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Abstract—Knowledge graph completion can complete knowl-
edge by predicting missing facts, which is a increasingly hot
research topic in knowledge graph construction. Prevalent
approaches propose to embed knowledge graphs in a low-
dimensional vector space and use these embedding to predict,
but they neglect either semantic information or graph structures.
We propose a new approach to knowledge graph completion
named as ATTWALK, which learns embedding by exploiting
both structural and semantic features of a knowledge graph.
This is achieved by leveraging a key insight that an entities’
embedding is influenced by its multi-hop neighbors’, which can
be further distinguished by their semantic importance to the entity.
ATTWALK orchestrates a two-step workflow by first evaluating
neighbors’ semantic weights using graph attention networks for
each entity, then exploring the entities’ local structural features
by performing a semantic weight guided walk. We evaluate
ATTWALK by conducting extensive experiments, which show
that ATTWALK outperforms 12 representative approaches on
average across 3 publicly available datasets.

Index Terms—knowledge graph embedding, graph attention
networks, random walk

I. INTRODUCTION

A knowledge graph (KG) is a directed graph which excels
at organizing relational facts. It represents factual entities as
nodes and semantic relations as edges. For a fact that entity h
has a relationship r with entity t, KGs model it as an edge r
pointing from node h to node t, which is denoted as a triple
(h, r, t). As a structured form to model human knowledge,
many large-scaled KGs have emerged as the backbone of
many AI related applications such as question answering [1],
recommendation systems [2] and intelligent services [3], and
become increasingly important nowadays.

Although KGs can be large in size, they are far from com-
plete. This gives rise to the task of automatic KG completion,
which aims at predicting missing facts based on existing triples
in a KG. A prevalent research direction proposes to map nodes
and edges of a KG into distributed representations in a low-
dimensional vector space, so as to simplify the prediction while
preserving their relations. This is also known as knowledge
graph embedding (KGE) and is gaining massive attention
recently.

Among all the previous KGE works, facts-based and relation
path-based approaches are two main representatives, but they
either overlook rich structural features or semantic information
of a KG. Facts-based approaches take a KG as a set of triples
(i.e., facts). They propose different scoring functions on the
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embedding of each triple to measure its factual plausibility,
and obtain the embeddings by maximizing the function values.
Instead, relation path-based approaches compute embeddings
considering multi-hop relationships and handle relation paths
using composition strategies [4], but the huge number of
composed paths brings critical complexity challenges [5].
This gives rise to more feasible approaches of path sampling,
which often relies on heuristics or prior knowledge but under-
utilizes semantic information in a KG. Such approaches include
Node2Vec [6], RelWalk [7] and so on.

Motivated by the above challenges, we propose a new
approach named ATTWALK to knowledge graph completion,
which learns embedding by exploiting both structural and
semantic features of a KG. Unlike using semantic information
from textual material [8], we consider using semantic informa-
tion from the triple itself. ATTWALK is inspired by a point of
view in social reference theory [9] that an individual’s social
role is influenced by his or her personal relational network
instead of only direct links, moreover, those entities in this
network contribute differently to his or her social role. As
an analogy, for a node n in a KG, n’s embedding essentially
models its role or feature, which is influenced by the community
(i.e., a sub-graph) c that n is located in, instead of only n’s
one-hop neighbors, and the influences posed by nodes in c
may vary according to their semantic importance to node n.
Following this idea, ATTWALK orchestrates a simple two-step
workflow: for each node n, its multi-hop neighbors’ semantic
weights are first evaluated using graph attention network, then
the weights are used to guide a random walk starting from n
in order to aggregate its multi-hop neighbors’ influences and
obtain n’s embedding.

In summary, the contributions of this paper are threefold: (1)
We borrow an idea from sociology and propose a simple but
effective approach ATTWALK to KGE. ATTWALK provides a
new angle that can exploit both graph structures and semantic
relations to embedding KGs; (2) We design and implement a
workflow to put the idea of ATTWALK into effects; and (3)
We evaluate ATTWALK by conducting extensive experiments.
ATTWALK outperforms 12 related approaches on average
across three publicly available datasets, which demonstrates
the effectiveness of ATTWALK.

II. MOTIVATION

Figure 1 serves as a motivating example throughout this
section, which is simplified from a large-scaled KG due to
space limit.
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Fig. 1. A KG example describing some real-life relations connected with Cristiano Ronaldo.

We first describe related preliminaries to KGE (Section II-A),
then introduce the general ideas of existing works (Section II-B)
and our approach (Section II-C) in solving the KGE task.
Without loss of generality, let us focus on how these approaches
learn the embedding of the specific node Cristiano Ronaldo in
Figure 1

A. Preliminaries

Knowledge Graph. A knowledge graph G = (E ,R), where
E and R represent the set of entities and relations respectively.
Each triple (edge) (h, r, t) contains a subject entity h ∈ E ,
a predicate r ∈ R, and a tail entity t ∈ E , denoting
head entity h has a relation r to tail entity t. For example,
(Cristiano Ronaldo, Nationality,Portugal) implies the nation-
ality of Cristiano Ronaldo, as is shown in Figure 1.

B. Related Work

Facts based approaches generally take the KG in Figure 1
as a set of 8 triples, one for each edge connecting two
nodes. For each triple, they propose a model to describe
how the triple holds and a scoring function to measure its
plausibility. Embeddings are obtained by maximizing the value
of the scoring function. In this way, the semantic of each
triple is captured, but the multi-hop neighbors’ influence and
graph structures are not fully utilized. For example, although
Football is a 2-hop neighbor of Cristiano Ronaldo, it is more
semantically relevant than Cristiano Ronaldo’s 1-hop neighbor
187cm. These approaches can be divided into four categories:
(i) translation-based models, which consider the translation
operation between entity and relation embedding, such as
TransE [10] and TransH [10]; (ii) factorization-bsaed models,
which assume KG as a third-order tensor matrix, and the triple
score can be carried out through matrix decomposition. Such
as RESCAL [11], HOLE [12]; (iii) CNN-based models, which
employ convolutional neural networks to determine the scores
of triples, such as ConvE [13] and ConvKB [14]; and (iv)
Graph neural network-based models, which extend convolution
operations onto non-Euclidean graph structures, such as RGCN
[15], KBGAT [16], EIGAT [17] and CompGCN [18].

By contrast, the path sampling based approaches lay more
emphasis on the graph structures around the target node. They

perform a truncated random walk starting from node Cristiano
Ronaldo along the outgoing edges, which results in a path
p, then propagate embeddings of nodes in p to the target
node’s, such as DeepWalk [19], node2vec [6]. However, these
approaches learn the embedding of Cristiano Ronaldo based
on its co-occurrence with nodes in the path p, without utilizing
the semantics of edges shown in Figure 1. For example, node
187cm may pose more influence than node Football Player on
the embedding of node Cristiano Ronaldo, though the former
is less semantically relevant than the latter.

C. Our Solution

ATTWALK learns the embeddings considering both semantic
information and graph structures of the KG, and conducts a
two-step procedure. Step-1: For each node n, ATTWALK first
evaluates the importance of n’s neighbors, based on the intuition
that different neighbors pose different influences to n. For
example, to node Cristiano Ronaldo, the path Occupation →
Football Player should contribute more to its embedding than
path Height → 187cm, therefore, the former is assigned more
weights than the latter. This is achieved using a graph attention
network. Step-2: Starting from node Cristiano Ronaldo, a
truncated walk is performed, but which path to take is guided by
the weights of the paths. The sampled paths are then aggregated
to capture multi-hop neighbors’ influences on node Cristiano
Ronaldo. In this way, both structural and semantic features are
exploited in the embedding. Moreover, the relational importance
is automatically learned without prior knowledge.

III. ATTWALK

This section introduces our approach ATTWALK. The general
architecture is shown as Figure 2. We detail its critical technical
components, the graph attention module and the weighted walk
module, in Section III-A and Section III-B, respectively.

A. Graph Attention Network

ATTWALK leverages both entity and relation features in the
multi-relation knowledge graph. Because in the knowledge
graph, we think relations are as crucial as entities. To better
manipulate entity and relation embedding, such as inner product,
cross product, and subtraction, we map both of them into the
same dimension. Each layer of GAT takes a set of entity features
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Fig. 2. Overview of ATTWALK architecture.

e ∈ RNe×P and relation features r ∈ RNr×P as input, and
outputs a new set of entity and relation features: e ∈ RNe×V ,
r ∈ RNr×V , where the i-th row of e is the embedding of entity
ei and the j-th row of r is the embedding of relation rj . Ne

and Nr is the number of entities and relations, respectively.
P and V are the input and output dimension of entity and
relation embedding, respectively.

Considering different neighbors may have different impor-
tance related to one entity, we perform a shared attention
mechanism. We first learn a representation of each triple, for
example, (hi, rj , tk), by performing a linear transformation
over entity and relation embedding, as shown in Equation 1.

cijk = WΦ(⃗hi, r⃗j , t⃗k) (1)

where Φ represents operations over entity and relation embed-
ding. Inspired from [10], [20] and [21], we define three kinds
of operators, subtracting, multiplying and cross-product. W is
the linear transformation matrix. We also notice that knowledge
graphs are directed relational graphs. As shown in Figure 1,
Football Player is embraced by neighborhood entities Football
and Cristiano Ronaldo, and linked by out-relation Play and in-
relation Occupation. Football Player can be either a head entity
or a tail entity, so we distinguish the direction of the relations.
We learn two disjoint patterns of relations, out-relations and
in-relations, respectively. Therefore, Equation 1 can again be
written as follows.

cijk = W1Φ(⃗hi, r⃗j , t⃗k) (2)

ckji = W2Φ(⃗tk, r⃗j , h⃗i) (3)

where W1 and W2 are direction-specific linear transformation
matrices. Similar to [16], we learn the importance of each
triple denoted by attijk.

attijk = LeakyReLU (W3cijk) (4)

where W3 is a linear transformation matrix that is used to
calculate attention scores. To get the relative attention values,
a softmax function is applied over attijk as shown in Equation
5.

αijk = softmaxjk (attijk)

=
exp (attijk)∑

n∈Ni

∑
r∈Rin

exp (attinr)

(5)

To aggregate information from neighbor u, the feature of node
v is updated by:

e⃗v = σ1

(∑
u∈Nv

∑
i∈Rvu

αviucviu

)
(6)

As is shown in Figure 2, we incorporate the weighted walk
model to get the final entity embedding.

e⃗v = σ1

(∑
u∈Nv

∑
i∈Rvu

αviucviu

)
∥σ1(e

random
v ) (7)

where ∥ represents channel-wise concatenation, σ1 is a non-
linearity, and erandomv denotes the representation of node v
derived from the weighted walk model, which will be explained
in next section. After updating entity embedding, the relation
embedding is transformed by Equation 8.

r⃗j = W4rj (8)

where W4 is a relation transformation matrix that is used to
update relation j.

B. Weighted Walk

Unlike Node2Vec [6], which views neighbors as equally
important, we think different neighbors in a graph play different
roles for a specific node, thus have different contributions
to the node’s embedding. This is achieved by incorporating
attention schemes into the random walk process. We propose
an attention-guided random walk aggregation model following
the hypothesis that accumulating information from local
structural relations of n-step ranges will benefit learning robust
embedding.

Therefore, instead of feeding adjacent matrix A to implement
random walks, we utilize attention matrix D generated from
the graph attention module. As is shown in Equation 9, we
define linear combinations of features.

Hi+1 = D̂jHi (9)

where Hi represents input entity embedding. The weighted
walk algorithm is shown as Algorithm 1. The jth line of Hi+1

is a representation of entity j, denoted as erandomj .
We view the random walking process as a Markov chain.

Let D denote the one-step transfer probability matrix (attention



Algorithm 1 The weighted walk algorithm
1: procedure RANDOMWALK(Dj , Hi)
2: Hi ←WHi + b
3: Hi ← drop(σ(Hi))
4: D̂j = WeightedPruning(Dj)
5: for i← 1, walklength do
6: Hi+1 = D̂jHi

7: end for
8: Hi+1 = σ(Hi+1)
9: return Hi+1

10: end procedure

matrix), whose state representation space is the set of all entities.
D has the following properties:

dij ≥ 0, i, j ∈ E (10)∑
j∈E

dij = 1, i ∈ E (11)

Based on that, we have the following definition.

Definition III-B.1. Let the conditional probability be defined
as p

(n)
ij = P{Xn = j|Xm = i}, i, j ∈ E , where entity Xn is

n-step neighbor of entity Xm.

Lemma III-B.1. The n-step transfer matrix (attention matrix)
has the following property:

D(n) = DD(n−1) (12)

D(n) = Dn (13)

From the above properties, we can accumulate n-step
information by the one-step transfer matrix, i.e., attention
matrix. Line 4 in Algorithm 1 tends to select entities of
higher importance, that is, we select a local subgraph. For
example, as shown in Figure 1, starting from Cristiano Ronaldo,
the weighted walk process will choose Football Player with
higher probability over other neighbors. The final subgraph we
obtain will be an n-step local structure composed of relatively
important entities.

IV. EXPERIMENTS

We first introduce the experiment settings, including the
datasets and experiment descriptions (Section IV-A), and
the configurations (Section IV-B), then report the overall
performance results on KG completion task (Section IV-C), and
finally investigate the contributions of different components of
ATTWALK by conducting an ablation study (Section IV-D).

A. Datasets

We evaluate our approach on three publicly available
benchmark datasets: WN18RR [13], FB15k-237 [26] and
Kinship [27]. We use the standard training, validation, and test
sets. FB15k-237 contains entities and relations from Freebase,
which is a large common-sense knowledge base. FB15k-237
removes duplicate and inverse relationships to prevent direct
prediction. WN18RR is derived from WordNet, a lexical

Fig. 3. Impact of walk length on Kinship

database of semantic relations between words. Similar to
FB15k-237, WN18RR also removes duplicates and reverse
relationships. The Kinship database consists if relationships of
24 unique entities in two families.

B. Configurations

We implement our approach with Pytorch and use Adam
to optimize the parameters with an initial learning rate set as
0.001. We run our model under Ubuntu 18.04 on an i9-9900K
CPU, equipped with RTX 2080ti 12GB. The embedding size
V is set to 200, and the number of negative samples is fixed
as 1000. The dropout rate is selected from {0.1, 0.2, 0.3, 0.4}.
For algorithm 1, the walk length is tuned amongst {1, 3, 10,
60, 100}. The kernel size of convolution is set as 7×7. We
assign label 1 to valid triples and label 0 to negative triples to
distinguish them. We use the CrossEntropyLoss function
as our loss function. Each experiment runs five times and the
average number is reported.

C. Results and Analysis

Table I and Table II show the comparison results on all data
sets. We can observe that our proposed approach ATTWALK has
comparable performance with SOTA baselines on most of the
metrics, validating the effectiveness of exploiting both structural
and semantic features of a KG. For Kinship, ATTWALK is
always the best performer, which outperforms the best baseline
by 3.8% on MRR, 2.5% on MR, 6% on Hits@1, 2.3% on
Hits@3 and 0.2% on Hits@10 of Kinship, as shown in Table II.

D. Ablation Study

To analyze the effectiveness of each key module in our
proposed approach, we investigate an ablation study, which is
shown in Table III. In addition, we compare the behavior of our
proposed approach when replacing the weighted walk module
with NODE2VEC under different aggregation mechanisms and
show the results in Table IV. Finally, we compare the effects
of different walk lengths, as shown in Figure 3.

1) Effects of Different Modules: As shown in Table III,
removing the weighted walk module clearly degrades all
the performance metrics, which denotes the effectiveness
of weighted walk. When we do not use the updated entity



TABLE I
EXPERIMENTS RESULTS FOR THE LINK PREDICTION TASK ON WN18RR AND FB15K-237 TEST SETS. HITS@N VALUES ARE IN PERCENTAGE. THE BEST

SCORE IS IN BOLD AND THE SECOND IS UNDERLINED. THE RESULTS OF ALL THE BASELINE METHODS ARE TAKEN FROM THE PREVIOUS PAPERS(’-’
DENOTES MISSING VALUES).

WN18RR FB15k-237

Hits@N Hits@N

MRR MR @1 @3 @10 MRR MR @1 @3 @10

TransE [10] 0.226 3384 - - 50.1 0.294 357 - - 46.5
DistMult [20] 0.43 5110 39 44 49 0.241 254 15.5 26.3 41.9
ComplEX [22] 0.44 5261 41 46 51 0.247 339 15.8 27.5 42.8

RGCN [15] - - - - - 0.248 - 0.151 - 41.7
ConvE [13] 0.43 4187 40 44 52 0.325 244 23.7 35.6 50.1

ConvKB [14] 0.249 3324 5.7 41.7 52.4 0.243 311 15.5 37.1 42.1
KBGAT [16] 0.412 1921 - - 55.4 0.157 270 - - 33.1
SACN [23] 0.47 - 43 48 54 0.35 - 26 39 54
RotatE [24] 0.476 3340 42.8 49.2 57.1 0.338 177 24.1 37.5 53.3
ConvR [25] 0.475 - 44.3 48.9 53.7 0.35 - 26.1 38.5 52.8

CompGCN [18] 0.479 3533 44.3 48.9 53.7 0.355 197 26.4 39.0 53.5
RelWalk [7] 0.451 3232 42 47 51 0.329 105 24.3 35.4 50.2

ATTWALK (ours) 0.483 2810 44.5 49.7 56 0.36 195.8 26.8 40 54.5

TABLE II
EXPERIMENTS RESULTS FOR THE LINK PREDICTION TASK ON KINSHIP TEST
SETS. HITS@N VALUES ARE IN PERCENTAGE. THE BEST SCORE IS IN BOLD

AND THE SECOND IS UNDERLINED. THE COMPARISONS ARE FROM [16].
WE REPRODUCE THE RESULTS OF KBGAT, RELWALK AND COMPGCN

USING [28], [7] AND [18] RESPECTIVELY.

Kinship

Hits@N

MRR MR @1 @3 @10

TransE [10] 0.309 6.80 0.9 64.3 84.1
DistMult [20] 0.516 5.26 36.7 58.1 86.7
ComplEX [22] 0.823 2.48 73.3 89.9 97.1

RGCN [15] 0.109 25.92 0.3 8.8 23.9
ConvE [13] 0.833 2.00 73.8 91.7 98.1

ConvKB [14] 0.614 3.3 43.62 75.5 95.3
KBGAT [16] 0.548 4.25 36.8 66.5 91.5

CompGCN [18] 0.835 2.06 74.5 91.4 98.3
RelWalk [7] 0.377 4.7 18.4 43.1 92

ATTWALK (ours) 0.867 1.95 79.0 93.5 98.5

embedding of the graph attention network, but only consider
the entity representation obtained from the weighted walk
model, we find that experimental results are comparable to
ConvE [13], DistMult [20] and RelWalk [7], resulting from
that local graph structure features are captured, denoting the
effectiveness of Algorithm 1.

2) ATTWALK v.s. Word Embedding Model: From Table IV,
we find that combining the graph attention network and the
weighted walk model as our encoder provides competitive
performance for the ConvE [13] score function. Analyzing the
experimental results, TransE [10] does not perform as well

TABLE III
THE EFFECT OF EACH MODULE ON MODEL PERFORMANCE. ATTWALK-W

REPRESENTS ATTWALK WITHOUT WEIGHTED WALK MODULE. ATTWALK-O
REPRESENTS THERE IS ONLY WEIGHTED WALK MODULE.

MRR MR @1 @3 @10

ATTWALK 0.483 2810 44.5 49.7 56.0
ATTWALK-W 0.476 3207.4 44.4 49.0 55.0
ATTWALK-O 0.44 4396 40 45.4 52.0

as DistMult [20] and ConvE [13] after the introduction of
local structural features, as TransE [10] tends to express the
relationships between individual triples, but on the contrary,
ConvE [13] has a stronger expression for capturing the
relationships between entities and the local structure of entities.
In addition, we evaluate ATTWALK by replacing the weighted
walk process with word embedding methods and observe a
performance decrease, as shown in Table IV.

3) Effects of Walk Lengths: Finally, we evaluate the effects
of different walk lengths. As shown in Figure 3, we find that
the performance observes an obvious improvement with the
increase of walk lengths l at the beginning, but gets stabilized
gradually from around l = 10. This is in line with our intuition
that the more distant an entity is, the smaller its influence is.
Besides, note that the training time increases as the walk length
increases, so we need to consider performance improvement
and time overhead altogether and make a balance.

V. CONCLUSION

In this paper, we propose a new perspective combining
graph structures and semantic information in a KG completion



TABLE IV
LINK PREDICTION PERFORMANCE ON KINSHIP DATASET. X+NODE2VEC (Y) INDICATES THAT WE REPLACE THE ATTENTION-GUIDED WALK MODULE, AS
SHOWN IN FIGURE 2, WITH THE CLASSICAL WORD EMBEDDING MODEL NODE2VEC, WHERE X IS THE DECODER FUNCTION AND Y IS THE AGGREGATION

METHOD.

Decoder→ TransE DistMult ConvE

Methods↓ MRR MR @10 MRR MR @10 MRR MR @10

X+ATTWALK (sub) 0.068 38.2 16.5 0.672 3.52 92.0 0.669 14.9 78.8
X+ATTWALK (mult) 0.070 47.5 11.1 0.612 3.99 90.6 0.841 2.15 97.8
X+ATTWALK (cross) 0.065 47.9 12.9 0.627 3.87 91.0 0.867 1.95 98.5

X+NODE2VEC (sub) 0.06 47.2 11.9 0.587 4.49 89.2 0.385 27.9 50.0
X+NODE2VEC (mult) 0.055 48.3 10.5 0.557 4.68 88.5 0.816 3.35 92.8
X+NODE2VEC (cross) 0.051 48.3 9.5 0.391 7.50 73.8 0.837 2.79 95.8

task. The idea is simple but effective, and can be combined
with many existing KGE approaches. Experiments indicate the
effectiveness and provide additional insights that the structural
expressiveness of random walks can improve the performance
of KGE as well as how to set a walk length. We hope our work
can shed some light on and inspire more KGE approaches.
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