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Abstract—A graph is a structure that can effectively represent 
objects and the relationships between them. Graph Neural 
Networks (GNNs) enable deep learning to be applied in the graph 
domain. However, most GNN models are trained offline and 
cannot be directly used in real-time monitoring scenarios. In 
addition, due to the very large data scale of the graph, a single 
machine cannot meet the demand, and there is a performance 
bottleneck. Therefore, we propose a distributed graph neural 
network inference computing framework, which can be applied to 
GNN models in the form of Encoder-Decoder. We propose the idea 
of “single-point inference, message passing, distributed 
computing”, which enables the system to use offline-trained GNNs 
for real-time inference computations on graph data. To maintain 
the model effect, we add the second-degree subgraph and mailbox 
mechanism to the continuous iterative calculation. Finally, our 
results on public datasets show that this method greatly improves 
the upper limit of inference computation and has better timeliness. 
And it maintains a good model effect on three types of classical 
tasks. The source code is published in a Github repository. 

Keywords-component; graph inference; graph neural network; 
distributed graph computing 

I.  INTRODUCTION 
A graph is an abstract data structure. A graph G	=	(V,	E) 

consists of a vertex set V and an edge set E, which can be used 
to represent multiple objects and the relationship between them. 
Initially, scholars' research on graphs mainly focused on static 
graphs, that is, without considering temporal information. With 
the increase in applications, static graphs can no longer meet 
practical requirements, so more researchers begin to explore 
dynamic graphs, from discrete-time dynamic graphs to 
continuous-time dynamic graphs [1]. Generally speaking, for a 
dynamic graph, the vertices on the graph be represented as 
∀ vi∈V, vi=(id,	feat,	timestamp), i=1,2,..., and the edges bet can 
be represented as ∀ ei∈E, ei=(src,	dst,	feat,	timestamp), i=1,2,.... 
These properties can be summarized as identifiers, 
characteristics, and timestamps. 

In practical applications, the scale of graph data is often very 
large, such as payment transactions, social interactions, and 
biological information [2]. A survey [3] showed that the graphs 
in practice typically contain more than 1 billion edges. Another 
survey [4] noted that over 68.5% of tasks applied machine 
learning algorithms (clustering, regression, etc.) on the graph. 

The popularity of deep learning has also prompted people to 
migrate it to the graph domain, such as graph neural networks 
(GNNs). The more well-known networks in GNNs are GCN [5], 
GAT [6], TGAT [7], etc. They mainly perform three types of 
tasks: link prediction (LP), node classification (NC), and edge 
classification (EC). And it has a good effect on task accuracy [8]. 

However, many problems arise when applying GNN models 
to graph inference computations. The first is the single-machine 
capacity problem. A single machine cannot withstand large-
scale graph data, and there will be serious performance 
bottlenecks. Therefore, a distributed computing environment has 
become an urgent need for graph computing. Apache Spark [9] 
is a cluster computing framework, and GraphX [10] is a 
distributed graph processing framework. GraphX can be used to 
express graph computations, but it does not directly support 
GNNs. The second is the real-time problem of graph computing. 
The offline training method of GNNs limits its application to 
scenarios with low real-time requirements. If applied to payment 
security, the application will not be able to quickly intercept 
fraud, money laundering, and other dangerous behaviors. In 
conclusion, it is important to apply offline-trained GNN models 
to distributed environments for real-time inference computation. 
Therefore, this paper proposes a framework that maintains 
GraphX features while supporting GNN models, enabling real-
time distributed graph inference computation. 

The framework proposed in this paper is mainly to solve the 
following two problems. (1)  How to apply the GNN model to a 
distributed system for graph inference computation. In the 
application, the GNN model does not support serialization and 
cannot meet the distributed requirements. To solve this problem, 
we first modify the model input and output so that they can be 
directly used for online inference. Next, we adopt the idea of 
“single-point inference, message passing, distributed 
computing”. That is, the model is stored in a distributed manner, 
and models on different machines are dynamically called when 
used. Finally, the output of the model is passed as a message to 
the relevant vertices. In this way, the passed message size is 
reduced from model level (MB-GB) to matrix level (KB-MB). 
(2) How to perform real-time inference calculations and 
maintain model performance. When an event occurs, the scope 
of influence is often more than the source vertex (src) and the 
destination vertex (dst). Therefore, we have iteratively updated 
graph properties through incremental composition, computing 
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second-degree subgraphs, and mailbox mechanisms. These steps 
will be disassembled into many tasks during execution and 
distributed to multiple worker nodes for parallel computing. In 
this way, we can apply the GNN model in the form of Encoder-
Decoder to the actual environment for real-time distributed 
graph inference calculations. The contributions of this paper are 
summarized as follows: 

• We put forward the idea of “single-point inference, 
message passing, distributed computing” so that the 
GNN model in the form of Encoder-Decoder can be 
applied to a distributed environment. 

• We propose a method based on incremental 
composition, constructing second-degree subgraphs, 
and maintaining mailboxes so that distributed inference 
computing can ensure both timeliness and effects. 

• Finally, we implemented the framework and tested it on 
Wikipedia and Reddit. The results show that the single-
event inference time for a thousand events is 1.6203s, 
which is only 36.19% longer than that of a single 
machine under the same conditions, but the throughput 
is improved by 116.89%. In addition, the effect of three 
categories of tasks is maintained, among which the 
accuracy of the Wikipedia LP task is 87.03%. 

II. RELATED WORK 

A. Distributed graph computing framework 
MapReduce is a simple distributed computing framework 

that facilitates the processing of massive graph data, but it cannot 
iteratively compute efficiently. Bulk synchronous parallel (BSP) 
[11] proposed by Valiant in 1990 is suitable for iterative 
computing of graphs, which decomposes tasks into a series of 
iterative operations. Inspired by BSP, Google proposed the first 
vertex-centric distributed graph computing framework Pregel 
[12] in 2010. Since then, researchers have successively proposed 
a variety of distributed graph computing frameworks, including 
PowerGraph [13], GraphHP [14], and Hybrid [15]. These 
frameworks can efficiently perform graph iteration algorithms. 
However, their limited expressive computation makes it difficult 
to express important stages in a typical graph analysis pipeline, 
such as graph modification, cross-graph computation, etc.  

Spark GraphX is a distributed graph processing framework, 
and its core abstraction is Resilient Distributed Property Graph, 
a directed multigraph with properties on both nodes and edges. 
GraphX extends the abstraction of Spark RDD and has two 
views (table and graph), and only needs one physical storage 
[16]. These two views have their unique operators, to obtain 
flexible operation and execution efficiency. In terms of 
calculation, all operations on the view will be converted into 
RDD operations of the associated table view to complete. In this 
way, graph computation is equivalent to the transformation 
process of a series of RDDs. Therefore, GraphX finally has three 
key features: Immutable, Distributed, and Fault-Tolerant. 

B. Graph Neural Network 
Dynamic graph representation has gone through four main 

stages of development, namely static, weighted edge, discrete, 

and continuous. There are also several types of methods for 
learning dynamic graph representations, including tensor 
decomposition, random walk, and deep learning. Among them, 
GNNs in deep learning methods have received extensive 
attention because they can combine time series encoding with 
aggregation of adjacent nodes. GCN [5] learns features better by 
aggregating the information of neighbor points, but it cannot use 
temporal information. However, in the field of graphs, timing 
has an important influence on the change of vertex-edge 
relationship, so the research direction of GNNs gradually shifts 
from static to dynamic. 

Dynamic graph neural network (DGNN) aggregates deep 
time series encoding and node features and is mainly divided 
into discrete and continuous categories. Discrete DGNN first 
uses a certain GNN to obtain vertex embedding and then uses a 
certain RNN or Attention network for time series modeling. The 
representative networks are DySAT [17], etc. Most of the 
current methods of continuous DGNN use snapshot modeling, 
which is only a rough estimation of time, and related networks 
include TGAT [7], TGN [18], etc. TGN attempts to introduce 
the Encoder-Decoder neural network framework in the graph 
field. The encoder is responsible for encoding the vertex and 
edge features on the graph into vectors, and the decoder 
calculates and predicts attribute values for the encoded vectors 
according to specific executing tasks. This form of decoupling 
enables real-time inference computations on graphs. 

III. METHOD 
This section will first introduce the overall framework and 

then introduce the three main modules in the framework in detail. 

A. Overall Framework 
Fig. 1 presents an overview of our distributed graph 

inference. It is a distributed graph inference framework that 
supports the Encoder-Decoder form of GNN. The framework is 
mainly composed of the following modules: incremental 
composition, second-degree subgraph calculation, GNN 
encoder, mailbox, and GNN decoder. 

• Incremental composition module corresponding to 
steps (a)-(b). When a new event is generated in the data 
source, the event will be added to the vertexRDD and 
edgeRDD of the historical graph event, and incremental 
composition will be performed to obtain the whole 
graph. Note that if it is an undirected graph, for an event 
e, we will generate both forward and reverse edges. 

• Second-degree subgraph calculation module, which 
is the “Full Graph and 2D-Subgraph” in the figure. After 
the whole graph is obtained, the basic properties of some 
vertices and edges will be updated according to e and its 
second-degree subgraph will be calculated. 

• GNN encoder module corresponding to steps (c)-(e). 
After loading the trained GNN encoder model, the 
second-degree subgraph feature matrix is used as the 
input of the model. Then, the embedding of each vertex 
in the second-degree subgraph can be obtained and then 
updated to the whole graph. 



 

 
Figure 1.  Distributed graph inference system framework. 

• The mailbox module corresponds to steps (f)-(g). A 
mail will be sent along each edge in the second-degree 
subgraph, and the main content of the mail is the current 
features of the edge and some historical interaction 
information. The vertex that receives the mail will add 
it to its mailbox. 

• GNN decoder module corresponding to steps (h)-(i). 
The above results will be decoded, and logical inference 
results will be given according to the types of tasks 
performed (LP/NC/EC). 

B. Second Degree Subgraph Algorithm 

 

Figure 2.  Second-degree subgraph algorithm. 

When a new event e=(src, dst, timestamp, feat) occurs, the 
edges with the same starting vertex and destination vertex are 
first merged, as shown in Fig. 2. The way to merge is to leave 
the edge with the largest timestamp. Since historical events are 
often embedded into features by previous inferences, merging 
duplicate edges does not affect results. It can also reduce the 
number of edges in the graph to save resources, especially when 
the vertex-to-edge ratio is large. Then, as shown in step 2 in Fig. 
2, the timestamps of src and dst will be updated to max(t1,	t2). 

Due to the particularity of graphs, an event often affects more 
than src  and dst . Considering the effect and performance 
comprehensively, we decided to control its influence range 
within the subgraph reachable by two hops. To obtain this 
subgraph, we design steps 3 and 4, namely the sending of hop 
messages and the return of feature messages. From src and dst, 
two rounds of message sending operations will be performed. 
The first round will send its hop-1 to the neighbor and update the 
hop value of the neighbor vertex. In the second round, the 

neighbor vertex sends its hop-1 to its neighbor (excluding src 
and dst) and updates the hop value of the vertex that receives the 
message. This obtains a second-degree subgraph about the new 
event e. Step 4 is the opposite of Step 3, which will transmit its 
feature information back from the second-degree vertex. After 
two rounds of message return, src and dst will aggregate the 
features of all vertices in the second-degree subgraph. Step 5 
stores these features in src as one of the attributes of the vertex. 

C. GNN Encoder algorithm 
Trained GNN models tend to take up a lot of storage space 

and are difficult to serialize. Even with serialization methods, 
transferring models between machines incurs a significant 
bandwidth overhead, which can severely impact performance. 
Therefore, the inference algorithm we designed will use the 
spark driver to uniformly manage the scheduling of machines, 
so that each worker node has a copy of the GNN model, as 
shown in Fig. 3. The model can be loaded directly and 
dynamically during the inference process, without the need for 
network transmission. Furthermore, all vertices in a second-
degree subgraph need to be inferred, but doing inference at the 
same time introduces additional overhead. Therefore, we 
propose an algorithm for “single-point inference, message 
passing, distributed computing”. Based on the subgraph 
collected in the previous step, we only load the model in src or 
dst, then get the model output and update the vertex features. 
Finally, the model output is sent to other vertices in the subgraph 
in the form of a message to complete the vertex update. For the 
GNN decoder algorithm, the process is the same as the GNN 
encoder. Due to space limitations, we will not repeat them here. 

D. Mailbox algorithm 
As shown in Fig. 3, after updating the vertex features using 

embedding, we will generate a mail along each edge in the 
subgraph (mail	=	featsrc	+	featdst	+	feate), and then sent it to the 
destination vertex. Each vertex in the subgraph will take an 
average of all the received emails, and then add it to the mailbox. 
That is to say, a vertex can only have one mail added to its 
mailbox in one iteration, which solves the problem of supernode 
message explosion. The mailbox maintained by each vertex is 
implemented using a list, and the default maximum capacity of 
the list is 10 (this value can be modified more practically). When 



 

 

Figure 3.  The execution process of inference and computation. 

there are less than 10 mails, new mail will be added directly to 
the end of the list. When it is greater than 10, the oldest mail in 
the list will be deleted to leave space for new mail. Through the 
mechanism of the mailbox, the storage of each vertex itself 
includes vertex features, information about neighbor vertices, 
and features brought by historical events. When inferring, it can 
be encoded into the form of a matrix and directly input into the 
model. 

E. Algorithm Pseudocode 
Through the above algorithm, we realize distributed graph 

inference computing. That is, graphs can be incrementally 
composed and iteratively performed graph computation, graph 
inference, and graph update. The pseudocode of the overall logic 
is shown in Table 1 below. 

TABLE I.  PSEUDOCODE FOR DISTRIBUTED GRAPH COMPUTING 
INFERENCE 

Algorithm: Distributed graph computing inference 
Input: event data source e=(src,dst,feat,timestamp) 
Output: logical inference results and accuracy 
1: initialize spark and static resources config 
2: use n-events warm up inference 
3: while has new event e do 
4:     if vsrc/dst∉vRDD then 
5:         initialize vsrc/dst and add them to vRDD 
6:     add e to eRDD, then create graph with vRDD and eRDD 
7:     merge duplicate edges and update vsrc/dst with the timestamp of 

the lastest edge 
8:     for vsrc or vdst do 
9:         send hopvi-1 to its neighbors 
10:     for each vertex that receives src or dst hop messages do 
11:         send hopvj-1 to its neighbors 
12:     collect all vertex features of received hop messages to src as 

2D-subgraph 
13:     update feat of subgraph vertices to 

embedding=Encoder(2D-subgraph) 
14:     for each ei∈2D-subgraph do 
15:         send mail messages to the dst along the edge, and calculate the 

average value of all mails at dst 
16:     for each vi∈2D-subgraph do 
17:         if len(mailboxi)≥10 then 

18:             remove the oldest mail from mailboxi header 
19:         add average mail to the tail of the mailboxi 
20:     for triplets(src,dst,e) do 
21:         update the logical results of triplets to 

logit=Decoder(concat(src,dst,e)) 
22: calculate the inference results of the whole graph to get the accuracy 
23: return accuracy 

IV. EXPERIMENTS 
In this section, we will first introduce the experimental setup, 

including the device environment, datasets, GNN models, and 
inference system. Next, the results of the experiment will be 
explained in terms of performance and effects. The source code 
of our system is published at a Github repository1. 

A. Setting 
• Hardware and software environment. Due to the 

limitation of cluster resources, this experiment uses 
multithreading to simulate a distributed environment. 
The processor is Intel(R) Core(TM) i5-8257U CPU 
@2.00GHz, 16GB memory, 500G hard disk. The 
operating system is macOS Catalina 10.15.7, and the 
development tool is IntelliJ IDEA 2020.1.2. The 
running environment is Spark 3.2.0, Hadoop 3.3.0, 
Scala 2.12.15, and Java 1.8.0. 

• Graph datasets. This experiment uses Wikipedia [19], 
and Reddit [19] public datasets for experiments. Among 
them, Wikipedia represents the interaction between 
users and wiki pages. Reddit represents the interaction 
events of users in social networking. The timestamps of 
all edges in both datasets span 30 days. 

• GNN models. The framework proposed in this paper is 
suitable for GNNs in the form of encoder-decoder, we 
chose APAN [20] and reproduced it. Considering that 
Java does not support graph input when calling the 
model, we modified the input and output data form of 
APAN to matrices. The main parameters when training 
the model are: the maximum epoch is 50, the batchsize 
is 100, the initial learning rate is 0.0001, and the dropout  

1https://github.com/napdada/Distributed-Graph-Inference-Java 



 

TABLE II.  GRAPH INFERENCE CALCULATION RESULTS AND MAIN STEPS TIME-CONSUMING IN TWO ENVIRONMENTS 

Enviro
nment 

LP task inference 
time(s) Through

put cap 

Time-consuming inference calculation of specific steps(ms) 

1000 
events 

1000 
events(*) 

Create 
Graph 

Merge 
Edges 

Update 
Ts 

2D-
Subgraph Encoder Send 

Emb Mailbox Decoder Evaluate 

SM 1.1897 1.1210 1835 4.24 0.37 1.76 733.51 2.16 374.62 3.62 0.44 68.79 

DM 1.6203 1.5335 3980 4.40 0.38 1.84 951.76 2.24 568.35 3.77 0.48 86.83 

a. SM: single machine environment, DM: distributed machine environment. The names of the specific steps from left to right represent incremental composition, merge duplicate edges, update timestamp, generate 
second-degree subgraph, call encoder model, send embedding, transfer mail, call decoder, and evaluate results 

is 0.1. The ratio of training, testing, and validation data 
is 7:1.5:1.5. After training, the “.pt” models of three 
types of tasks (LP/NC/EC) on two datasets are obtained, 
and the effect is the same as in the original paper. 

• Inference system. Considering the system startup 
process and graph initial features are zero, we set a 
warm-up process of inference. That is, by default, the 
first ten inferences are not included in the result. The 
number of distributed cores and partitions is both 2, and 
the partition strategy is EdgePartition2D. The JVM 
parameters will be adjusted according to the executed 
tasks, mainly adjusting the memory size. In addition, to 
reduce the effect of chance, all results are the mean of 
ten replicate experiments. 

B. Inference performance 
1) Timeliness and throughput caps. 

We reproduce APAN and apply it to graph inference 
computation to compare single machine and distributed. We 
configure 4G memory for a single machine. We configured 2-
core 8G memory for the distributed environment, which is 
equivalent to two single machines working at the same time. 
After that, we calculated the average time and upper limit of 
these two environments as shown in Table 2. It can be seen that 
when executing the LP task with a thousand events on Wikipedia, 
the distributed time is longer than that of a single machine. 
However, the upper limit of distributed computing is increased, 
and the number of iterations in a single-machine environment 
will overflow when about 1800. That’s to say, in the face of large 
graph data scenarios, distributed inference computing can solve 
the capacity bottleneck problem of a single machine. 

To further explore the time-consuming, we have detailed 
statistics on the time-consuming of the main steps, as shown in 
Table 2. The data in the table visually show that the extra time is 
mainly spent on 2D-Subgraph, SendEmb, and Evaluate. Because 
in a single-machine environment, vertices and edges are stored 
on one machine, they only need to be read when they are used. 
However, vertices are stored in partitions according to the 
policies in a distributed environment, so data exchange in 
different partitions will bring additional communication 
overhead. Furthermore, to evaluate the results, the system needs 
to retrieve data from all partitions. This operation is time-
consuming, and we count it into the results (the data marked with 
“*” in Table 2 are not included in the time-consuming statistics 
of this operation), so we believe that a single time consumption 
of 1.62s is reasonable. Comparing the results in the two 
environments, it can be seen that when the iterative inference is 
executed 1000 times, the distributed graph inference calculation 

uses 36.19% of the time overhead, in exchange for 116.89% of 
the larger throughput. 

Considering that the graph continues to grow during the 
iterative process, if the resource consumption increases 
exponentially as the graph grows, the huge overhead will 
inevitably make the system worthless. To this end, we conducted 
inference experiments with varying numbers of events, ranging 
from 50 to 1000, within a range where problems such as 
overflow do not occur. The average time-consuming inference 
calculation is shown in Fig. 4. It can be seen that with the 
increase of the graph size, the inference computation time 
increases linearly. That is, our framework can be extended to 
work on clusters. In the face of large graph data, it can still 
guarantee the linear growth of resource consumption, rather than 
the problem of exponential explosion. 

 

Figure 4.  The relationship between the number of inference events and the 
time-consuming when performing LP tasks on Wikipedia 

2) Partitioning and Strategy. 
The number and strategy of partitions in a distributed 

environment often significantly impact the results, so we 
experimented with them. We set up a 4-core 5G distributed 
environment that used 100 events in Wikipedia to perform LP 
tasks. The results are shown in Table 3. Regarding the number 
of partitions, we can find that the computation time of graph 
inference increases rapidly with the number of partitions. 
Therefore, we need to dynamically adjust some configurations 
according to the actual situation. For small graphs, the number 
of partitions can be reduced. But for large graphs, we can 
increase the number of partitions and add machines to reduce the 
time-consuming impact. For the partitioning strategy, we can see 
that the random partitioning effect is the worst, followed by the 
EdgePartition1D (partitioning based on src only). The best 
partition strategy is EdgePartition2D (partition by both src and 
dst). This is in line with our understanding of graphs, that for 
edges, both the source and destination vertices are important. 



 

TABLE III.  THE EFFECT OF THE NUMBER OF PARTITIONS AND PARTITION 
STRATEGY ON TIME CONSUMPTION 

Number of partitions Partitioning strategy Time (ms) 

1 EdgePartition2D 606.24 

2 EdgePartition2D 614.87 

4 EdgePartition2D 655.79 

8 EdgePartition2D 786.46 

4 RandomVertexCut 674.38 

4 EdgePartition1D 670.95 

C. Inference performance 
Table 4 shows the effect of APAN original data, reproduced 

APAN model data (APAN-Re), classic GNN model, and our 
distributed graph inference algorithm. That is the accuracy of 
performing three types of tasks on two datasets. It can be seen 
that our method maintains the effect of the model better. In 
addition, the method achieves the effect of classical GNN, and 
even outperforms classical GNN on some tasks. 

TABLE IV.  ACCURACY OF INFERENCE RESULTS ON THREE TYPES OF 
TASKS (LP/NC/EC) 

 
Wikipedia Reddit 

LP NC EC LP NC EC 

GAT 87.34 - - 92.14 - - 

TGAT 88.14 - - 92.92 - - 

TGN 89.51 - - 92.56 - - 

APAN 90.74 - - 94.34 - - 

APAN-Re 87.42 99.81 99.81 97.76 99.91 99.91 
 distributed 

graph 
inference 

87.03 99.54 99.28 97.01 98.39 98.05 

V. CONCLUSION AND FUTURE WORK 
In this paper, we propose a distributed graph inference 

computing framework, aiming to use GNN models in the form 
of Encoder-Decoder for online deployment and real-time 
inference in distributed environments. The experimental results 
show that the upper limit of inference calculation has been 
greatly improved. It has also achieved good results in the 
timeliness of inference, and we believe that it can meet the actual 
needs in the case of limited resources. Furthermore, as graph 
iterative inference proceeds, our method can maintain the 
model's performance on three classes of tasks. In the future, we 
can extend the algorithm to adapt to more kinds of GNN models. 
And consider optimizing the communication overhead in a 
distributed environment, so that the system can have stronger 
real-time inference computing capabilities. 
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