. In most existing matching algorithms, predicates
are treated in the same way, regardless of their matching
probabilities.

Liao et al. proposed a parallelization method called PhSIH
to optimize the performance and stability of the sequential
matching algorithm [23]. They parallelize three sequential
algorithms using PhSIH, namely TAMA [10], OpIndex [11]
and REIN [12]. To achieve a good parallelization effect, the
sequential matching algorithm should have three characteris-
tics. First, the workload of matching an event can be divided
into sub-tasks from a data structure perspective. Second, the
workload of the sub-tasks should be uniform, and the existence
of a few dominant sub-tasks should be avoided. Third, the
synchronization cost between sub-tasks should be small.

B. Parallel Matching Algorithms

Since most matching algorithms are executed sequentially,
they cannot effectively utilize the parallel computing power
of the hardware. Taking advantage of hardware development,
such as multi-core CPUs, FPGAs and GPUs, some parallel
matching algorithms have been proposed [24] [25] [26]. These
algorithms typically parallelize event matching using a divide-
and-conquer strategy, i.e. dividing the entire subscription set
into subsets and building data structures on these subsets.
While the divide-and-conquer approach is straightforward, it
has limitations in flexibility and memory consumption.

The composite matching framework called COMAT is
similar to our work [16]. In COMAT, each subscription
is maintained in the data structures of multiple algorithms.
When matching events, the matching time of all algorithms is
estimated, and the optimal one is selected for event matching.
COMAT can take advantage of different algorithms, but it

has two limitations. First, each subscription is stored multiple
times, which is not memory efficient. Second, in each algo-
rithm, the predicate matching probability is not considered to
optimize performance and stability.

Different from existing solutions, our work considers the
effect of predicate matching probability on algorithm perfor-
mance and stability. Considering the complementary behavior
of different algorithms on predicate matching probability,
subscriptions are maintained in the appropriate algorithm of
PEM to take full advantage of the algorithm. Therefore, PEM
can effectively improve and stabilize matching performance
on the basis of existing algorithms.

III. DESIGN OF PEM

A. Overview

Obviously, our goal is to improve the matching performance
for content-based pub/sub systems. Building on existing work,
the design of the PEM framework is inspired by the idea of
ensemble learning [27]. First, PEM uses a variety of algo-
rithms to perform event matching. Subscriptions are classified
according to their matching probability and assigned to the
appropriate algorithm. Second, since subscription classifica-
tion implies data parallelism, PEM allocates a thread to each
algorithm to achieve parallel matching. The combination of
subscription classification and parallel matching can greatly
facilitate and stabilize matching performance.

1) Subscription Classification: As discussed in the work
[15], most matching algorithms suffer from predicate matching
probabilities. Subscriptions often contain multiple predicates
with different matching probabilities. However, almost all ex-
isting matching algorithms treat predicates in their underlying
data structures in the same way, regardless of the difference in
matching probabilities. Intuitively, for subscriptions containing
predicates with low matching-probability, it is efficient to use
forward matching methods, such as TAMA [10] and OpIndex
[11]. On the other hand, it is more efficient to use backward
matching methods such as REIN [12] and GEM [28] to han-
dle subscriptions with high matching probability. Therefore,
we explore the idea of leveraging multiple algorithms with
complementary behaviors in matching probability to improve
performance.

2) Parallel Matching: Most existing matching algorithms
are single-threaded. To speed up event matching, we can
continuously optimize the performance of the single-threaded
matching algorithm, but this performance improvement is
generally difficult. With the development of computer hard-
ware, multi-core CPUs and GPUs allow us to consider par-
allel matching, which has great potential to further improve
matching performance. Therefore, we propose PEM based on
subscription classification and multi-thread matching. PEM
can greatly reduce the time to match events. In addition, PEM
is beneficial to maintain the scalability of subscriptions and
the stability of event matching under large-scale data.



New subscriptions

Incoming events

Divided into 
groups

Classifier

Alg. library
Alg1 …

Matching 
results

Alg2 Algn

Fig. 1: The architecture of Ensemble Matching.

B. The Architecture of PEM

The architecture of PEM is shown in Fig.1, which consists
of two modules: algorithm library and classifier. The library
consists of multiple algorithms with complementary behaviors
in terms of predicate matching probabilities. For each new
subscription, the classifier estimates its matching probability
and chooses the most appropriate algorithm to insert. There-
fore, each subscription is maintained by an optimal matching
algorithm. When a new event arrives, all algorithms in the
library are executed in parallel and their matching results are
aggregated.

1) Algorithm Library:
The basis for implementing PEM is to build a library of

multiple matching algorithms. To do so, we give three criteria
for choosing matching algorithms.

i) The algorithms in the library should complement each
other. In other words, algorithms should have different
performance behaviors in terms of predicate matching
probability.

ii) Candidate algorithms should have similar overall match-
ing performance, aiming to achieve good ensemble
effects.

iii) For better generality, the algorithms in the library should
support different subscription data models.

2) Classifier:
a) Quantification of Predicate Matching Probability:

The matching probability of predicates in a subscription can
be estimated by the average width of interval predicates and
the number of predicates. An interval predicate has a low
value and a high value that forms an interval. Other forms of
predicates can be transformed to interval ones. For simplicity,
we assume that events are uniformly distributed. Given a
subscription containing K interval predicates, the average
matching probability of the predicates can be estimated by

p =

∑K
i=1 wi

K
(1)

where wi is the width of the ith interval predicate.
If the distribution of events is statistically available, the av-

erage matching probability of the predicates in the subscription
can be calculated by

p =

∑K
i=1

∫ hi

li
pe(x) dx

K
(2)

Split Point

Alg. 1
0 1

Alg. 2

The elastic range 
of split point

Fig. 2: Elastic classification of subscriptions considering algo-
rithm characteristics and performance balance

where li and hi represent the low value and high value of the
ith interval predicate respectively, and pe(x) is the probability
density function of events.

b) Elastic Subscription Classification Method: When de-
signing a subscription classification method for PEM, two
points need to be considered for good parallelism. First, the
correspondence between algorithm characteristics and sub-
scription probabilities should be considered to assign subscrip-
tions to appropriate algorithms. Second, since each algorithm
runs using a single thread, skewed subscriptions can cause
severe performance imbalances. Therefore, we propose an
elastic subscription classification method.

For simplicity of discussion, we normalize the value domain
of predicate matching probability in [0, 1]. Let L be the
number of algorithms in the library. Since the algorithms in
the library have complementary behaviors in terms of predicate
matching probability, each algorithm has a range of applicable
probability. The range of all algorithms collectively covers
[0,1]. For example, assuming that the ith algorithm is optimal
in the range [0.4, 0.5] and a subscription has a matching
probability of 0.45, the subscription is assigned to the most
suitable ith algorithm.

Given the L algorithms in the library, we need to compute
L − 1 split points SPi (1 ≤ i ≤ L − 1) to separate the
algorithms. SPi represents the split point between algorithm
i and algorithm i+ 1. The value of SP indicates a matching
probability in [0, 1]. Considering algorithm characteristics and
performance balance, the split point SPi can fluctuate within
a certain range [RiMIN , RiMAX ], which is called the elastic
range. Specifically, SPi can be calculated by:

SPi = RiMAX
− ti × (RiMAX

−RiMIN
)

T
(3)

where ti (1 ≤ i ≤ L) is the matching time of algorithm i, T =∑L
i=1 ti is the sum of the matching time of all algorithms, and

RiMAX
and RiMIN

represent the elastic range of SPi. Both
RiMAX

and RiMIN
can be in the range of 0 to 1 and RiMIN

<
RiMAX

. The initial value of SPi is determined according to
the characteristics of each algorithm in the library. The value
of SPi fluctuates within the elastic range [SPi×(1−α), SPi×
(1 + α)]. The value of α is set to 0.2 in the implementation.

We use the case of L = 2 to illustrate the concepts of
split point and elastic range, as shown in Fig. 2. These two
algorithms are suitable for subscriptions with different match-
ing probabilities, where algorithm 1 (Alg. 1) is suitable for
subscriptions with low matching probability, while algorithm
2 (Alg. 2) is suitable for subscriptions with high matching



Algorithm 1: Matching procedure of PEM
Require: an events e and the event window size ψ.

1: j ++;
2: Match e using all algorithms in the library;
3: Aggregate the output of each algorithms to obtain the

matching results;
4: if j = ψ then
5: j = 0;
6: Compute the average matching time ti of each

algorithms in the current window;
7: Adjust the value of all split points SPi in the next

window according to Eq. (3);
8: end if

probability. The value of SP can fluctuate within an elastic
range to maintain the performance of the two threads running
the two algorithms separately.

The insertion process of PEM is straightforward. Given a
new subscription, its matching probability p is first quantified
according to Eq. (2). Then, the first split point SPi > p is
found. The subscription is assigned to the ith algorithm and
maintained in the corresponding data structure.

3) Matching Procedure of PEM: The matching procedure
of PEM is shown in Algorithm 1. For each event, all algo-
rithms in the library are used for matching, and their outputs
are aggregated to obtain matching results. After matching
ψ events in a time window, PEM adjusts the value of SPi

according to Eq. (3), aiming to maintain the performance
balance among all algorithms based on the matching time of
each algorithm in the library.

IV. IMPLEMENTATION

Similar to COMAT [16], we chose REIN [12] and TAMA
[10] in the implementation to form the library. The two
algorithms have similar overall performance and exhibit op-
posite behavior in terms of predicate matching probability.
When matching events, TAMA uses a counter to record the
predicate fulfillment condition for each subscription, while
REIN uses a bitset to mark all unmatched subscriptions. Given
an event, if a predicate evaluates to true, the counters of all
subscriptions that contain the predicate are incremented by 1
in TAMA. Conversely, if a predicate evaluates to false, the
bits representing all subscriptions that contain the predicate
are marked in REIN. Therefore, REIN can achieve higher
performance if more predicates evaluate to true, while TAMA
may have lower performance, and vice versa.

Each algorithm in PEM is assigned to a thread. In the
implementation, we need to balance the running time of REIN
and TAMA. Since the split point of PEM is the criterion for
subscription classification between REIN and TAMA, we de-
sign a dynamic feedback mechanism to maintain performance.
After ψ events are matched in each window, the split point
is adjusted according to the matching time ratio of REIN
and TAMA. In the next window, the adjusted split point is

TABLE I: Parameters used in the experiments

Note Description Values
N Number of subscriptions 1M, 2M, 3M, 4M,5M
M Event size 20, 50, 100
K Subscription size 5, 10, 15, 20
W Width of interval predicates 0.1, 0.3, 0.5, 0.7, 0.9
SP Split point of PEM 0.4, 0.5, 0.6
ψ Window size 20

applied. ψ is set to a small value of 20 in the implementation
because the adjustment cost is almost negligible. Frequent
tuning ensures that the two threads always reach a performance
balance.

V. EXPERIMENTS

A. Experiment Setup

All the experiments were conducted on a server with 16
2.3GHz vCPUs and 32GB RAM, which runs Ubuntu 18.04
with Linux kernel 4.15.0-111. All code is written in the C++
language and compiled by g++ with version 7.5.0 and -O3
optimization.

We compare PEM with three baselines: COMAT [16],
TAMA [10] and REIN [12]. According to the papers, the
discretization level of TAMA is set to 17, and the number
of buckets in REIN is set to 1000. The neural networks used
in COMAT are implemented by the TensorFlow library with
version 2.2.0-rc1. The matching time of COMAT is the sum
of the matching time of the algorithm selected from REIN
and TAMA and the prediction time of the neutral networks.
The matching time of PEM is the time to execute REIN and
TAMA in parallel using two threads. We run each experiment
10 times and obtain the average result.

In the experiments, by default, the number of subscriptions
N is set to 1 million, the width of predicates W to 0.5,
the number of predicates in subscriptions (subscription size)
K to 10, and the number of attribute-value pairs in events
(event size) M to 20. Subscriptions and events are randomly
generated based on W , K and M . In each experiment,
500,000 events are matched and the average matching time is
calculated. With large-scale datasets, we can better compare
the performance of the tested matching algorithms. Table I lists
the parameters used in the experiments. Bold values represent
default settings.

B. Matching Performance

As shown in Fig. 3 and Fig. 4, PEM always performs
best with different numbers of subscriptions N , followed by
COMAT. TAMA appears to be more sensitive to N in terms
of matching time and the standard deviation (Std) of matching
time. From Fig. 3, we can see that TAMA outperforms REIN
when the number of subscriptions is less than 3 million.
REIN outperforms TAMA when the number of subscriptions
becomes larger. When N = 1M, PEM achieves 43.7%, 68.6%
and 46.9% performance improvements over COMAT, REIN
and TAMA respectively on matching time. When N = 5M,



Fig. 3: Matching time with different
numbers of subscriptions N

Fig. 4: Std of matching time with dif-
ferent numbers of subscriptions N

Fig. 5: Matching time with different
subscription sizes K

the performance improvement of PEM over COMAT, REIN
and TAMA is 53.3%, 55.8% and 64.2% respectively. Overall,
PEM is around 40% faster than the second-best algorithm in all
the experiments. In addition, PEM also has the lowest standard
deviation of matching time, as shown in Fig. 4, which indicates
that PEM has good performance stability.

In addition to N , the performance of the matching algorithm
is also affected by several parameters, including K, M , and
W . In the following subsections, we vary the settings of
these parameters and evaluate their impact on the matching
performance of PEM, COMAT, REIN and TAMA.

1) Effect of Subscription Size K: Figure 5 shows the effect
of K on matching time. In the experiments, the subscription
size is randomly generated in the range [1, K]. A larger
K means that more predicates are stored in the structure of
REIN and TAMA, and subscriptions have a lower matching
probability. REIN is more susceptible to an increase in K as it
needs to repeatedly mark more subscriptions as the matching
probability of subscriptions decreases. When K = 5, PEM
is 47.7%, 67.7% and 49.4% higher that COMAT, REIN and
TAMA respectively. When K = 20, the improvement of PEM
over COMAT, REIN and TAMA is 19.3%, 52.9% and 25.87%
respectively. The performance of COMAT improves when
K increases. This is because COMAT chooses TAMA more
frequently than REIN as the number of predicates contained
in each subscription increases. TAMA is better suited to
subscriptions with a large number of predicates, reducing the
performance difference between COMAT and PEM.

2) Effect of Event Size M : In this experiment, we set M
from 20 to 100 and the results are shown in Fig. 6. A larger
M means that there are more attribute-value pairs in events
that the matching algorithm needs to process. We can find
that REIN is more affected as M increases. This shows that
under uniform distribution, REIN is more sensitive to event
size. When M = 20, PEM achieves an improvement of
39.1%, 67.5% and 54.1% over COMAT, REIN and TAMA
respectively. When M = 100, the improvement of PEM
over COMAT, REIN and TAMA is 17.6%, 72.6% and 23.7%
respectively.

3) Effect of the Width of Predicates W : The width of predi-
cates is a key parameter that directly affects the performance of
REIN and TAMA. REIN performs well at a wider width, while

TAMA does the opposite. As shown in Fig. 7, when W = 0.1,
PEM improves by -2.2%, 80.9% and 4.5% over COMAT,
REIN and TAMA respectively. In this case, PEM, COMAT
and TAMA perform almost identically, with COMAT slightly
better than PEM. TAMA’s performance is much better REIN.
Conversely, when W = 0.9, PEM improves by 12.4%, 13.6%
and 47.1% over COMAT, REIN and TAMA respectively.
In this case, REIN significantly outperforms TAMA. When
W = 0.1, almost all subscriptions are more suitable for
TAMA. So, the two threads of PEM are unbalanced, and the
results of PEM, COMAT and TAMA are very close. The
situation is similar when w = 0.9. The results of PEM,
COMAT and REIN are very close. When W = 0.5, PEM
still outperforms the three baselines significantly. We believe
that the performance of PEM is generally optimal when the
predicate width varies.

C. Effectiveness of Feedback-based Adjustment Method

As shown in Fig. 8, the strategy of dynamically adjusting
the split point consistently achieves the best performance when
increasing the number of subscriptions. When N = 200, 000,
this strategy achieves 50.5%, 27.3%and 36.4% improvement
over SP=0.4, SP=0.5 and SP=0.6 respectively. When N =
1000, 000, the strategy achieves 31.2%, 6.6%and 20.8% im-
provement over SP=0.4, SP=0.5 and SP=0.6 respectively. We
can see that the performance of SP=0.5 is better than SP=0.4
and SP=0.6. This is because the data is evenly distributed,
with roughly an equal amount of data on both sides of 0.5.
But the performance of dynamical adjustment is still better
than SP=0.5, which reflects the effectiveness of the feedback-
based update method in PEM.

VI. DISCUSSION

The time it takes to insert a subscription in PEM is the
sum of the subscription insertion time. Only one insertion
is required per subscription in PEM. In our implementation,
since the insertion time of REIN is much smaller than that of
TAMA, the insertion time of PEM is close to that of TAMA.
Subscription deletion is similar to subscription insertion.

Ideally, the dual-threaded parallel algorithm has a perfor-
mance improvement of 100% compared to the single-threaded
algorithm. In practice, we cannot have the exact same running



Fig. 6: Matching time with a different
total number of attributes M .

Fig. 7: Matching time with a different
width of predicates W .

Fig. 8: Matching time with different
split points.

time for both algorithms, and we also need time to classify
the subscriptions. These factors take some time. In general,
the performance improvement of PEM is still very significant.

VII. CONCLUSION

In this paper, we explore the idea of using multiple match-
ing algorithms to improve and stabilize the performance of
matching algorithms. The main idea of PEM is to classify
subscriptions, choose the most appropriate algorithm for each
subscription, and then perform parallel matching on multiple
algorithms. To evaluate the performance of PEM, we con-
ducted a series of experiments. The experiment results show
that PEM can greatly improve and stabilize the matching
performance under different parameter settings.

ACKNOWLEDGMENTS

This work was supported by the National Key Research and
Development Program of China (2019YFB1704400) and the
National Natural Science Foundation of China (61772334).

REFERENCES

[1] S. Qian, W. Mao, J. Cao, F. Le Mouël, and M. Li, “Adjusting
matching algorithm to adapt to workload fluctuations in content-based
publish/subscribe systems,” in IEEE INFOCOM, 2019, pp. 1936–1944.

[2] T. Ding, S. Qian, J. Cao, G. Xue, and M. Li, “Scsl: Optimizing matching
algorithms to improve real-time for content-based pub/sub systems,” in
IEEE IPDPS, 2020, pp. 148–157.

[3] N. Dasanayaka, C. Wang, D. Jayalath, and Y. Feng, “Publish-subscribe
communications for V2I safety applications in intelligent transportation
systems,” in IEEE VTC Fall, 2019, pp. 1–6.

[4] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf, “Design and evalu-
ation of a wide-area event notification service,” ACM Transactions on
Computer Systems (TOCS), vol. 19, no. 3, pp. 332–383, 2001.

[5] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec, “The
many faces of publish/subscribe,” ACM Computing Surveys (CSUR),
vol. 35, no. 2, pp. 114–131, 2003.

[6] T. Ding, S. Qian, J. Cao, G. Xue, Y. Zhu, J. Yu, and M. Li, “Mo-tree: An
efficient forwarding engine for spatiotemporal-aware pub/sub systems,”
IEEE Transactions on Parallel and Distributed Systems (TPDS), vol. 32,
no. 4, pp. 855–866, 2021.

[7] S. Qian, J. Cao, Y. Zhu, M. Li, and J. Wang, “H-tree: An efficient index
structurefor event matching in content-basedpublish/subscribe systems,”
IEEE Transactions on Parallel and Distributed Systems (TPDS), vol. 26,
no. 6, pp. 1622–1632, 2015.

[8] S. Ji and H. Jacobsen, “A-tree: A dynamic data structure for efficiently
indexing arbitrary boolean expressions,” in ACM SIGMOD, 2021, pp.
817–829.

[9] M. Sadoghi and H.-A. Jacobsen, “Be-tree: an index structure to ef-
ficiently match boolean expressions over high-dimensional discrete
space,” in ACM SIGMOD, 2011, pp. 637–648.

[10] Y. Zhao and J. Wu, “Towards approximate event processing in a large-
scale content-based network,” in IEEE ICDCS, 2011, pp. 790–799.

[11] D. Zhang, C.-Y. Chan, and K.-L. Tan, “An efficient publish/subscribe
index for e-commerce databases,” VLDB Endowment, vol. 7, no. 8, pp.
613–624, 2014.

[12] S. Qian, J. Cao, Y. Zhu, and M. Li, “Rein: A fast event matching
approach for content-based publish/subscribe systems,” in IEEE INFO-
COM, 2014, pp. 2058–2066.

[13] S. Ji and H. Jacobsen, “Ps-tree-based efficient boolean expression match-
ing for high dimensional and dense workloads,” VLDB Endowment,
vol. 12, no. 3, pp. 251–264, 2018.

[14] Z. Jerzak and C. Fetzer, “Bloom filter based routing for content-based
publish/subscribe,” in ACM DEBS, 2008, pp. 71–81.

[15] S. Qian, J. Cao, W. Mao, Y. Zhu, J. Yu, M. Li, and J. Wang, “A
fast and anti-matchability matching algorithm for content-based pub-
lish/subscribe systems,” Computer Networks, vol. 149, pp. 213–225,
2019.

[16] T. Ding, S. Qian, W. Zhu, J. Cao, G. Xue, Y. Zhu, and W. Li, “Comat:
An effective composite matching framework for content-based pub/sub
systems,” in IEEE ISPA, 2020, pp. 236–243.

[17] W. Shi and S. Qian, “HEM: A hardware-aware event matching algorithm
for content-based pub/sub systems,” in DASFAA, 2022, pp. 277–292.

[18] M. K. Aguilera, R. E. Strom, D. C. Sturman, M. Astley, and T. D.
Chandra, “Matching events in a content-based subscription system,” in
ACM PODC, 1999, pp. 53–61.

[19] M. Sadoghi and H.-A. Jacobsen, “Analysis and optimization for boolean
expression indexing,” ACM Transactions on Database Systems (TODS),
vol. 38, no. 2, pp. 1–47, 2013.

[20] A. Carzaniga and A. L. Wolf, “Forwarding in a content-based network,”
in ACM SIGCOMM, 2003, pp. 163–174.

[21] A. Campailla, S. Chaki, E. Clarke, S. Jha, and H. Veith, “Efficient
filtering in publish-subscribe systems using binary decision diagrams,”
in IEEE ICSE, 2001, pp. 443–452.

[22] G. Li, S. Hou, and H.-A. Jacobsen, “A unified approach to routing,
covering and merging in publish/subscribe systems based on modified
binary decision diagrams,” in IEEE ICDCS, 2005, pp. 447–457.

[23] Z. Liao, S. Qian, J. Cao, Y. Cao, G. Xue, J. Yu, Y. Zhu, and M. Li,
“Phsih: A lightweight parallelization of event matching in content-based
pub/sub systems,” in ICPP, 2019, pp. 21:1–21:10.

[24] A. Farroukh, E. Ferzli, N. Tajuddin, and H.-A. Jacobsen, “Parallel event
processing for content-based publish/subscribe systems,” in ACM DEBS,
2009, pp. 1–4.

[25] K. Tsakalozos, M. Tsangaris, and A. Delis, “Using the graphics pro-
cessor unit to realize data streaming operations,” in ACM Middleware
Doctoral Symposium, 2009, pp. 1–6.

[26] A. Margara and G. Cugola, “High-performance publish-subscribe match-
ing using parallel hardware,” IEEE Transactions on Parallel and Dis-
tributed Systems (TPDS), vol. 25, no. 1, pp. 126–135, 2014.

[27] O. Sagi and L. Rokach, “Ensemble learning: A survey,” Wiley Interdisci-
plinary Reviews: Data Mining and Knowledge Discovery, vol. 8, no. 4,
pp. 5839–5847, 2018.

[28] W. Fan, Y. Liu, and B. Tang, “Gem: An analytic geometrical ap-
proach to fast event matching for multi-dimensional content-based
publish/subscribe services,” in IEEE INFOCOM, 2016, pp. 1–9.


