
Two-Stage AST Encoding for Software Defect
Prediction

Yanwu Zhoua, Lu Lua,∗, Quanyi Zoub, Cuixu Lic
a School of Computer Science and Engineering, South China University of Technology, Guangzhou, China

b School of Software Engineering, South China University of Technology, Guangzhou, China
c Guangdong Meiweixian Flavoring Foods Co.,Ltd., Zhongshan, China

∗Corresponding author email: lul@scut.edu.cn

Abstract—Software defect prediction (SDP) can find potential
containing defect modules, which assists software developers
in allocating limited test resources more efficiently. Because
traditional software features fail to capture the semantics of
source code, various studies have turned to extracting deep
learning features. Existing related approaches often parse the
program source code into Abstract Syntax Trees (ASTs) for
further processing. However, most of these approaches ignore
AST nodes’ hierarchical and position-sensitive structure. To over-
come the aforementioned issues, a two-stage AST encoding (TSE)
method is proposed in this paper for software defect prediction.
Experiments on eight Java open-source projects showed that our
proposed SDP method outperforms several traditional methods
and state-of-the-art deep learning methods in terms of F-measure
and MCC.

Index Terms—software defect prediction, abstract syntax tree
(AST), two-stage encoding, positional encoding

I. INTRODUCTION

As software evolves, the scale and complexity of the
system grow dramatically. Under limited time and resource
constraints, software becomes more prone to defect [1]. Soft-
ware defect prediction (SDP) is a promising technology for
improving software reliability by detecting program defect
modules and prioritizing testing efforts [2]. The goal of SDP
is to train a defect predictor that classify code instances as
defective or not. It is a requirement for SDP to create defect-
distinguishable software representations [3]. Software metrics
have been proposed and broadly used in SDP [4]. However,
Software metrics are hand-crafted by software specialists and
most software metrics focus on the statistical aspects of code,
ignoring the semantic characteristics of code.

In recent years, researchers have begun to leverage deep
neural networks to exact software features from source code
[5]. Related works have revealed that Abstract Syntax Trees
(ASTs) are suitably representative of programs’ well-defined
syntax [6]–[8]. It’s common practice to parse source code files
into ASTs and then convert into token vectors by traversing
the ASTs.

Pre-order traversal is adopted by most studies for AST
conversion, treating all nodes as the same level and creating
a token corpus for word embedding technology. It has two
drawbacks: 1. Not all the nodes are at the same level. The
coarse-grained information of node needs to be supplemented

DOI reference number: 10.18293/SEKE2022-039

by the fine-grained information of its child nodes. 2. If only
preorder traversal is employed for AST, the tree structure’s
positional information will be lost. Furthermore, there is a
sequential positional relationship between nodes at the same
depth.

In order to tackle the above-mentioned first drawback, it is
feasible to decompose the AST into non-overlapping subtrees
according to node granularity. For example, Zhang et al.
propose ASTNN, which divides the AST into subtrees at the
statement level and handles the subtree interior and subtree
sequence independently [9]. The second drawback can be
addressed by including the additional position information of
the tree structure.

In this paper, we mark two types of nodes with different
granularities, named ordinary nodes and block nodes, and then
execute a two-stage encoding, according to the decomposition
strategy. In the first stage, the word embedding and positional
embedding of ordinary nodes under the subtree rooted by the
block node are aggregated to the block node through the self-
attention mechanism to represent the encoding of the block
node. In the second stage, the encodings of the block nodes
in an AST are collected. The tree structure of block nodes is
retained, and the encodings are fed into a Tree-based LSTM
network to generate the final AST representation for software
defect prediction.

In summary, the main contributions of this paper are listed
as follows:

1) We propose an AST decomposition strategy that marks
AST nodes as two types of nodes according to the
hierarchy of the AST.

2) We apply the strategy on a two-stage bottom-up AST
encoding for software defect prediction. Experimental
results indicate that our method outperforms other soft-
ware defect prediction models in terms of F-measure and
MCC.

II. RELATED WORK

A. Code Representation in Software Defect Prediction

The representation of software code is a critical part of
software defect prediction. Wang et al. proposed to parse the
source code into ASTs, and then encode it into numerical
vectors as code representation [6]. Li et al. concatenate deep



query

key

value
attention

M
axPool

…

+ +

clasifer

the First-Stage Encoding

the Second-Stage Encoding

M
ar

k 
Bl

oc
k 

Su
bt

re
es

Self-Attention

Positional
Embedding

Word
EmbeddingBlock Subtree

Block Subtree
Encoding

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

M
axPool

Tree-based LSTM

AST Encoding

Block Node

Ordinary Node

Defect 
probability

…
…

…

MethodDeclaration

“public” ReferenceType …

“Record”

Fig. 1. The overall framework of TSE.

semantic features with code metrics to augment the informa-
tion of code [7]. In addition to the code representation based
on AST, Phan et al. construct the Control Flow Graph (CFG)
of the program at the level of assembly instruction [10]. The
effectiveness of code visualization is demonstrated by Chen
et al., who convert each code file in the program into a two-
dimensional image. [11].

B. Deep Learning in Software Defect Prediction

There has been a slew of new deep learning applications for
SDP. Wang et al. built the Deep Believe Network (DBN) for
extracting features [6]. Li et al. considered that CNN can seize
local patterns of sources code more effectively [7]. Xu et al.
employed graph neural networks to capture the latent defect
information [12]. Wang et al. proposed a modular tree network
to dig the semantic differences among different types of AST
substructures which shows the advantage of more elaborate
structure information extraction [13].

III. METHOD

In this section, we elaborate on our method in detail. Figure
1 demonstrates the overall framework of our TSE method.
Before the encoding stages, the code file is parsed into an
AST, and then marked and converted into vectors. In the first
stage, the self-attention layer is utilized to aggregate the word
embeddings and positional encodings of all ordinary nodes to
construct the block node encodings. In the second encoding
stage, the block node encodings are fed into a Tree-based
LSTM and produce the AST’s final encoding by max pooling.
Finally, the probability that the code file is defective is output
via a fully-connected layer.

A. Marking AST nodes and Converting into Vectors

The open-source code tool, javalang1, is used to parse the
code files into ASTs under the token granularity. And then the
block nodes and ordinary nodes are marked during the pre-
order traversal of the AST. The set of block nodes and ordinary
nodes are difined as B and O, separately. Block nodes are
listed in the Table I and ordinary nodes are chosen according
to Wang’s work [6]. Note that the attribution strings of the
AST node are also regarded as ordinary nodes. Most of the
block nodes chosen create a local scope with specific context.
The nodes in the IfStatement block, for example, are in the
specific context of conditional judgment; hence, the meaning
of the nodes of IfStatement may differ while in other statement
blocks. There is a particular node in the block nodes called
StatementExpression, which is a statement-level node. This
node can further disassemble the statement block and tackle
the problem of an excessively large subtree.

An AST T is defined as a collection of its block subtrees:

T = [bT1, bT2, ..., bTn] (1)

Each block subtree is defined as:

bTi = [bi, [oTi1, oTi2...]] (2)

where bi ∈ B is the root node of the block subtree, oTij is the
ordinary subtree under bTi. An ordinary subtree is denoted as:

oTij = [oij1, oij2, ...] (3)

where oijk ∈ O.
After acquiring the marked AST, we utilize word2vec [14]

technique to convert block nodes and normal nodes into E-
dimensional vectors, denoted as xb

i and xo
ijk, respectively.

1https://github.com/c2nes/javalang



B. First Stage: Aggregating Ordinary Node Encodings to The
Block Node Encoding

In the first stage, the self-attention mechanism is employed
to aggregate their information onto the block nodes as the
block node encodings:

Atten(X) = Atten(Q,K, V ) = Softmax(
QKT

√
dk

)V (4)

Q = WQxq,K = WKxk, V = WV xv (5)

where WQ, WK and WV are weight matrices for queries,
keys and values, and dk is the dimension of xk. In the case of
self-attention, xq , xk and xv are identical. The self-attention
mechanism can flexibly assign the attention weights of the
same nodes in different contexts and mask the difference in
the number of nodes in a subtree. Self-attention mechanism is
not sensitive to the position of nodes. However, the positional
relationship of nodes in the subtree could be a significant
factor in defect prediction. Therefore, we additionally traverse
the block subtree hierarchically and record the positional
information of each ordinary node which consists of the depth
of the node in the block subtree and the sequence number
of the node at the depth. Through an embedding layer, their
corresponding positional vectors can be represented separately
as xdepth and xnum.

Given bTi with Ni nodes, We can obtain the embedding
sequence:

XbT
i = [xb

i , x
o
i11 + xdepth

i11 + xnum
i11 , ..., xo

ijk + xdepth
ijk + xnum

ijk ]
(6)

Then the encoding of a subtree enbT
i ∈ RD is calculated by:

enbT
i = (W en)Txb

i +Maxpool(Atten(XbT
i |xb

i )) + ben (7)

where D is the encoding dimension, W en ∈ RE×D is the
weight matrix, ben is the bias term, Maxpool(.) is the max
pool layer with the kernel size Ni, Atten(.) is the self-
attention layer, XbT

i |xb
i is the sequence XbT

i excluding xb
i .

C. Second Stage: Aggregating Block Node Encodings to The
AST Encoding

In the first encoding stage, the encodings of all block nodes
in an AST are collected:

XT = [enbT
1 , ..., enbT

n ] (8)

Tree-based LSTM is adopted as the encoder to acquire the
final AST’s encoding, preserving more information about the
AST’s tree structure. Since all ordinary nodes in an AST have
been processed in the first encoding stage, the scale of the
AST has been considerably reduced, hence avoiding gradient
vanishing induced by long-term dependencies. Specifically, we
utilize ChildSum Tree-LSTM [15] to calculate the AST’s final
encoding by max-pooling the hidden states of block nodes:

enT = Maxpool(TreeLSTM(XT )) (9)

Then we simply use a fully-connected layer as the defect
classifier. Cross entropy loss is adopted for optimization.

TABLE I
THE CHOSEN TYPES OF BLOCK NODES

Block Nodes

ClassDeclaration, InnerClassDeclaration,
MethodDeclaration, ConstructorDeclaration,
BlockStatement, ForStatement,
WhileStatement, SwitchStatement, IfStatement,
DoStatement, StatementExpression

IV. EXPERIMENTAL SETTINGS

A. Evaluated Projects and Datasets

To evaluate the the effectiveness of our TSE approach, we
choose publicly available projects from PROMISE repository
[16]. Specifically, eight open-source Java projects are exploit
in our experiments, which are ant, camel, jedit, log4j, lucene,
poi, xalan and synapse.

B. Evaluation

In this paper, the popular evaluation indicator in SDP, F-
measure and MCC, are adopted to evaluate our proposed
method. Specifically, F-measure is a harmonic mean of Preci-
sion and Recall and MCC is a relatively balanced measure
considering diverse indicators, which are calculated by the
following equations:

Precision =
TP

TP + FP
,Recall =

TP

TP + FN
(10)

F −measure =
2 ∗ Precision ∗Recall

Precision+Recall
(11)

MCC =
TP ∗ TN − FP ∗ FN

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(12)

where TP, FN, FP and TN can be derived by the confusion
matrix.

C. Baseline Setting

In this paper, our TSE method are compared with the
following methods:

1) LR: A traditional method using logistic regression clas-
sifier on handcraft defect metrics.

2) SVM: A traditional method using SVM classifier with
the Gaussian kernel on handcraft defect metrics.

3) DBN: A deep learning method employing a standard
DBN model to extract semantic features from AST for
SDP [6].

4) LSTM: A deep learning method using LSTM to capture
semantic representations for SDP.

5) CNN+: An enhanced CNN-based method by combining
traditional feature and deep feature for SDP [7].

D. Parameters Setting

10-fold cross validation is used to split dataset and each
training task is repeated 10 times in the experiment. The
AST tokens and the positional vectors are embedded into 100-
dimensional vectors; The query, key, and value dimensions are
all set to 100 in the self-attention layer; The hidden dimension
of the ChildSum Tree-LSTM is 100.



TABLE II
F-MEASURE AND MCC VALUE FOR TSE VERSUS BASELINE METHODS

Task LR SVM DBN LSTM CNN+ TSE

F-measure MCC F-measure MCC F-measure MCC F-measure MCC F-measure MCC F-measure MCC

ant 0.568 0.427 0.561 0.417 0.371 0.220 0.533 0.214 0.566 0.437 0.505 0.403
camel 0.352 0.167 0.356 0.177 0.359 0.171 0.370 0.199 0.335 0.180 0.501 0.389
jedit 0.552 0.388 0.534 0.365 0.504 0.174 0.551 0.345 0.561 0.451 0.572 0.438
log4j 0.409 0.301 0.338 0.250 0.611 0.132 0.633 0.162 0.593 0.219 0.628 0.255

lucene 0.530 0.161 0.600 0.141 0.574 0.161 0.605 0.171 0.643 0.236 0.654 0.243
poi 0.589 0.238 0.791 0.479 0.626 0.310 0.752 0.314 0.748 0.328 0.778 0.361

xalan 0.532 0.101 0.545 0.113 0.592 0.077 0.602 0.124 0.635 0.176 0.653 0.184
synapse 0.506 0.294 0.480 0.292 0.413 0.163 0.344 0.118 0.369 0.257 0.550 0.282

Average 0.501 0.249 0.523 0.270 0.506 0.173 0.549 0.205 0.556 0.275 0.612 0.314

V. EXPERIMENTAL RESULTS

Table II record comparison results of the F-measure and
MCC indicators for the TSE method versus other baseline
methods. According to the last second line of the two tables,
our proposed TSE achieves F-measure as 0.612 and MCC as
0.314 on average value and obtains the best average value
on the two indicators. Compared to the traditional machine
learning methods, i.e., LR and SVM, which utilize statistical
defect metrics, our TSE method has an average improvement
of 22.2% and 16.9% in the F-measure indicator, and 26.1% and
16.0% in the MCC indicator. Compared to the deep learning
methods, i.e., DBN, LSTM and CNN+, our TSE method
has an average improvement of 18.8%, 11.3% and 10.1% in
terms of F-measure, and 81.4%, 52.9% and 14.0% in terms of
MCC. The above experiments suggest that TSE outperforms
traditional machine learning methods and AST-based semantic
extracting methods on eight separate projects.

VI. CONCLUSION

In this paper, a two-stage AST encoding method is pro-
posed, which employs a bottom-up encoding to learn the
semantic information software defect prediction. The main
advantages of TSE are 1. executing the encoding following
the natural hierarchy of ASTs. 2. combining the tree positional
encoding to augment the structural information of ASTs. The
performance of TSE is evaluated by comparing it with tradi-
tional methods and state-of-the-art deep learning methods in
terms of F-measure and MCC. Experimental results show that
TSE achieves better performance versus all baseline methods.
In future work, we will verify the performance of our method
on other programming languages and repositories.

ACKNOWLEDGMENT

This work was supported in part by the Zhongshan
Produce and Research Fund, PR China under grant no.
210602103890051.

REFERENCES

[1] D. Bowes, T. Hall, and J. Petrić, “Software defect prediction: do different
classifiers find the same defects?,” Software Quality Journal, vol. 26,
no. 2, pp. 525–552, 2018.

[2] H. K. Dam, T. Tran, T. Pham, S. W. Ng, J. Grundy, and A. Ghose, “Au-
tomatic feature learning for predicting vulnerable software components,”
IEEE Transactions on Software Engineering, vol. 47, no. 01, pp. 67–85,
2021.

[3] H. Wang, W. Zhuang, and X. Zhang, “Software defect prediction based
on gated hierarchical lstms,” IEEE Transactions on Reliability, vol. 70,
no. 2, pp. 711–727, 2021.

[4] M. Halstead, “Elements of software science (operating and programming
systems series),” 1977.

[5] N. Zhang, S. Ying, K. Zhu, and D. Zhu, “Software defect prediction
based on stacked sparse denoising autoencoders and enhanced extreme
learning machine,” IET Software, 2021.

[6] S. Wang, T. Liu, J. Nam, and L. Tan, “Deep semantic feature learning for
software defect prediction,” IEEE Transactions on Software Engineering,
vol. 46, no. 12, pp. 1267–1293, 2018.

[7] J. Li, P. He, J. Zhu, and M. R. Lyu, “Software defect prediction via
convolutional neural network,” in 2017 IEEE International Conference
on Software Quality, Reliability and Security (QRS), pp. 318–328, IEEE,
2017.

[8] X. Zhou and L. Lu, “Defect prediction via lstm based on sequence and
tree structure,” in 2020 IEEE 20th International Conference on Software
Quality, Reliability and Security (QRS), pp. 366–373, IEEE, 2020.

[9] J. Zhang, X. Wang, H. Zhang, H. Sun, K. Wang, and X. Liu, “A novel
neural source code representation based on abstract syntax tree,” in
2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE), pp. 783–794, IEEE, 2019.

[10] A. V. Phan, M. Le Nguyen, and L. T. Bui, “Convolutional neural
networks over control flow graphs for software defect prediction,”
in 2017 IEEE 29th International Conference on Tools with Artificial
Intelligence (ICTAI), pp. 45–52, IEEE, 2017.

[11] J. Chen, K. Hu, Y. Yu, Z. Chen, Q. Xuan, Y. Liu, and V. Filkov,
“Software visualization and deep transfer learning for effective software
defect prediction,” in Proceedings of the ACM/IEEE 42nd International
Conference on Software Engineering, pp. 578–589, 2020.

[12] J. Xu, F. Wang, and J. Ai, “Defect prediction with semantics and
context features of codes based on graph representation learning,” IEEE
Transactions on Reliability, vol. 70, no. 2, pp. 613–625, 2020.

[13] W. Wang, G. Li, S. Shen, X. Xia, and Z. Jin, “Modular tree network
for source code representation learning,” ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 29, no. 4, pp. 1–23, 2020.

[14] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” Advances in neural information processing systems, vol. 26,
2013.

[15] K. S. Tai, R. Socher, and C. D. Manning, “Improved semantic represen-
tations from tree-structured long short-term memory networks,” arXiv
preprint arXiv:1503.00075, 2015.

[16] Z. He, F. Peters, T. Menzies, and Y. Yang, “Learning from open-
source projects: An empirical study on defect prediction,” in 2013
ACM/IEEE international symposium on empirical software engineering
and measurement, pp. 45–54, IEEE, 2013.


