
Ethereum Smart Contract Representation Learning
for Robust Bytecode-Level Similarity Detection

Zhenzhou Tian1,2,3∗, Yaqian Huang1,2, Jie Tian1,2, Zhongmin Wang1,2, Yanping Chen1,2, and Lingwei Chen4∗
1School of Computer Science and Technology, Xi’an University of Posts and Telecommunications, Xi’an, 710121, China

2Key Laboratory of Network Data Analysis and Intelligent Processing, Xi’an, 710121, China
3Xi’an Key Laboratory of Big Data and Intelligent Computing, Xi’an 710121, China

4Department of Computer Science and Engineering, Wright State University, Dayton, OH, USA

Abstract—Smart contracts are programs that run on a
blockchain, where Ethereum is one of the most popular ones
supporting them. Due to the fact that they are immutable,
it is essential to design smart contracts bug-free before they
are deployed. However, various defects have been found in
the deployed smart contracts, causing huge economic losses
and lowing people’s trust. Writing secure smart contracts is
far from trivial, where developers tend to engage in reliable
resources or social coding platforms to reuse code. This leads
to a large number of similar contracts with potential security
risks. Therefore, detecting similarity of smart contracts helps to
avoid vulnerabilities, identify threats, and improve the security of
Ethereum. In this paper, we design a learning-effective and cost-
efficient model, called SmartSD, for Ethereum smart contract
similarity detection. Different from the current research efforts,
SmartSD is performed on a bytecode level and leverages deep
neural networks to learn the latent representations from the
opcode sequences for smart contract bytecodes, where the repre-
sentation learning and similarity measurement are supervised via
siamese neural networks. The experimental evaluations demon-
strate that SmartSD outperforms EClone’s 93.27% accuracy,
achieving 98.37% high detection accuracy and 0.9850 F1-score,
which is computationally tractable and effectively mitigates the
interference caused by compilers.

Index Terms—Smart contract, Similarity detection, Deep learn-
ing, Siamese neural network

I. INTRODUCTION

1 Smart contracts are Turing-complete programs that run
on a blockchain. Among the emerging blockchain platforms,
Ethereum [27] is the most popular one to operate smart con-
tracts. Different from the traditional programs, smart contracts
have the unique characteristics of openness, transparency, non-
tamperability, and independence from third parties. In other
words, they can be integrated to different decentralized appli-
cations (e.g., financial services and supply chain management)
after deployment; more importantly, they are immutable to be
modified or patched, where the only way to change a smart
contract is to deploy a new instance. It is hence essential to
design smart contracts bug-free before their deployments [2].
Unfortunately, various defects have been found in the deployed
smart contracts [3], [11], [25]. To put it into perspective,
according to a recent study, 97% of the collected contracts
are annotated as vulnerable by one or more vulnerability

* Corresponding: tianzhenzhou@xupt.edu.cn and lgchen@mix.wvu.edu
1DOI reference number: 10.18293/SEKE2022-040

analysis tools [5]. This enables attackers to exploit the security
vulnerabilities raised by these defects to fulfill their economic
intents, and cause huge economic losses [19], which has also
severely lowered people’s trust in Ethereum smart contracts.

Smart contracts are usually written in high-level program-
ming languages, where Solidity [20] is the most widely used
one. With high-level languages facilitating smart contract
developments, writing secure smart contracts is still not easy.
The major factor behind this is that these programming lan-
guages are young and evolving, where every change of smart
contracts would introduce significant updates into the lan-
guages. Developers may need many efforts to get familiar with
newer versions, and thus tend to frequently engage in reliable
resources (e.g., Etherscan) or social coding platforms (e.g.,
GitHub) for code reuse to expedite smart code development
process. Considering the widespread defects existing in the
deployed smart contracts, this naturally leads to a large number
of similar smart contract codes with potential security risks.
With this in mind, detecting the similarity of smart contracts
may allow developers to avoid using the compromised ones;
by comparing contracts with known vulnerabilities, it helps to
identify threats and improve Ethereum security.

Similarity detection is a long-term research topic, but the
investigation into smart contracts has been scarce, especially
for similarity detection on Ethereum smart contract byte-
codes. The deployment of a smart contract proceeds by first
compiling its source code into EVM bytecode, encapsulating
bytecode into a transaction, and then sending the transaction
to the zero address [26]. On one hand, smart contract source
codes are not always accessible to avoid attacks, while only
their bytecodes are deployed to run on EVM. On the other
hand, many smart contract defects occur after being compiled
as bytecodes [21]. To this end, our research goal here is
to automatically identify the similarities over the Ethereum
smart contract bytecodes. To achieve this goal, we face a chal-
lenge: developers may compile smart contracts using different
compilers or the same compiler with different optimization
options enabled; accordingly, these cross-compiler and cross-
optimization-level compilations will impose discrepancies on
opcode distributions of the resulting bytecodes, even when
their source codes are exactly the same. Direct fingerprint
generation on bytecodes may not be a good idea to capture
their semantics. It needs a better formulation to learn the



higher-level representations of contracts and automatically
detect the similarity among them.

To address the above challenge, in this paper, we design
a learning-effective and cost-efficient model, called SmartSD,
for Ethereum Smart contract Similarity Detection. Different
from the limited research efforts that build upon either finger-
prints susceptible to interference [10], cost-expensive runtime
traces [14], [15], or source code structure [6], our model first
decomposes the given bytecode into EVM instructions and
abstract them as an opcode sequence, and then elaborate deep
neural network structure to learn the representation encoding
structures and semantics of the opcode sequence. In order
to supervise the representation learning and similarity mea-
surement, SmartSD further builds up siamese neural networks
(SNN) [12] to train the model, such that the model can be
successfully applied to the validation and test data sets. The
major traits of our work can be summarized as follows:
• We investigate smart contract similarity detection on the

bytecode level, leveraging feature learning ability of deep
neural networks to learn latent representation from the
abstracted opcode sequence for each bytecode. The pro-
posed method is not only automatic and computationally
tractable, but also effectively to mitigate the interference
caused by compilers and their optimization options.

• We supervise representation learning and similarity mea-
surement via SNN, and use the trained networks to infer
the similarities of smart contract pairs.

• We formulate our positive and negative sample pairs
from smart contract collection using Etherscan, and con-
duct extensive experimental evaluations on them, which
demonstrate the robustness and effectiveness of SmartSD
on smart contract similarity detection.

II. MOTIVATION AND PROBLEM STATEMENT

In this paper, we investigate Ethereum smart contracts devel-
oped in the high-level language Solidity. Due to the significant
differences introduced by different major Solidity versions, the
differences existing in smart contract bytecodes compiled by
different Solidity compiler versions may be also significant. To
understand such differences, we empirically compile a smart
contract’s source code using two different compiler version
with and without optimization options enabled. Accordingly,
we observe that the opcodes generated across these compilers
are different regarding opcode numbers, opcode types, and the
occurring frequencies of the same opcode. Some specific op-
codes reside only in the sequence compiled by certain versions
(e.g., Solidity compilers earlier than version 0.4 do not produce
opcode revert). In addition, the opcode combinations and
their positions are different across different Solidity compiler
versions. These observations imply that direct birthmarks
using signatures or fingerprints on bytecodes may suffer from
the susceptibility to the interference introduced by opcodes and
weak generalizability, and higher-level yet difference-tolerant
representations are needed to address this limitation.

Our goal here is to construct the similarity detection model
over Ethereum smart contract bytecodes: we leverage deep

neural networks of superior feature learning ability to learn
the latent representation from the abstracted opcode sequence
for each smart contract’s bytecodes, and devise SNN to
supervise representation learning and similarity measurement.
More specifically, given two smart contracts’ bytecodes ci
and cj , the opcode sequences si and sj are first extracted
and abstracted from ci and cj respectively, and then jointly
embedded into unified vector space so that we can reasonably
measure the similarity between them. Formally, the similarity
measurement of si and sj can be formulated as:

si
φ(si)−−−→ xi → µ(xi,xj)← xj

φ(sj)←−−− sj (1)

where φ : s → x ∈ Rd is representation learning function
to map opcode sequence s into d-dimensional vector space,
and µ(·) is similarity measuring function. We exploit SNN to
design µ(·). The similarity detection can thus be stated in the
form of µ : (φ(si), φ(sj )) → y, which outputs the similarity
score of the input sample pair in the class space y ∈ {0, 1}
representing the different and similar classes respectively.
That is, if si and sj are similar, then µ(φ(si), φ(sj )) → 1;
otherwise, µ(φ(si), φ(sj ))→ 0.

III. METHODOLOGY

In this section, we technically detail how we perform rep-
resentation learning and similarity detection on smart contract
bytecodes though SNN in our designed model SmartSD. Fig. 1
specifies the overview of the SmartSD.

A. Data Preprocessing

In order to prepare the smart contracts for our experimental
evaluations on SmartSD, we first collect our dataset using
Etherscan, which is a block explorer and analytics platform for
Ethereum. More specifically, the HTML pages describing the
transaction information of smart contracts are first crawled and
parsed, such that the data regarding smart contracts’ bytecodes,
and their source codes and compiler versions used are then
collected. Each contract’s bytecodes are encoded by a string
of hexadecimal bytes, which do not reflect the underlying
operations of Ethereum. Therefore, it is inadvisable to analyze
these binaries directly on their raw bytes. In this regard,
we disassemble the contract’s bytecode into assembly EVM
instructions first, and perform the representation learning on
them. Currently, the EVM defines about 142 instructions, and
there are more than 100 instructions to be extended. For
the ground truth preparation, we compile a smart contract
source code to generate bytecodes using compilers of different
versions, where we consider bytecode pairs from them as
positive (similar) data and bytecodes compiled from different
source code as negative (different) data. More details are
presented in Section IV-A.

B. Representation Learning

Given the instruction set extracted from the bytecode of each
smart contract, it is reasonable to learn the embedding from the
sequence as the desired representation for each smart contract.
However, such an implementation applied directly on the



E
m

b
e
d

d
in

g

……

CNN BiLSTM

W

S
ig

m
o

id

Instruction Sequence 

Normalization

Word2vec 

Embedding

Training in 

Siamese network

Dense and Sigmoid

for Similarity detection

CNN BiLSTM

Fig. 1. The overview of SmartSD

instruction set can not expressively capture the correlations and
variations among smart contracts. As we want to make features
reflect the smart contract semantics instead of functionality,
using all instructions as they exactly appear may expose us
to the exhaustive functionality information. This immensely
increases the representation learning complexity, and decreases
the embedding expressiveness, which may degrade the succes-
sive SNN performance in turn. To this end, the instruction set
of each smart contract is initially abstracted to the sequence
of opcodes. Afterwards, the opcode sequence is fed to deep
learning framework for representation learning.

1) Instruction Abstraction: Each instruction contains an
opcode followed by some low-frequency tokens (e.g., numer-
ical constants, memory addresses, and special strings), which
can be seen on the left-hand side of Fig. 2. These low-
frequency tokens are random and have a very insignificant
relationship with the semantics of the program. In this respect,
we design the rule to abstract each instruction for the subse-
quent representation learning as follows: the opcode remains
unchanged, and all the non-opcode tokens in the instruction
are removed. An example in Fig. 2 illustrates the instruction
abstraction processing: the instruction sequence on the left is
disassembled from smart contract bytecodes; the abstracted
instruction sequence on the right is simply composed of
opcodes. For example, using the designed abstraction rule,
the instruction “PUSH1 0x80” becomes “PUSH1”, and the
instruction “PUSH1 0xf” is changed to “PUSH1”. After the
instruction abstraction, we can represent a smart contract c
as an opcode sequence s = {op1, op2, op3, · · · , opn}. In the
sequence, each opi represents the opcode of the ith instruction
within n total number of instructions.

2) Opcode Embedding: After getting the opcode sequences
for smart contracts, we further transform them into numerical
embedding space that neural network is able to understand and
process. To this end, we first perform embedding operation to
map each unique opcode to a vector, such that the opcode
sequence can be comprehensively represented. Specifically,
SmartSD employs the representative skip-gram model [17]
to learn opcode representations to encode their contextual
relatedness. Given a set of opcode sequences, each of which is
s = {op1, op2, op3, · · · , opn}, we feed them to the skip-gram
model, and obtain a k-dimensional vector for each unique
opcode by evaluating an opcode’s neighborhood co-occurrence

Fig. 2. Abstraction for smart contract instructions.

within a window w conditioned on its current embedding. In
this way, the learning objective of skip-gram is defined as:

argmin
ψ

−
∑

−w≤j≤w,i6=j

log p(opi+j |ψ(opi)), (2)

where ψ(opi) is opi’s current embedding. After opcode em-
bedding, the opcode sequence of each smart contract can be
converted to an n× k-dimensional vector.

3) Representation Learning for Opcode Sequences: Among
neural networks, convolutional neural network (CNN) [16] can
capture the local correlation, while Long Short-term Memory
(LSTM) [9] can encode the sequential dependency, which best
fit in our problem. We thus design a model that leverages the
advantages of CNN and LSTM over the opcode embedding
sequences for smart contract representation learning. The
model network structure diagram for representation learning
is shown in Fig. 3.

We first enable CNN, which stacks a convolutional layer
and a normalization layer, to refine the opcode embedding
sequence of each smart contract with locally aggregated
opcode information. In this way, it crafts more informative
and higher-level embedding space to facilitate the following
sequence modeling. To characterize the interactions among
different opcode grams, we further integrate filters of different
kernel sizes into CNN to enrich the feature semantics for smart
contracts. Taking the opcode sequence embedding matrix
S ∈ Rn×k, the convolutional layer adopts m filters of shape
l× k to perform convolution operations on S, and formulates
a new embedding matrix S∗ ∈ R(n−l+1)×m with kernel size l.



Embeding layer

CNN layer

Instruction Sequence

+

MaxPooling1D

concatenate
BiLSTM layer

Dense & Sigmoid Layers

Fig. 3. Representation learning using CNN and BiLSTM

To extract multi-view feature patterns from 2, 3 and 4 opcode
grams, we employ kernels of size 2, 3 and 4 to convolute S.

Afterward, the resulting feature matrix S∗ = [e1, · · · , en]T
from CNN is fed to bidirectional LSTM (BiLSTM) to embed
the sequential dependency, and output the desired representa-
tion. The BiLSTM proceeds by (1) reading S∗ through the
composite non-linear transformations H to learn a hidden
vector ht at timestep t: ht = H(et,ht−1), ht ∈ Rd [9];
(2) devising two LSTMs with one processing the sequence
in a forward direction and the other in a backward direc-
tion to jointly capture bidirectional dependencies and provide
additional context to the network; and (3) concatenating the
forward and backward hidden vectors at timestep t into new
ht =

[−→
ht;
←−
ht

]
. As it entirely reads the input sequence in both

directions, the hidden states hn at the last timestep act as the
summary vector to represent the opcode sequence.

C. Supervised Learning using Siamese Neural Networks

Under the supervise-learning setting, we use siamese neural
networks (SNN) [1], [12] to chain and optimize the full learn-
ing procedure, including representation learning, similarity
measurement, and similarity prediction. There are four reasons
behind this network choice. (1) SNN has been successfully
deployed in the similarity-based applications, such as zero-
shot and few-shot image recognition. (2) SNN supports back-
propagation optimization for the aforementioned representa-
tion learning process to update its parameters. (3) SNN of twin
networks trains the unilateral network by sharing weights [28];
this ensures that smart contract similarity measurement can
process two opcode sequences consistently and the weights of
both parties are consistent as well. (4) After obtaining the high-
level representations of smart contracts, SNN can calculate
their similarity in a parameterized manner [22], instead of
simply calculating the similarity scores without fine-tuning in
an error-prone way.

In our model design, we elaborate a deep SNN, whose
identical subnetworks receive two opcode sequence embed-
ding matrices Si and Sj of smart contract bytecodes ci and
cj , and pass them through CNN and BiLSTM in succession

to learn the representations xsi and xsj respectively that
extract high-level and difference-tolerant features. Different
from the conventional SNN performing direct similarity metric
computes [4], our network’s top conjoining layer devises
a multilayer perceptron (MLP) [8] stacking multiple fully
connected layers to fuse features as:

x =
[
xsi ;xsj

]
(3)

and measure the similarity using:

µθ
(
xsi ,xsj

)
= MLPθ (x) (4)

where θ are parameters introduced by the network. This is
followed by a sigmoid activation function mapping onto the
interval [0, 1], which is used to minimize cross-entropy loss.
Given the training opcode sequence pair from the correspond-
ing smart contracts’ bytecodes (si, sj) ∈ D, and the similarity
label y ∈ Y where y = 0 means that si and sj are different, and
y = 1 means that si and sj are similar, the cross entropy loss
of our similarity detection (i.e., binary classification problem)
can be defined as:

L = −
∑

(XI
p,X

I
q)∈D

y log(P ) + (1− y) log(1− P ) (5)

s.t. P = σ(µθ(xsi ,xsj )) (6)

where σ is the sigmoid activation function, and the parameters
introduced by representation learning and similarity measure-
ment can be comprehensively updated via gradient descent
algorithms (e.g., Adam).

From the model formulation, it is worth remarking two
significant advantages yielded by our methodology: (1) smart
contract representation learning and similarity measurement
between sample pairs are automated and advanced by deep
learning frameworks without prior domain knowledge; and
(2) the task-specific representations learned by the designed
networks can tolerate the difference caused by compilers and
their optimization options, and generalize well to unseen data..

IV. EVALUATION

A. Dataset Preparation and Experimental Settings

As a supervised deep learning based scheme is adopted
by SmartSD, a large dataset consisting of totally 72,612
samples is thus constructed to boost the training and testing
of our method. Specifically, the following steps are enforced
in preparing the samples with ground-truth labels:
• To correctly prepare positive (contract pairs that are

really similar) and negative (contract pairs that are indeed
different) samples, we utilize smartEmbed [6], a tool
that detects smart contract clones based on their Solidity
source code, to identify similar and dissimilar smart
contracts crawled from Etherscan. In our setting, their
detected smart contract pairs, which are not identical but
with similarity values greater than 0.95, are taken as
candidates of positive samples CP ; while the detected
pairs with similarity values smaller than 0.35, are taken
as candidates of negative samples CN .



• On the basis of the candidate positive and negative sam-
ples, we further retrieve their corresponding runtime byte-
code from the public Ethereum Cryptocurrency database2

that is hosted on the Google BigQuery by feeding in
their contract addresses. The bytecodes of a candidate
smart contract pair is then organized into a triplet of
〈bin(p), bin(q), l〉, where l ∈ {−1,+1} is the ground
truth label that indicates whether the smart contracts p
and q belongs to the positive or the negative pair, while
bin(.) denotes the runtime bytecode of a smart contract.

• To improve the ability of the trained model in dealing
with the adverse impacts from different compiler settings,
we further attempt to incorporate positive and negative
samples by compiling a smart contract’s source code with
varying compiler settings. To this end, we randomly pick
equivalent number of smart contract pairs from CP and
CN , and then try to compile them with varying Solidity
compiler versions as well as setting the –optimize option
on and off. Specifically, 5 different Solidity compiler
versions, including 0.4.24, 0.5.6, 0.6.4, 0.7.2 and 0.8.2,
are set up to compile the source code of each picked
smart contract individually3. The successfully compiled
ones are then combined to make up positive and negative
triplets accordingly.

With these above steps, we finally manage to produce
42,082 pairs of positive samples and 30,530 pairs of negative
samples, as our dataset.

For experimental settings, the dataset is randomly divided
into training, validation and test set at a ratio of 80%, 10%, and
10%. The model is trained using a RTX3090 GPU with the
Adam optimizer. The batch size is set to 64, and the initial
learning rate is set to 0.001. In each epoch, we shuffle the
training samples while calculate the accuracy on the validation
set. Besides, to avoid the over-fitting and non-convergence
problems, early stopping is enforced that stops model training
right after the epoch that the validation accuracy no longer im-
proves. Finally, the model with the highest accuracy witnessed
during all the epochs is adopted, with which frequently used
performance metrics including accuracy, precision, recall, and
F1 score are evaluated and reported on the test set. Also, the
opcode embedding model is trained using 100 epochs and 6
context window size.

B. Evaluation Results

In this section, we report the performance of SmartSD. In
addition, we compare the performance of SmartSD with vari-
ant models by simply substituting the CNN+BiLSTM structure

2https://cloud.google.com/blog/products/data-analytics/ethereum-bigquery-
public-dataset-smart-contract-analytics

3As pointed out in a recent study [21], there are many minor Solidity
compiler versions within each major version (For example, besides 0.4.24,
there are 26 more officially released minor versions in the major version
0.4.x), but their impacts on the compiled bytecodes are insignificant, our
used minor versions are thus randomly selected as long as there is one for
each major version. Also, note that not all compiler versions can always
successfully compile each smart contract, especially earlier versions are not
used considering their immaturity and the high failure rate in compiling the
smart contract in our dataset.

TABLE I
PERFORMANCE COMPARISON WITH VARYING NEURAL NETWORK

STRUCTURES IN SMARTSD

Model Accuracy Precision Recall F1-score

SmartSD 98.37% 0.9889 0.9813 0.9850
SmartSDCNN 93.09% 0.9321 0.9119 0.9219

SmartSDBiLSTM 95.20% 0.9536 0.9383 0.9459
SmartSDGRU 93.14% 0.9352 0.9071 0.9209

SmartSDBiGRU 94.32% 0.9479 0.9337 0.9407

Fig. 4. Performance regarding ROC Fig. 5. Training size analysis

in our SmartSD with other widely used deep neural network
structures, including the pure CNN, BiLSTM, GRU and Bi-
GRU. We denote them as SmartSDCNN , SmartSDBiLSTM ,
SmartSDGRU and SmartSDBiGRU , respectively.

Table I summaries the experimental results. As the data
show, SmartSD as well as its substituted models all exhibit
rather good detection performance with respect to the evalua-
tion metrics mentioned in Section IV-A. Their accuracy values
generally compete with or outperform the 93.27% accuracy
value as reported by EClone [14], [15], a smart contract simi-
larity detection method that adopts inefficient and sophisticated
symbolic execution techniques. This indicates the potency of
adopting a deep learning based way to achieve smart contract
similarity detection task. Especially, the original SmartSD
that adopts a CNN+LSTM structure for encoding the opcode
sequence of a smart contract’s bytecodes, outperforms all the
other substitute models with a relatively obvious margins. Its
98.37% high detection accuracy and 0.9850 F1-score value
indicate the superiority of combing CNN and LSTM structure
to capture compiler-setting-agnostic features, which makes our
method highly resilient against the disturbance of varying
compiler settings. Additionally, as depicted in Fig. 4 for the
ROC curve, SmartSD achieves a very high AUC (Area Under
the Curve) value of 0.98.

The impact of the training set size on the detection per-
formance of SmartSD is also evaluated, by training SmartSD
with gradually increased number of training samples and
observing corresponding detection accuracy on the same test
set. As depicted in Figure 5, as the number of training samples
increases, the detection performance of SmartSD increases. It
indicates the importance of abundant data for deep learning
based methods, while the availability of the massive diversi-
form open-sourced smart contracts on Etherscan makes deep
learning especially suitable for our problem.



V. RELATED WORK

Similarity analysis of smart contracts: Code similarity
analysis has always been a long-term research topic, but there
have been few studies [6], [14], [15] conducted on the emerg-
ing smart contracts. Liu et al. [14], [15] defined the concept of
smart contract birthmarks by borrowing the typical definition
of software birthmark. They proposed a symbolic transaction
sketch technique to achieve smart contract similarity detection
and DApp (Decentralized Application) clone detection on the
bytecode level. Different from their methods that resorts to
symbolic execution and expert domain knowledge, SmartSD
recurs to the deep neural networks’ powerful learning ability
and the availability of many smart contract to achieve high
accurate and efficient similarity detection while with less hu-
man intervention. Gao et al. [6] proposed to use unsupervised
embedding algorithms including word2vec and Fasttext to
encode smart contracts into numerical vectors, on the basis
of which similarity between smart contract pairs can be effi-
ciently computed with an Edulidean distance based similarity
metric. Different from their works that can only operates on
the Solidity source code, we adopt a deep siamese neural
network architecture that works on the actually deployed smart
contracts’ bytecodes, with the aim of defeating the disturbance
from varying compiler settings.

Smart contract bug detection: With the developments of
smart contracts and the widely used yet maturing programming
languages, their defects and security issues have attracted
major research attentions for the solutions. Apart from these
conventional methods [13], [18], [23], [24] that generally
detect bugs or vulnerabilities based on symbolic execution,
formal verification, and manually constructed bug patterns or
specifications, Gao et al. [7] attempts to detect/retrieve bugs
from smart contracts’ source code by checking the similarity
of the smart contract against known buggy contracts. SmartSD
can accurately detect the similarity of smart contracts directly
on the deployed bytecode, thus it is promising to be applied
to achieve similarity checking based known bug search in the
scenario that smart contracts’ source codes are unavailable.

VI. CONCLUSION

In this paper, we propose to detect the similarity of
Ethereum smart contracts and build up a bytecode-level model
SmartSD using deep siamese neural network to supervise
the representation learning and the similarity measurement
process. The experimental results show that SmartSD achieves
98.37% high detection accuracy and 0.9850 F1-score, which
demonstrate its effectiveness of smart contract similarity de-
tection; SmartSD also significantly outperforms the baseline
models, and is computationally tractable and effectively miti-
gates the interference caused by compilers.

ACKNOWLEDGMENTS

This work was supported in part by the National Nat-
ural Science Foundation of China (61702414), the Sci-
ence and Technology of Xi’an (2019218114GXRC017CG018-
GXYD17.16), the Natural Science Basic Research Program

of Shaanxi (2022JM-342, 2018JQ6078, 2020JM-582), the
International Science and Technology Cooperation Program of
Shaanxi (2019KW-008), the Key Research and Development
Program of Shaanxi (2019ZDLGY07-08), and Special Funds
for Construction of Key Disciplines in Universities in Shaanxi.

REFERENCES

[1] J. Bromley, J. W. Bentz, L. Bottou, I. Guyon, Y. LeCun, C. Moore,
E. Säckinger, and R. Shah, “Signature verification using a “siamese”
time delay neural network,” IJPRAI, vol. 7, no. 04, pp. 669–688, 1993.

[2] J. Chen, X. Xia, D. Lo, J. Grundy, X. Luo, and T. Chen, “Defining smart
contract defects on ethereum,” TSE, 2020.

[3] T. Chen, X. Li, X. Luo, and X. Zhang, “Under-optimized smart contracts
devour your money,” in SANER. IEEE, 2017, pp. 442–446.

[4] S. Chopra, R. Hadsell, and Y. LeCun, “Learning a similarity metric
discriminatively, with application to face verification,” in CVPR, 2005.

[5] T. Durieux, J. F. Ferreira, R. Abreu, and P. Cruz, “Empirical review of
automated analysis tools on 47,587 ethereum smart contracts,” in ICSE,
2020, pp. 530–541.

[6] Z. Gao, V. Jayasundara, L. Jiang, X. Xia, D. Lo, and J. Grundy,
“Smartembed: A tool for clone and bug detection in smart contracts
through structural code embedding,” in ICSME, 2019.

[7] Z. Gao, L. Jiang, X. Xia, D. Lo, and J. Grundy, “Checking smart
contracts with structural code embedding,” TSE, pp. 1–18, 2020.

[8] V. Garcia and J. Bruna, “Few-shot learning with graph neural networks,”
arXiv preprint arXiv:1711.04043, 2017.

[9] A. Graves, “Generating sequences with recurrent neural networks,” arXiv
preprint arXiv:1308.0850, 2013.

[10] N. He, L. Wu, H. Wang, Y. Guo, and X. Jiang, “Characterizing code
clones in the ethereum smart contract ecosystem,” in FC, 2020.

[11] S. Kalra, S. Goel, M. Dhawan, and S. Sharma, “Zeus: Analyzing safety
of smart contracts.” in Ndss, 2018, pp. 1–12.

[12] G. Koch, R. Zemel, R. Salakhutdinov et al., “Siamese neural networks
for one-shot image recognition,” vol. 2. Lille, 2015.

[13] J. Krupp and C. Rossow, “teether: Gnawing at ethereum to automatically
exploit smart contracts,” in USENIX Security, 2018, pp. 1317–1333.

[14] H. Liu, Z. Yang, Y. Jiang, W. Zhao, and J. Sun, “Enabling clone detection
for ethereum via smart contract birthmarks,” in ICPC, 2019.

[15] H. Liu, Z. Yang, C. Liu, Y. Jiang, W. Zhao, and J. Sun, “Eclone:
Detect semantic clones in ethereum via symbolic transaction sketch,”
in ESEC/FSE, 2018.

[16] Y. Luan and S. Lin, “Research on text classification based on cnn and
lstm,” in ICAICA. IEEE, 2019, pp. 352–355.

[17] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” arXiv:1301.3781, 2013.

[18] M. Mossberg, F. Manzano, E. Hennenfent, A. Groce, G. Grieco, J. Feist,
T. Brunson, and A. Dinaburg, “Manticore: a user-friendly symbolic
execution framework for binaries and smart contracts,” in ASE, 2019.

[19] K. Sliwak, “Smart contract reentrancy: Thedao,” https://medium.com/
@zhongqiangc/smart-contract-reentrancy-thedao-f2da1d25, 2021.

[20] Solidity, “Github - ethereum/solidity: Solidity, the contract-oriented
programming language,” https://github.com/ethereum/solidity, 2021.

[21] Z. Tian, J. Tian, Z. Wang, Y. Chen, H. Xia, and L. Chen, “Landscape
estimation of solidity version usage on ethereum via version identifica-
tion,” IJIS, 2021.

[22] Z. Tian, Q. Wang, C. Gao, L. Chen, and D. Wu, “Plagiarism detection
of multi-threaded programs via siamese neural networks,” IEEE Access,
vol. 8, pp. 160 802–160 814, 2020.

[23] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev,
E. Marchenko, and Y. Alexandrov, “Smartcheck: static analysis of
ethereum smart contracts,” in WETSEB, 2018, pp. 9–16.

[24] P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, and et al.,
“Securify: practical security analysis of smart contracts,” in CCS, 2018.

[25] M. Wohrer and U. Zdun, “Smart contracts: security patterns in the
ethereum ecosystem and solidity,” in IWBOSE, 2018, pp. 2–8.

[26] G. WOOD, “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum project yellow paper, pp. 1–32, 2014.

[27] G. Wood et al., “Ethereum: A secure decentralised generalised transac-
tion ledger,” Ethereum project yellow paper, pp. 1–32, 2014.

[28] L. Zhang, Z. Feng, W. Ren, and H. Luo, “Siamese-based bilstm network
for scratch source code similarity measuring,” in IWCMC. IEEE, 2020,
pp. 1800–1805.

https://medium.com/@zhongqiangc/smart-contract-reentrancy-thedao-f2da1d25
https://medium.com/@zhongqiangc/smart-contract-reentrancy-thedao-f2da1d25
https://github.com/ethereum/solidity

	Introduction
	Motivation and Problem Statement
	METHODOLOGY
	Data Preprocessing
	Representation Learning
	Instruction Abstraction
	Opcode Embedding
	Representation Learning for Opcode Sequences

	Supervised Learning using Siamese Neural Networks

	Evaluation
	Dataset Preparation and Experimental Settings
	Evaluation Results

	Related Work
	Conclusion
	References

