
KEMA: Knowledge-Graph Embedding Using
Modular Arithmetic

Hussein Baalbaki
ISEP

Sorbonne University
Paris, France

hussein.baalbaki@ext.isep.fr

Hussein Hazimeh and Hassan Harb
Faculty of Sciences
Lebanese University

Beirut, Lebanon
hussein.hazimeh@ul.edu.lb, hassan.harb.1@ul.edu.lb

Rafael Angarita
ISEP

Sorbonne University
Paris, France

rafael.angarita@isep.fr

Abstract—Knowledge graph is a knowledge representation
technique that helps representing entities and relations in a
machine understandable way. This promising trend suffers from
the problem of incompleteness that was best solved by link
prediction. Indeed, link prediction is the most successful method
for understanding the structure of the large knowledge graphs.
Knowledge graph embedding KGE is one of the best link
prediction methods. Its effectiveness is mainly affected by the
accuracy of learning representations of entities and relations. In
this paper, we propose a new knowledge graph embedding model
called KEMA (Knowledge-graph Embedding using Modular
Arithmetic). KEMA has the ability to represent simple and com-
plex relations in an efficient way. Consequently, this allows our
model to outperform the majority of the existing models. Mainly,
KEMA depends on representing the relations in a knowledge
graph by modular arithmetic operations applied between entities.
Experimental results on multiple benchmark knowledge graphs
verify the accurate representation, low complexity and scalability
of KEMA.

Keywords; Knowledge Graph Embedding, Knowledge Graphs,
Link Prediction, Reasoning, Modular Arithmetic.

I. INTRODUCTION

Knowledge graph (KG) rises recently as one of the best
ways for knowledge representation. We have seen the con-
struction of many KGs of different sizes, domains, and cov-
erage, like Freebase [1], Yago [2], and WordNet [3]. KG
is a multi-relational graph built of nodes representing real
world entities such as objects and events. These entities are
connected by edges representing the relations and interactions
between them. KG is represented by a set of triplets that shows
the relations linking the entities. KG has proven to be effective
in many real-world applications like recommender systems [4],
natural language processing [5], and question-answering [6].

Although a KG may consist of a huge number of entities
and relations, it is usually incomplete. It is impossible for a
KG to cover every single entity or relation in whole world, no
matter how huge this KG is. This is called the completeness
problem of KG. This challenge represents one of the main
issues facing KGs that researchers are working to solve. Link
prediction emerges as efficient way to overcome the KG
completeness problem. Subsequently, link prediction is used
to predict not only the existence of a relation between two
entities, but also the specific type of this relation. However,

DOI reference number: 10.18293/SEKE2022-036

these predictions are infeasible using traditional methods. So
the need for novel link prediction approaches like Knowledge
graph embedding arises. Knowledge graph embedding (KGE)
methods have proven to be very effective applied in link
prediction. KGE embeds a KG into a continuous vector space
while preserving certain information of the graph. Generally,
KGE replaces any object (entity, relation, ..) with a vector
of continuous numbers holding this object semantics. Mainly,
KGE models differ in how these numeric vectors are used.
and divided into three categories accordingly. The first one is
the Translational that consider relations as a motion between
entities. The second category is Tensor factorization that uses
tensors for embedding vectors processing. The third category
is the Neural network, in which the embedding vectors are fed
to neural networks for training.

In this paper, we introduce a novel knowledge graph em-
bedding model based on the modulus operation called as
KEMA. Indeed, KEMA adopts a new way for dealing with
embedding vectors away from translational, tensor factoriza-
tion, and neural networks. Our model relies on the modular
arithmetic mathematical operation. Since modular arithmetic
is an equivalence relation, it helps handling different types
of knowledge graph relations such as symmetry, inversion,
and composition. Moreover, KEMA can deal with relations
of complex mapping patterns like one-to-many, many-to-one,
and many-to-many. To prove the effectiveness of our proposed
model, we evaluate KEMA on a set of knowledge graph
benchmark datasets including FB15k-237 [7] and WN18RR
[8], and we compared the results to state-of-the-art approaches.

The rest of the paper is organized as follows. Section II
gives an overview about different knowledge graph embedding
models existing in the literature. Section III explains the
modular arithmetic mathematical operation and its working
way. Section IV presents KEMA, our proposed model. The
obtained simulation results are exposed in Section VI. Finally,
we conclude the paper and provide directions for future work
in section VII.

II. RELATED WORK

In the literature, we can distinguish between three types of
knowledge graph embedding categories [9]: (1) Translation-

based models; (2) Tensor factorization-based models; (3) Neu-
ral network-based models.

A. Translation-based models

The first translational-based model is called TransE [10].
Typically, TransE considers the relation between two entities
as a translation operation in embedding space that starts by
the head entity and leads to the tail. A score function f is
used to compute the authenticity of the given triplet (h, r, t):
fr(h, t) = |h+r−t|. Although TransE shows a high efficiency
when applied in large-scale knowledge graph embedding, it
still struggle when dealing with complex relations such as
1 − N,N − 1, and N − N. In order to overcome such
challenge, the authors of [11] proposed an extension of TransE
called TransH. Indeed, TransH assigns a hyper-plane to each
relation, so that the heads and the tails of this relation are
projected to. This model enables each entity to have different
embedding representations depending on the relation involved
in. In [12], TransR focuses on the entities carrying various
semantic meanings. As a result, TransR expands the relation-
specific hyper-planes concept of TransH to relation-specific
spaces. Compared to transE and transH, transR makes a
significant performance improvement but still has some gaps.
One TransR weakness is sharing one projection matrix by both
head and tail. The attributes of the same entity may differ
according to its position in a relation (head / tail). To solve
this problem, TransD [12] solves this problem by creates two
different projection matrices for each single relation. The first
matrix is used for head projection and the other is for the tail
projection. Lastly, the authors of [13] proposed RotatE that
represents the relation between two entities as rotation motion
that starts from the head entity and ends by the tail.

B. Tensor factorization-based models

The idea behind tensor factorization-based models is based
on representing all the triplets of a knowledge graph in a 3D
binary tensor X . Two dimensions of X are of size n, the
number of the entities in KG, while the third dimension is of
size m, the number of relations in KG. Sr is (n∗n) slice of X
that represents the relation r. The index Sr[head][tail] of the
slice Sr is filled with 1 if the relation between the head and
the tail entities holds, otherwise it is filled by 0. The obtained
tensor X is then broken down using factorization into a set of
embedding matrices that are assigned to entities and relations.
RESCAL [14] uses Rank − d factorization to obtain three
matrices:

X = ARAT , (1)

where A is a 2D matrix carrying the semantics of the KG
entities, AT is its transpose, and R is the 3D embedding matrix
of the relations in KG. Accordingly, the scoring function of a
given triplet (h, r, t) is calculated as follow:

fr(h, r) = hTmrt, (2)

where hT is the transpose of h embedding vector, mr is
a 2D slice of R holding the relation r embedding matrix,

and t is the tail embedding vector. To reduce the calculation
complexity, a simplified version of RESCAL called DistMult
is proposed in [15].In DistMult, any relation matrix mr,
obtained after factorization is considered to be diagonal with
a score function:

F = hT diag(mr)t. (3)

This step not only facilitates calculations, but it also shows
improvement in terms of performance. Moreover, in order to
capture the pairwise compositional representations of entities,
HolE is proposed in [16]. Basically, HolE relies on a circular
correlation with the following score function

fr(h, t) = rT (h ⋆ t) (4)

HolE reduces the composite representation complexity com-
pared to tensor product. Lastly, ComplEx [17] was proposed as
extension of DistMult, where it closes the gap resulting from
the inability of DistMult to deal with asymmetric relations by
integrating a complex space as follows:

fr(h, t) = Re(ht ∗ diag(r)− t) (5)

where Re(·) denotes the real part of a complex value, and t
represents the complex conjugate of t.

C. Neural network-based models

Neural networks are used for expressing complex nonlinear
projections. They become recently a hot topic used to embed a
knowledge graph into a continuous feature space. Particularly,
Semantic Matching Energy SME [18] is a neural network-
based model that calculates the energy of a given triplet (h, r,
t) by applying two projection matrices, Mleft is applied for the
head h and the relation r embedding vectors, while Mright is
applied for relation r and the tail t embedding vectors. Then,
the results are given to a fully connected layer that returns
the score of the semantic matching energy. ConvKB [19] is
another model that uses convolutional neural network (CNN)
to capture the latent semantic information in the triplets. In
such model, the embedding vectors of the elements of a triplet
are combined to form a matrix. Then, the matrix is fed to a
convolution layer to produce multiple feature maps. Finally,
these feature maps are concatenated and projected to a score
that is used to estimate the authenticity of the triplet. Neural
Association Model NAM [20] utilizes a deep neural network
structure to represent a KG. After representing each element of
a triplet by embedding vector, it concatenates the head entity
vector and the relation vector to a single vector. The single
vector is then fed to the next layer. Finally, NAM calculates
the score by applying the output of the last hidden layer zL

with the tail embedding vector t:

fr(h, t) = σ(zLt) (6)

where σ(·) is a sigmoid activation function.

Alice

(E1)

Bob

(E2)

Spouse

(E1)

1 mod(2)

=3

1

(r)

1
.
In

p
u

t
K

n
o
w

le
d

g
e
 G

r
a
p

h

Valeria (E3)

2
.
K

E
M

A
 E

m
b

ed
d

in
g
 M

o
d

el
3
.

K
E

M
A

 M
o
d

el
 O

u
tp

u
t

1 2 5 1

5 mod(4)

=1

(E3) 3 2 1 1

2 mod(5)

=2

1

2

0

2

1 mod(2)

=1

1

1 2 1 1
2 3 2 3

1 2 5 1

3 2 1 1

2 5 4 2

, 3

, 2

3

4

13

000

Fig. 1. KEMA architecture.

III. OUR EMBEDDING MODEL: KEMA

Knowledge graph embedding is the process of representing
the entities and relations of a given knowledge graph using
numerical vectors. In this way, mathematical operations can be
applied to these vectors in order to help studying and predict-
ing the links connecting the entities. In this paper, we introduce
a new embedding KG approach called KEMA. Indeed, KEMA
does not follow any of the classifications detailed in the
related work section. It relies on one simple mathematical
operation called modular arithmetic. The objective of KEMA
is to predict the missing links connecting the entities of a
given knowledge graph. As shown in Fig. 1, first, the input
knowledge graph layer receives a knowledge graph as input.
Then, KEMA embedding layer processes the knowledge graph
components and embeds it to a low dimension continuous
space. Finally, KEMA output layer returns a representative
numerical vector for every entity and relation in the KG. These
representative numerical vectors are then used for predicting
links between KG entities.

A. Modular arithmetic

Modular arithmetic is a system of arithmetic that replaces
all the numbers by their remainders of its division to a fixed
number. Subsequently, the fixed number is an integer called
“modulus”. In modular arithmetic, every value of modulus m
can be considered as a representative space mod(m). In this
space, we can represent every integer i by its remainder r
resulting from its division by m, as shown in Equation (7).
Since all the remainders of the division by m are smaller than

m itself, then all the representative integers in mod(m) space
are smaller than m (Equation (8)).

i = m ∗ x+ r ⇐⇒ r = i mod(m), ∀ i ∈ Z, (7)

r = i mod(m) ⇐⇒ r ∈]−m,m[(8)

where m, r, x ∈ Z
Indeed, an important example to illustrate the process of

the modular arithmetic in this paper is 12-hour clock. In such
example, the modulus value is 12 and the day is divided into
two 12-hour periods. Whenever the hours count exceeds 12,
it wraps around, and returns the remainder value.

Usually, modular arithmetic produces a set of integers
having the same remainder when dividing by m. These integers
are considered equal in the mod(m) space, and are said to be
congruent (≡), as shown in Equation (9).

x mod(m) = y

z mod(m) = y

x ≡ z

(9)

B. KEMA Embedding Model

The novel idea behind KEMA is to represent the relation
between two entities through modular arithmetic operation. In
other words, the tail embedding vector is considered to be
the projection of the head embedding vector in the modular
arithmetic space of the relation embedding vector, as shown
in Equation (10).

t = h mod (r) (10)

where h, t, and r represent the embedding vectors of the head,
the tail and the relation respectively.

The second layer of our model is called KEMA embedding
model (see Fig. 1), and it shows the way the embedding vectors
are assigned for entities and relations of a given KG. KEMA
starts by assigning random vectors for entities and relations.
Then, it modifies these vectors in a way it satisfies the score
function shown in Equation (10). First, every index Eh[j]
in the vector of the head entity Eh is subjected to modular
arithmetic operation of modulus r[j], the j-th index of relation
r. Then, the vector of numbers obtained from this operation
is assigned to the tail entity E3 of the relation r.

C. Types of Relations

Despite the simplicity of the calculation process used in
KEMA, it has proved to be highly effective and accurate
compared to other models. This simplicity can also be seen in
the low complexity of both training and prediction processes.
As well as simple relations, KEMA can effectively handle
complex relations of KG such as 1-N and N-N.

1) Simple Relations: Simple relation is that connecting no
more than two entities, the head and the tail. According to the
existing literature, three types of simple relation patterns are
very important: symmetric, inverse, and composed patterns.
All these patterns are covered by KEMA embedding model as
follows:

• Symmetric Relation: This relation, switching between
the head and the tail entities of a relation is possible. A
relation r is said to be symmetric, if ∀x, y ∈ E, the set
of entities

(x, r, y) =⇒ (y, r, x) (11)

• Inverse Relation: A relation r2 is said to be inverse of
relation r1 whenever r1 and r2 have opposite directions
connecting the same entities. A relation r2 is the inverse
of r1, if ∀x, y ∈ E, the set of entities in KG

(x, r1, y) =⇒ (y, r2, x) (12)

• Composed Relation: A relation r is said to be composed,
if it can be broken down into two relations or more. A
relation r is a composed relation, if ∃ r1, r2 ∈ R, the set
of relations in KG

(x, r, z) + (z, r, y) =⇒ (x, r, y) (13)

Where x, y, z ∈ E, the set of entities.

For Modular Arithmetic

Let a, b, n ∈ Z such that:
a ≡ b(mod n)

=⇒ a− b = kn, for some k ∈ Z
=⇒ b− a = (−k)n and −k ∈ Z
=⇒ b ≡ a(mod n)

Thus modular arithmetic is a symmetric relation.

Let a, b, n ∈ Z such that:
a ≡ b(mod n)

=⇒ a− b = kn, for some k ∈ Z
=⇒ b− a = (−n)k and −n ∈ Z
=⇒ b ≡ a(mod k)

mod(n) is inverse to mod(k).
Thus modular arithmetic is an inverse relation.

Let a, b, n, c ∈ Z, such that:
a ≡ b(mod n) and b ≡ c(mod n).

then a = b+ kn, k ∈ Z and b = c+ hn, h ∈ Z.
a = b+ kn

=⇒ a = (c+ hn) + kn
=⇒ a = c+ (hn+ kn)
=⇒ a = c+ (h+ k)n, h+ k ∈ Z .

Hence a ≡ c(mod n) .
Thus modular arithmetic is a composed relation.

2) KEMA Complex Relations: The majority of the models
proposed in the literature can deal with simple relations
between KG entities, i.e 1-to-1 relations. However, relying
on simple relationships to build knowledge is impractical.
Contrarily, KEMA has the ability to handle both simple and
complex relationships.

Giving a 1-to-N relationship r, the set of tails T =
{t1, t2, ..tN} can share a unique head whenever all these tails
are congruent in mod(r) space, Equation (14). Similarly, the
set of heads H = {h1, h2, ..hN} can share the same tail

TABLE I
EMBEDDING VECTORS OF ENTITIES AND RELATIONS

Entity Embedding vector Relation Embedding vector
Bob [1,2,1,1] Spouse [2,3,2,3]
Alice [1,2,5,1] Child [2,5,4,2]

V aleria [3,2,1,1] Parent [2,4,10,2]

whenever all these heads are congruent in mod(r) space,
Equation (15). Moreover, KEMA allows the representation of
N-to-N complex relationships, in which one relation can have
several heads and tails at once, by combining both equations
(14) and (15)

t1 ≡ t2 .. ≡ tN ⇐⇒ h = t mod (r), ∀ t ∈ T, (14)
h1 ≡ h2 .. ≡ hN ⇐⇒ t = h mod (r), ∀ h ∈ H, (15)

For Modular Arithmetic

Let a, b, n, c ∈ Z such that:
a ≡ b(mod n)

then a = b+ kn, k ∈ Z
=⇒ a = b+ (k − c+ c)n
=⇒ a = b+ cn+ (k − c)n, k − c ∈ Z .

Hence a ≡ b+ cn(mod n) and a ≡ b(mod n)

Thus modular arithmetic holds for 1-N relations.

Given the 1-N relation:

a ≡ b+ cn(mod n) and a ≡ b(mod n)

Since modular arithmetic is symmetric relation, then:

b+ cn ≡ a(mod n) and b ≡ a(mod n)

Thus modular arithmetic can represent N-1 relations.
By combining the 1-N and N-1 modular arithmetic relations,

we conclude its ability to represent N-N relation, and thus
modulus can represent all the complex relation patterns.

D. Analytical example

In this section, we illustrate an example to show the
effectiveness of KEMA in terms of representing simple and
complex relations. According to the input knowledge graph
layer shown in figure 1, the sub graph shows the relations
between three entities. Table I shows the embedding vectors
that KEMA assigned to every entity and relation.

The relation “Spouse” is an example of the symmetric
relation. In Fig. 1, the output layer of KEMA shows that this
relation holds in both directions. Moreover, in Table II, the
first row shows that the tail of the relation ”Spouse” with head
entity ”Bob” is ”Alice”. On the other hand, the second row
represents the opposite direction, where the tail of the relation
”Spouse” with head entity ”Alice” is ”Bob”.

TABLE II
SYMMETRIC RELATION EXAMPLE

Head Relation Tail (result)
[1,2,1,1] [2,3,2,3] [1,2,5,1]
[1,2,5,1] [2,3,2,3] [1,2,1,1]

TABLE III
INVERSE RELATIONS EXAMPLE

Head Relation Tail (result)
[1,2,5,1] [2,4,10,2] [3,2,1,1]
[3,2,1,1] [2,4,5,2] [1,2,5,1]

In Fig. 1, the relations ”Child” and ”Parent” show the
inversion pattern of simple relations. In the first row of the
Table III, ”Alice” is the head of the relation ”Child” while
”Valeria” is its tail. In the opposite direction, the second row
shows the relation ”Parent”, where ”Valeria” is the head and
”Alice” is the tail. Then the relations ”Parent” and ”Child” are
said to be inverse.

Furthermore, Fig. 1 shows that the relation ”Spouse” is
a composed relation. Fig. 1 shows that the relation ”Child”
of head ”Alice” and tail ”Valeria”, followed by the relation
”Parent” of head ”Valeria” and tail ”Bob”, can be replaced by
the relation ”Spouse” having the same head as ”Child”, and
the same tail as ”Parent”.

2 3 2 3

1 2 5 1 1 2 1 13 2 1 1

Child Parent

Spouse

Alice Valeria Bob

Fig. 2. Composed relation example.

Indeed, the strength of KEMA in terms of representing
complex relations is shown through the relations ”Parent”
and ”Child” in Fig. 1. Since ”Parent” has one head which
is ”Valeria”, and two tails which are ”Bob” and ”Alice”, then
it is a complex relation of 1 − N mapping pattern. Whereas
”Child” relation has two heads ”Bob” and ”Alice” connected
to one tail ”Valeria”, representing N-1 pattern.

IV. SIMULATION RESULTS

In this section, we will show the experiment setting to im-
plement our model followed by the discussion of the obtained
results.

A. Experimental setting

To evaluate our model, we implemented KEMA using
Ampligraph python library. Then, we compare it to the state-

of-the-art models on two commonly used benchmark datasets:
WN18RR, and FB15K-237.

• WN18RR is a subset of WordNet, a KG that clusters
words into synonym groups and features lexical relation-
ships between words. It consists of 40,943 entities, 11
relation types, and 93003 triples. WN18RR contains sym-
metry, antisymmetry and composition relation patterns.
The main pattern is the symmetry since almost each word
has a symmetric relation in WN18RR, e.g., also − see
and similar − to [13].

• FB15k-237 is a subset of Freebase, a large knowledge
graph that stores general knowledge facts. It consists of
14951 entities, 237 relation types, and 310116 triples.
The main patterns of the relation in FB15k are symmetry,
antisymmetry and composition [13].

To train and evaluate our model, we need to use negative
triples, which are not available in both WN18RR and FB15K-
237. As a result, we used to corrupt the positive triples of the
datasets to generate negative samples for each positive. This
is what is called the local closed world assumption. That is,
for a triple, we randomly replace the entity in the subject or
the object position by another, but not both at once.

We applied three tests to evaluate the performance of link
prediction of KEMA. These tests rely on ranking each positive
test triple against all its generated negatives according to its
score. The first test is Mean Rank (MR) which is calculated
as follow:

mean(rankt) ∀t ∈ T (16)

with T is the set of positive test triples, and rankt is the
rank of triple t against its negatives.

The second evaluation test is Mean Reciprocal Rank
(MRR). It is similar to MR, but it uses the reciprocal rank
of a triple instead of its rank, what make it less sensitive to
outliers [16]:

mean(1/rankt) ∀t ∈ T (17)

The last evaluation test is Hits@N, which counts the test
triples having a rank less than or equal to N .∑

tN , where tN ∈ T, ranktN >= N (18)

B. Main Results

In our simulation, we compared KEMA to several state-of-
the-art models including TransE [10], DistMult [15], ComplEx
[17], ConvE [8], and RotatE [13]. We show the efficiency of
our proposed model inferring the relation patterns for the task
of predicting missing links. Tables IV shows the results of the
evaluation tests of our model and the state-of-the-art models
based on WN18RR and FB15K-237 datasets respectively.

FB15K-237 dataset contains symmetry, anti-symmetry and
composition relation patterns. The main pattern in this dataset
is the composition [13]. The domination of the composition
pattern can be inferred from the results shown in Table IV. So
that Table IV shows that the model TransE, representing com-
position and anti-symmetry patterns, outperforms ComplEx
model representing symmetry and anti-symmetry patterns.

TABLE IV
RESULTS OF MODELS EVALUATION ON WN18RR AND FB15K-237 DATASETS

WN18RR FB15K-237
Model MR MRR Hits@1 Hits@3 Hits@10 MR MRR Hits@1 Hits@3 Hits@10
TransE 3384 0.226 - - 0.501 357 0.294 - - 0.465
DisMult 5110 0.43 0.39 0.44 0.49 254 0.241 0.155 0.263 0.419

ComplEx 5261 0.44 0.41 0.46 0.51 339 0.247 0.158 0.275 0.428
ConvE 4187 0.43 0.40 0.44 0.52 244 0.325 0.237 0.356 0.501
RotatE 3340 0.476 0.428 0.492 0.571 177 0.338 0.241 0.375 0.533
KEMA 1898 0.477 0.442 0.486 0.543 244 0.311 0.223 0.342 0.486

Furthermore, Table IV shows the superiority of KEMA over
TransE, DistMult, and ComplEx in all the tests, due to its abil-
ity to perfectly represent composition and symmetry patterns.
On the other hand, ConvE and RotatE surpass KEMA due to
its ability to represent all the relation patterns of FB15K-237,
which is composition, symmetry, and anti-symmetry.

Table IV shows the results of the evaluation tests of KEMA
and the state-of-the-art models on WN18RR dataset. Similar to
FB15K-237 dataset, WN18RR contains composition, symme-
try and anti-symmetry relation patterns. Symmetry is the dom-
inating pattern in this dataset. This conclusion can be easily
inferred from the Table IV. So that the model DistMult, repre-
senting only symmetric relations, performs better than TransE
representing both anti-symmetry and composition patterns. On
WN18RR dataset, our model outperforms all the state-of-the-
art models. Although RotatE and ConvE both represent all
the relation patterns contained in WN18RR, KEMA surpasses
both models that confirms its high performance.

V. CONCLUSION AND FUTURE WORK

Link prediction is among the most prominent methods that
solve the problem of incompleteness of Knowledge graph. It
is used to predict the existence and the type of a relation
connecting two entities. The more the knowledge graph is
well represented, the more the predictions are accurate. In
this paper, We proposed a novel knowledge graph embedding
model (KEMA) that relies on modular arithmetic operation
in representing relations between entities. KEMA applies
modular arithmetic to the head entity with modulus equal
to the relation vector. The main strength of our model lies
in its ability to represent complex relations like one-to-many,
in addition to representing symmetry, inverse, and composed
simple relations. The results of our experiments show that
KEMA outperforms the majority of the existing models in
representation accuracy while preserving low level of com-
plexity.

In the future work, we plan to build a complete KEMA
framework that contains beside the proposed model a loss
function and a suitable negative sampling method.

REFERENCES

[1] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor, “Free-
base: a collaboratively created graph database for structuring human
knowledge,” in Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, 2008, pp. 1247–1250.

[2] F. M. Suchanek, G. Kasneci, and G. Weikum, “Yago: a core of semantic
knowledge,” in Proceedings of the 16th international conference on
World Wide Web, 2007, pp. 697–706.

[3] G. A. Miller, “Wordnet: a lexical database for english,” Communications
of the ACM, vol. 38, no. 11, pp. 39–41, 1995.

[4] F. Zhang, N. J. Yuan, D. Lian, X. Xie, and W.-Y. Ma, “Collaborative
knowledge base embedding for recommender systems,” in Proceedings
of the 22nd ACM SIGKDD international conference on knowledge
discovery and data mining, 2016, pp. 353–362.

[5] B. Yang and T. Mitchell, “Leveraging knowledge bases in lstms for
improving machine reading,” arXiv preprint arXiv:1902.09091, 2019.

[6] Y. Hao, Y. Zhang, K. Liu, S. He, Z. Liu, H. Wu, and J. Zhao, “An
end-to-end model for question answering over knowledge base with
cross-attention combining global knowledge,” in Proceedings of the
55th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), 2017, pp. 221–231.

[7] K. Toutanova and D. Chen, “Observed versus latent features for knowl-
edge base and text inference,” in Proceedings of the 3rd workshop on
continuous vector space models and their compositionality, 2015, pp.
57–66.

[8] T. Dettmers, P. Minervini, P. Stenetorp, and S. Riedel, “Convolutional
2d knowledge graph embeddings,” in Thirty-second AAAI conference on
artificial intelligence, 2018.

[9] Y. Dai, S. Wang, N. N. Xiong, and W. Guo, “A survey on knowledge
graph embedding: Approaches, applications and benchmarks,” Electron-
ics, vol. 9, no. 5, p. 750, 2020.

[10] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko,
“Translating embeddings for modeling multi-relational data,” Advances
in neural information processing systems, vol. 26, pp. 1–9, 2013.

[11] Z. Wang, J. Zhang, J. Feng, and Z. Chen, “Knowledge graph embedding
by translating on hyperplanes,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 28, no. 1, 2014.

[12] G. Ji, S. He, L. Xu, K. Liu, and J. Zhao, “Knowledge graph embedding
via dynamic mapping matrix,” in Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguistics and the 7th
International Joint Conference on Natural Language Processing (Volume
1: Long Papers), 2015, pp. 687–696.

[13] Z. Sun, Z.-H. Deng, J.-Y. Nie, and J. Tang, “Rotate: Knowledge graph
embedding by relational rotation in complex space,” arXiv preprint
arXiv:1902.10197, 2019.

[14] M. Nickel, V. Tresp, and H.-P. Kriegel, “A three-way model for collective
learning on multi-relational data,” in Icml, 2011.

[15] B. Yang, W.-t. Yih, X. He, J. Gao, and L. Deng, “Embedding entities and
relations for learning and inference in knowledge bases,” arXiv preprint
arXiv:1412.6575, 2014.

[16] M. Nickel, L. Rosasco, and T. Poggio, “Holographic embeddings of
knowledge graphs,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 30, no. 1, 2016.

[17] T. Trouillon, J. Welbl, S. Riedel, É. Gaussier, and G. Bouchard, “Com-
plex embeddings for simple link prediction,” in International Conference
on Machine Learning. PMLR, 2016, pp. 2071–2080.

[18] A. Bordes, X. Glorot, J. Weston, and Y. Bengio, “A semantic match-
ing energy function for learning with multi-relational data,” Machine
Learning, vol. 94, no. 2, pp. 233–259, 2014.

[19] D. Q. Nguyen, T. D. Nguyen, D. Q. Nguyen, and D. Phung, “A
novel embedding model for knowledge base completion based on
convolutional neural network,” arXiv preprint arXiv:1712.02121, 2017.

[20] Q. Liu, H. Jiang, A. Evdokimov, Z.-H. Ling, X. Zhu, S. Wei, and Y. Hu,
“Probabilistic reasoning via deep learning: Neural association models,”
arXiv preprint arXiv:1603.07704, 2016.

