

A Distributed Graph Inference Computation
Framework Based on Graph Neural Network Model

Zeting Pan, Yue Yu, Junsheng Chang*
College of Computer

National University of Defense Technology
Changsha, China

{pannudt, yuyue, junshengchang}@nudt.edu.cn

Abstract—A graph is a structure that can effectively represent
objects and the relationships between them. Graph Neural
Networks (GNNs) enable deep learning to be applied in the graph
domain. However, most GNN models are trained offline and
cannot be directly used in real-time monitoring scenarios. In
addition, due to the very large data scale of the graph, a single
machine cannot meet the demand, and there is a performance
bottleneck. Therefore, we propose a distributed graph neural
network inference computing framework, which can be applied to
GNN models in the form of Encoder-Decoder. We propose the idea
of “single-point inference, message passing, distributed
computing”, which enables the system to use offline-trained GNNs
for real-time inference computations on graph data. To maintain
the model effect, we add the second-degree subgraph and mailbox
mechanism to the continuous iterative calculation. Finally, our
results on public datasets show that this method greatly improves
the upper limit of inference computation and has better timeliness.
And it maintains a good model effect on three types of classical
tasks. The source code is published in a Github repository.

Keywords-component; graph inference; graph neural network;
distributed graph computing

I. INTRODUCTION
A graph is an abstract data structure. A graph G	=	(V,	E)

consists of a vertex set V and an edge set E, which can be used
to represent multiple objects and the relationship between them.
Initially, scholars' research on graphs mainly focused on static
graphs, that is, without considering temporal information. With
the increase in applications, static graphs can no longer meet
practical requirements, so more researchers begin to explore
dynamic graphs, from discrete-time dynamic graphs to
continuous-time dynamic graphs [1]. Generally speaking, for a
dynamic graph, the vertices on the graph be represented as
∀ vi∈V, vi=(id,	feat,	timestamp), i=1,2,..., and the edges bet can
be represented as ∀ ei∈E, ei=(src,	dst,	feat,	timestamp), i=1,2,....
These properties can be summarized as identifiers,
characteristics, and timestamps.

In practical applications, the scale of graph data is often very
large, such as payment transactions, social interactions, and
biological information [2]. A survey [3] showed that the graphs
in practice typically contain more than 1 billion edges. Another
survey [4] noted that over 68.5% of tasks applied machine
learning algorithms (clustering, regression, etc.) on the graph.

The popularity of deep learning has also prompted people to
migrate it to the graph domain, such as graph neural networks
(GNNs). The more well-known networks in GNNs are GCN [5],
GAT [6], TGAT [7], etc. They mainly perform three types of
tasks: link prediction (LP), node classification (NC), and edge
classification (EC). And it has a good effect on task accuracy [8].

However, many problems arise when applying GNN models
to graph inference computations. The first is the single-machine
capacity problem. A single machine cannot withstand large-
scale graph data, and there will be serious performance
bottlenecks. Therefore, a distributed computing environment has
become an urgent need for graph computing. Apache Spark [9]
is a cluster computing framework, and GraphX [10] is a
distributed graph processing framework. GraphX can be used to
express graph computations, but it does not directly support
GNNs. The second is the real-time problem of graph computing.
The offline training method of GNNs limits its application to
scenarios with low real-time requirements. If applied to payment
security, the application will not be able to quickly intercept
fraud, money laundering, and other dangerous behaviors. In
conclusion, it is important to apply offline-trained GNN models
to distributed environments for real-time inference computation.
Therefore, this paper proposes a framework that maintains
GraphX features while supporting GNN models, enabling real-
time distributed graph inference computation.

The framework proposed in this paper is mainly to solve the
following two problems. (1) How to apply the GNN model to a
distributed system for graph inference computation. In the
application, the GNN model does not support serialization and
cannot meet the distributed requirements. To solve this problem,
we first modify the model input and output so that they can be
directly used for online inference. Next, we adopt the idea of
“single-point inference, message passing, distributed
computing”. That is, the model is stored in a distributed manner,
and models on different machines are dynamically called when
used. Finally, the output of the model is passed as a message to
the relevant vertices. In this way, the passed message size is
reduced from model level (MB-GB) to matrix level (KB-MB).
(2) How to perform real-time inference calculations and
maintain model performance. When an event occurs, the scope
of influence is often more than the source vertex (src) and the
destination vertex (dst). Therefore, we have iteratively updated
graph properties through incremental composition, computing

*Corresponding author.
DOI reference number: 10.18293/SEKE2022-042

second-degree subgraphs, and mailbox mechanisms. These steps
will be disassembled into many tasks during execution and
distributed to multiple worker nodes for parallel computing. In
this way, we can apply the GNN model in the form of Encoder-
Decoder to the actual environment for real-time distributed
graph inference calculations. The contributions of this paper are
summarized as follows:

• We put forward the idea of “single-point inference,
message passing, distributed computing” so that the
GNN model in the form of Encoder-Decoder can be
applied to a distributed environment.

• We propose a method based on incremental
composition, constructing second-degree subgraphs,
and maintaining mailboxes so that distributed inference
computing can ensure both timeliness and effects.

• Finally, we implemented the framework and tested it on
Wikipedia and Reddit. The results show that the single-
event inference time for a thousand events is 1.6203s,
which is only 36.19% longer than that of a single
machine under the same conditions, but the throughput
is improved by 116.89%. In addition, the effect of three
categories of tasks is maintained, among which the
accuracy of the Wikipedia LP task is 87.03%.

II. RELATED WORK

A. Distributed graph computing framework
MapReduce is a simple distributed computing framework

that facilitates the processing of massive graph data, but it cannot
iteratively compute efficiently. Bulk synchronous parallel (BSP)
[11] proposed by Valiant in 1990 is suitable for iterative
computing of graphs, which decomposes tasks into a series of
iterative operations. Inspired by BSP, Google proposed the first
vertex-centric distributed graph computing framework Pregel
[12] in 2010. Since then, researchers have successively proposed
a variety of distributed graph computing frameworks, including
PowerGraph [13], GraphHP [14], and Hybrid [15]. These
frameworks can efficiently perform graph iteration algorithms.
However, their limited expressive computation makes it difficult
to express important stages in a typical graph analysis pipeline,
such as graph modification, cross-graph computation, etc.

Spark GraphX is a distributed graph processing framework,
and its core abstraction is Resilient Distributed Property Graph,
a directed multigraph with properties on both nodes and edges.
GraphX extends the abstraction of Spark RDD and has two
views (table and graph), and only needs one physical storage
[16]. These two views have their unique operators, to obtain
flexible operation and execution efficiency. In terms of
calculation, all operations on the view will be converted into
RDD operations of the associated table view to complete. In this
way, graph computation is equivalent to the transformation
process of a series of RDDs. Therefore, GraphX finally has three
key features: Immutable, Distributed, and Fault-Tolerant.

B. Graph Neural Network
Dynamic graph representation has gone through four main

stages of development, namely static, weighted edge, discrete,

and continuous. There are also several types of methods for
learning dynamic graph representations, including tensor
decomposition, random walk, and deep learning. Among them,
GNNs in deep learning methods have received extensive
attention because they can combine time series encoding with
aggregation of adjacent nodes. GCN [5] learns features better by
aggregating the information of neighbor points, but it cannot use
temporal information. However, in the field of graphs, timing
has an important influence on the change of vertex-edge
relationship, so the research direction of GNNs gradually shifts
from static to dynamic.

Dynamic graph neural network (DGNN) aggregates deep
time series encoding and node features and is mainly divided
into discrete and continuous categories. Discrete DGNN first
uses a certain GNN to obtain vertex embedding and then uses a
certain RNN or Attention network for time series modeling. The
representative networks are DySAT [17], etc. Most of the
current methods of continuous DGNN use snapshot modeling,
which is only a rough estimation of time, and related networks
include TGAT [7], TGN [18], etc. TGN attempts to introduce
the Encoder-Decoder neural network framework in the graph
field. The encoder is responsible for encoding the vertex and
edge features on the graph into vectors, and the decoder
calculates and predicts attribute values for the encoded vectors
according to specific executing tasks. This form of decoupling
enables real-time inference computations on graphs.

III. METHOD
This section will first introduce the overall framework and

then introduce the three main modules in the framework in detail.

A. Overall Framework
Fig. 1 presents an overview of our distributed graph

inference. It is a distributed graph inference framework that
supports the Encoder-Decoder form of GNN. The framework is
mainly composed of the following modules: incremental
composition, second-degree subgraph calculation, GNN
encoder, mailbox, and GNN decoder.

• Incremental composition module corresponding to
steps (a)-(b). When a new event is generated in the data
source, the event will be added to the vertexRDD and
edgeRDD of the historical graph event, and incremental
composition will be performed to obtain the whole
graph. Note that if it is an undirected graph, for an event
e, we will generate both forward and reverse edges.

• Second-degree subgraph calculation module, which
is the “Full Graph and 2D-Subgraph” in the figure. After
the whole graph is obtained, the basic properties of some
vertices and edges will be updated according to e and its
second-degree subgraph will be calculated.

• GNN encoder module corresponding to steps (c)-(e).
After loading the trained GNN encoder model, the
second-degree subgraph feature matrix is used as the
input of the model. Then, the embedding of each vertex
in the second-degree subgraph can be obtained and then
updated to the whole graph.

Figure 1. Distributed graph inference system framework.

• The mailbox module corresponds to steps (f)-(g). A
mail will be sent along each edge in the second-degree
subgraph, and the main content of the mail is the current
features of the edge and some historical interaction
information. The vertex that receives the mail will add
it to its mailbox.

• GNN decoder module corresponding to steps (h)-(i).
The above results will be decoded, and logical inference
results will be given according to the types of tasks
performed (LP/NC/EC).

B. Second Degree Subgraph Algorithm

Figure 2. Second-degree subgraph algorithm.

When a new event e=(src, dst, timestamp, feat) occurs, the
edges with the same starting vertex and destination vertex are
first merged, as shown in Fig. 2. The way to merge is to leave
the edge with the largest timestamp. Since historical events are
often embedded into features by previous inferences, merging
duplicate edges does not affect results. It can also reduce the
number of edges in the graph to save resources, especially when
the vertex-to-edge ratio is large. Then, as shown in step 2 in Fig.
2, the timestamps of src and dst will be updated to max(t1,	t2).

Due to the particularity of graphs, an event often affects more
than src and dst . Considering the effect and performance
comprehensively, we decided to control its influence range
within the subgraph reachable by two hops. To obtain this
subgraph, we design steps 3 and 4, namely the sending of hop
messages and the return of feature messages. From src and dst,
two rounds of message sending operations will be performed.
The first round will send its hop-1 to the neighbor and update the
hop value of the neighbor vertex. In the second round, the

neighbor vertex sends its hop-1 to its neighbor (excluding src
and dst) and updates the hop value of the vertex that receives the
message. This obtains a second-degree subgraph about the new
event e. Step 4 is the opposite of Step 3, which will transmit its
feature information back from the second-degree vertex. After
two rounds of message return, src and dst will aggregate the
features of all vertices in the second-degree subgraph. Step 5
stores these features in src as one of the attributes of the vertex.

C. GNN Encoder algorithm
Trained GNN models tend to take up a lot of storage space

and are difficult to serialize. Even with serialization methods,
transferring models between machines incurs a significant
bandwidth overhead, which can severely impact performance.
Therefore, the inference algorithm we designed will use the
spark driver to uniformly manage the scheduling of machines,
so that each worker node has a copy of the GNN model, as
shown in Fig. 3. The model can be loaded directly and
dynamically during the inference process, without the need for
network transmission. Furthermore, all vertices in a second-
degree subgraph need to be inferred, but doing inference at the
same time introduces additional overhead. Therefore, we
propose an algorithm for “single-point inference, message
passing, distributed computing”. Based on the subgraph
collected in the previous step, we only load the model in src or
dst, then get the model output and update the vertex features.
Finally, the model output is sent to other vertices in the subgraph
in the form of a message to complete the vertex update. For the
GNN decoder algorithm, the process is the same as the GNN
encoder. Due to space limitations, we will not repeat them here.

D. Mailbox algorithm
As shown in Fig. 3, after updating the vertex features using

embedding, we will generate a mail along each edge in the
subgraph (mail	=	featsrc	+	featdst	+	feate), and then sent it to the
destination vertex. Each vertex in the subgraph will take an
average of all the received emails, and then add it to the mailbox.
That is to say, a vertex can only have one mail added to its
mailbox in one iteration, which solves the problem of supernode
message explosion. The mailbox maintained by each vertex is
implemented using a list, and the default maximum capacity of
the list is 10 (this value can be modified more practically). When

Figure 3. The execution process of inference and computation.

there are less than 10 mails, new mail will be added directly to
the end of the list. When it is greater than 10, the oldest mail in
the list will be deleted to leave space for new mail. Through the
mechanism of the mailbox, the storage of each vertex itself
includes vertex features, information about neighbor vertices,
and features brought by historical events. When inferring, it can
be encoded into the form of a matrix and directly input into the
model.

E. Algorithm Pseudocode
Through the above algorithm, we realize distributed graph

inference computing. That is, graphs can be incrementally
composed and iteratively performed graph computation, graph
inference, and graph update. The pseudocode of the overall logic
is shown in Table 1 below.

TABLE I. PSEUDOCODE FOR DISTRIBUTED GRAPH COMPUTING
INFERENCE

Algorithm: Distributed graph computing inference
Input: event data source e=(src,dst,feat,timestamp)
Output: logical inference results and accuracy
1: initialize spark and static resources config
2: use n-events warm up inference
3: while has new event e do
4: if vsrc/dst∉vRDD then
5: initialize vsrc/dst and add them to vRDD
6: add e to eRDD, then create graph with vRDD and eRDD
7: merge duplicate edges and update vsrc/dst with the timestamp of

the lastest edge
8: for vsrc or vdst do
9: send hopvi-1 to its neighbors
10: for each vertex that receives src or dst hop messages do
11: send hopvj-1 to its neighbors
12: collect all vertex features of received hop messages to src as

2D-subgraph
13: update feat of subgraph vertices to

embedding=Encoder(2D-subgraph)
14: for each ei∈2D-subgraph do
15: send mail messages to the dst along the edge, and calculate the

average value of all mails at dst
16: for each vi∈2D-subgraph do
17: if len(mailboxi)≥10 then

18: remove the oldest mail from mailboxi header
19: add average mail to the tail of the mailboxi
20: for triplets(src,dst,e) do
21: update the logical results of triplets to

logit=Decoder(concat(src,dst,e))
22: calculate the inference results of the whole graph to get the accuracy
23: return accuracy

IV. EXPERIMENTS
In this section, we will first introduce the experimental setup,

including the device environment, datasets, GNN models, and
inference system. Next, the results of the experiment will be
explained in terms of performance and effects. The source code
of our system is published at a Github repository1.

A. Setting
• Hardware and software environment. Due to the

limitation of cluster resources, this experiment uses
multithreading to simulate a distributed environment.
The processor is Intel(R) Core(TM) i5-8257U CPU
@2.00GHz, 16GB memory, 500G hard disk. The
operating system is macOS Catalina 10.15.7, and the
development tool is IntelliJ IDEA 2020.1.2. The
running environment is Spark 3.2.0, Hadoop 3.3.0,
Scala 2.12.15, and Java 1.8.0.

• Graph datasets. This experiment uses Wikipedia [19],
and Reddit [19] public datasets for experiments. Among
them, Wikipedia represents the interaction between
users and wiki pages. Reddit represents the interaction
events of users in social networking. The timestamps of
all edges in both datasets span 30 days.

• GNN models. The framework proposed in this paper is
suitable for GNNs in the form of encoder-decoder, we
chose APAN [20] and reproduced it. Considering that
Java does not support graph input when calling the
model, we modified the input and output data form of
APAN to matrices. The main parameters when training
the model are: the maximum epoch is 50, the batchsize
is 100, the initial learning rate is 0.0001, and the dropout

1https://github.com/napdada/Distributed-Graph-Inference-Java

TABLE II. GRAPH INFERENCE CALCULATION RESULTS AND MAIN STEPS TIME-CONSUMING IN TWO ENVIRONMENTS

Enviro
nment

LP task inference
time(s) Through

put cap

Time-consuming inference calculation of specific steps(ms)

1000
events

1000
events(*)

Create
Graph

Merge
Edges

Update
Ts

2D-
Subgraph Encoder Send

Emb Mailbox Decoder Evaluate

SM 1.1897 1.1210 1835 4.24 0.37 1.76 733.51 2.16 374.62 3.62 0.44 68.79

DM 1.6203 1.5335 3980 4.40 0.38 1.84 951.76 2.24 568.35 3.77 0.48 86.83

a. SM: single machine environment, DM: distributed machine environment. The names of the specific steps from left to right represent incremental composition, merge duplicate edges, update timestamp, generate
second-degree subgraph, call encoder model, send embedding, transfer mail, call decoder, and evaluate results

is 0.1. The ratio of training, testing, and validation data
is 7:1.5:1.5. After training, the “.pt” models of three
types of tasks (LP/NC/EC) on two datasets are obtained,
and the effect is the same as in the original paper.

• Inference system. Considering the system startup
process and graph initial features are zero, we set a
warm-up process of inference. That is, by default, the
first ten inferences are not included in the result. The
number of distributed cores and partitions is both 2, and
the partition strategy is EdgePartition2D. The JVM
parameters will be adjusted according to the executed
tasks, mainly adjusting the memory size. In addition, to
reduce the effect of chance, all results are the mean of
ten replicate experiments.

B. Inference performance
1) Timeliness and throughput caps.

We reproduce APAN and apply it to graph inference
computation to compare single machine and distributed. We
configure 4G memory for a single machine. We configured 2-
core 8G memory for the distributed environment, which is
equivalent to two single machines working at the same time.
After that, we calculated the average time and upper limit of
these two environments as shown in Table 2. It can be seen that
when executing the LP task with a thousand events on Wikipedia,
the distributed time is longer than that of a single machine.
However, the upper limit of distributed computing is increased,
and the number of iterations in a single-machine environment
will overflow when about 1800. That’s to say, in the face of large
graph data scenarios, distributed inference computing can solve
the capacity bottleneck problem of a single machine.

To further explore the time-consuming, we have detailed
statistics on the time-consuming of the main steps, as shown in
Table 2. The data in the table visually show that the extra time is
mainly spent on 2D-Subgraph, SendEmb, and Evaluate. Because
in a single-machine environment, vertices and edges are stored
on one machine, they only need to be read when they are used.
However, vertices are stored in partitions according to the
policies in a distributed environment, so data exchange in
different partitions will bring additional communication
overhead. Furthermore, to evaluate the results, the system needs
to retrieve data from all partitions. This operation is time-
consuming, and we count it into the results (the data marked with
“*” in Table 2 are not included in the time-consuming statistics
of this operation), so we believe that a single time consumption
of 1.62s is reasonable. Comparing the results in the two
environments, it can be seen that when the iterative inference is
executed 1000 times, the distributed graph inference calculation

uses 36.19% of the time overhead, in exchange for 116.89% of
the larger throughput.

Considering that the graph continues to grow during the
iterative process, if the resource consumption increases
exponentially as the graph grows, the huge overhead will
inevitably make the system worthless. To this end, we conducted
inference experiments with varying numbers of events, ranging
from 50 to 1000, within a range where problems such as
overflow do not occur. The average time-consuming inference
calculation is shown in Fig. 4. It can be seen that with the
increase of the graph size, the inference computation time
increases linearly. That is, our framework can be extended to
work on clusters. In the face of large graph data, it can still
guarantee the linear growth of resource consumption, rather than
the problem of exponential explosion.

Figure 4. The relationship between the number of inference events and the
time-consuming when performing LP tasks on Wikipedia

2) Partitioning and Strategy.
The number and strategy of partitions in a distributed

environment often significantly impact the results, so we
experimented with them. We set up a 4-core 5G distributed
environment that used 100 events in Wikipedia to perform LP
tasks. The results are shown in Table 3. Regarding the number
of partitions, we can find that the computation time of graph
inference increases rapidly with the number of partitions.
Therefore, we need to dynamically adjust some configurations
according to the actual situation. For small graphs, the number
of partitions can be reduced. But for large graphs, we can
increase the number of partitions and add machines to reduce the
time-consuming impact. For the partitioning strategy, we can see
that the random partitioning effect is the worst, followed by the
EdgePartition1D (partitioning based on src only). The best
partition strategy is EdgePartition2D (partition by both src and
dst). This is in line with our understanding of graphs, that for
edges, both the source and destination vertices are important.

TABLE III. THE EFFECT OF THE NUMBER OF PARTITIONS AND PARTITION
STRATEGY ON TIME CONSUMPTION

Number of partitions Partitioning strategy Time (ms)

1 EdgePartition2D 606.24

2 EdgePartition2D 614.87

4 EdgePartition2D 655.79

8 EdgePartition2D 786.46

4 RandomVertexCut 674.38

4 EdgePartition1D 670.95

C. Inference performance
Table 4 shows the effect of APAN original data, reproduced

APAN model data (APAN-Re), classic GNN model, and our
distributed graph inference algorithm. That is the accuracy of
performing three types of tasks on two datasets. It can be seen
that our method maintains the effect of the model better. In
addition, the method achieves the effect of classical GNN, and
even outperforms classical GNN on some tasks.

TABLE IV. ACCURACY OF INFERENCE RESULTS ON THREE TYPES OF
TASKS (LP/NC/EC)

Wikipedia Reddit

LP NC EC LP NC EC

GAT 87.34 - - 92.14 - -

TGAT 88.14 - - 92.92 - -

TGN 89.51 - - 92.56 - -

APAN 90.74 - - 94.34 - -

APAN-Re 87.42 99.81 99.81 97.76 99.91 99.91
 distributed

graph
inference

87.03 99.54 99.28 97.01 98.39 98.05

V. CONCLUSION AND FUTURE WORK
In this paper, we propose a distributed graph inference

computing framework, aiming to use GNN models in the form
of Encoder-Decoder for online deployment and real-time
inference in distributed environments. The experimental results
show that the upper limit of inference calculation has been
greatly improved. It has also achieved good results in the
timeliness of inference, and we believe that it can meet the actual
needs in the case of limited resources. Furthermore, as graph
iterative inference proceeds, our method can maintain the
model's performance on three classes of tasks. In the future, we
can extend the algorithm to adapt to more kinds of GNN models.
And consider optimizing the communication overhead in a
distributed environment, so that the system can have stronger
real-time inference computing capabilities.

ACKNOWLEDGMENT
This work was supported by the National Key R&D Program

of China (2020AAA0103500).

REFERENCES
[1] Skardinga J, Gabrys B, Musial K. Foundations and modelling of dynamic

networks using dynamic graph neural networks: A survey[J]. IEEE
Access, 2021.

[2] Zhang X C, Wu C K, Yang Z J, et al. MG-BERT: leveraging unsupervised
atomic representation learning for molecular property prediction[J].
Briefings in Bioinformatics, 2021.

[3] Sahu S, Mhedhbi A, Salihoglu S, et al. The ubiquity of large graphs and
surprising challenges of graph processing[J]. Proceedings of the VLDB
Endowment, 2017, 11(4): 420-431.

[4] Sahu S, Mhedhbi A, Salihoglu S, et al. The ubiquity of large graphs and
surprising challenges of graph processing: extended survey[J]. The VLDB
Journal, 2020, 29(2): 595-618.

[5] Kipf T N, Welling M. Semi-supervised classification with graph
convolutional networks[J]. arXiv preprint arXiv:1609.02907, 2016.

[6] Veličković P, Cucurull G, Casanova A, et al. Graph attention networks[J].
arXiv preprint arXiv:1710.10903, 2017.

[7] Xu D, Ruan C, Korpeoglu E, et al. Inductive representation learning on
temporal graphs[J]. arXiv preprint arXiv:2002.07962, 2020.

[8] Dwivedi V P, Joshi C K, Laurent T, et al. Benchmarking graph neural
networks[J]. arXiv preprint arXiv:2003.00982, 2020.

[9] Zaharia M, Chowdhury M, Franklin M J, et al. Spark: Cluster computing
with working sets[J]. HotCloud, 2010, 10(10-10): 95.

[10] Gonzalez J E, Xin R S, Dave A, et al. Graphx: Graph processing in a
distributed dataflow framework[C]//11th {USENIX} Symposium on
Operating Systems Design and Implementation ({OSDI} 14). 2014: 599-
613.

[11] Cormen T H, Goodrich M T. A bridging model for parallel computation,
communication, and I/O[J]. ACM Computing Surveys (CSUR), 1996,
28(4es): 208-es.

[12] Malewicz G, Austern M H, Bik A J C, et al. Pregel: a system for large-
scale graph processing[C]//Proceedings of the 2010 ACM SIGMOD
International Conference on Management of data. 2010: 135-146.

[13] Gonzalez J E, Low Y, Gu H, et al. Powergraph: Distributed graph-parallel
computation on natural graphs[C]//10th {USENIX} Symposium on
Operating Systems Design and Implementation ({OSDI} 12). 2012: 17-
30.

[14] Chen Q, Bai S, Li Z, et al. GraphHP: A hybrid platform for iterative graph
processing[J]. arXiv preprint arXiv:1706.07221, 2017.

[15] Wang Z, Gu Y, Bao Y, et al. Hybrid pulling/pushing for i/o-efficient
distributed and iterative graph computing[C]//Proceedings of the 2016
International Conference on Management of Data. 2016: 479-494.

[16] Tang J, Xu M, Fu S, et al. A scheduling optimization technique based on
reuse in spark to defend against apt attack[J]. Tsinghua Science and
Technology, 2018, 23(5): 550-560.

[17] Sankar A, Wu Y, Gou L, et al. Dysat: Deep neural representation learning
on dynamic graphs via self-attention networks[C]//Proceedings of the
13th International Conference on Web Search and Data Mining. 2020:
519-527.

[18] Rossi E, Chamberlain B, Frasca F, et al. Temporal graph networks for
deep learning on dynamic graphs[J]. arXiv preprint arXiv:2006.10637,
2020.

[19] Kumar S, Zhang X, Leskovec J. Predicting dynamic embedding trajectory
in temporal interaction networks[C]//Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining. 2019: 1269-1278.

[20] Wang X, Lyu D, Li M, et al. APAN: Asynchronous Propagation Attention
Network for Real-time Temporal Graph Embedding[C]//Proceedings of
the 2021 International Conference on Management of Data. 2021: 2628-
2638.

