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Abstract—Context: Current image inpainting methods show
great effects in different applications such as image editing,
object removal, art creation and soon, but lack of editability of
the inpainting results and convincing unsupervised features.
Objective: To improve the existing methods, an optimized
framework for image inpainting purpose is proposed based on
hierarchical variational auto-encoder (VAE) as well as some
optimization strategies. Method: Firstly, the VAE is used to
extract the distribution of the features of the masked image in
different scales, however, it will cause the distribution offset of
extracted features which is unfavorable for image inpainting.
Therefore, an optimal strategy that sampling the effective feature
and invalid feature separately to avoid the offset of feature
distribution of the masked image is integrated into the
framework. To further improve the formulation of the proposed
framework, the same encoder is used to realize the conversion
from two domains to the same domain, which is a benefit to
enhance the extraction of effective feature regions. In addition,
we also introduce the cycle consistency constraints and GAN
constraints into the framework to supervise the inpainting
process. Result: Experimental results on the available image
dataset demonstrate the effectiveness and superiority of the
proposed framework.
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I. INTRODUCTION
Image inpainting is always a fundamental challenge in the

field of computer vision. The key problem of image inpainting
is how to ensure the integrity and consistency of the filled area
to the adjacent, including the content, color attribute as well as
tone of the image. Methods that producing incomplete filled
effects or artificial effects between filled area and surrounding
area are no good ones. Image inpainting has been widely used
in many fields such as image editing, object removal, art
creation and other tasks [1-5]. However, most of the existing
methods that rely on GAN-based [11] image generation of
which lose the adaptation to a variety of applications.
Fortunately, in recent years VAE-based [16] image generation
strategy based on probability introduce the new path to the
current researches on image inpainting.

Previously, the GAN-based image inpainting can be
divided into the following two categories: the one-stage
inpainting method and the progressive method. For the
one-stage method [6-10], its hypothesis that all globally valid
image information can be obtained at once for image
reconstruction. Although they can ensure the consistency of
generated information and context semantics, these methods
suffer from the problem of pixel discontinuity and semantic

gap of the inpainting result, which can be found in the presence
of many missing regions [17]. The reason comes from the large
pixel difference between the known and missing regions,
which leads to a weak correlation and further produces the hole
regions.

Different from utilizing prior available features from input,
the progressive methods [23, 25-28] consider that missing
regions can not be filled completion at once. Therefore, these
kinds of methods gradually reasoning feature value in holes
region until the missing region is filled. However, these
methods fail to consider the difference and correlation between
filled areas and some other certain regions. Most importantly,
because the image inpainting is iteratively conducted at the
image level, the computational cost is very expensive. These
kinds of methods always need more efficient computing
environment.

Significantly different from the GAN-based method,
currently the VAE-based image generation methods [12-15]
can be able to generate novel and diverse image samples by
mapping the noise of normal distribution to the image.
However, if without some optimization and improvement,
these methods cannot be directly used for inpainting of
diversified scene images, the reasons are listed as follows.
Firstly, when applied these kinds of method to inpainting of
diversified scene images, the condition label is the masked
image itself and there are no paired training images in the
training dataset for each condition label. It will lead to there
are no conditional training datasets that can explicitly express
the condition distribution for the diversity masked images.
Secondly, there are strong constraints for inpainting of
diversified scene images, which means that the repaired
images should keep integrity and consistency in color and
texture with the masked image, therefore, it is more vulnerable
to suffer from mode collapse than typical image generation.

Based on the limitations of the currents methods described
above, we propose an unsupervised image inpainting
framework in this paper based on NVAE [14]. The proposed
framework relies on the assumption of implicit space sharing
of the three domains and is based on domain transformation
and differentiated sampling for finer generation effects. For the
original NVAE, the feature information decoded by the upper
sampling is more complete, the sampling points of the lower
sampling will become unavailable due to the presence of the
holes. Different from the original NVAE, the proposed
inpainting framework firstly fill the hole area and then
combine and derive the posterior distribution based on the
feature matching strategy. After that, we realize the sharing of
the same encoder within two of the domains in the form of
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additional weights since the existence of ternary domains
brings too much coding space. At last, the patch discriminator
is used to guide image generation to refine image texture. The
main innovations of the proposed framework can be
summarized as follows.
The sharing of the same encoder has been realized in

different domains through weighting the encoder in the
proposed framework.
Different sampling methods has been performed on holes

region and mask image respectively based on differentiated
sampling.
The GAN constraints has been used to refine the image and

generate texture.
The remainder of this paper is organized as follows. Section

II analyzes the related works, Section III reports our research
methodology and loss parameters, Section IV provides our
experimental procedure and results, Finally, Section V
concludes this study.

II. RELATED WORK

A. One-stage inpainting
Context encoder [6] is firstly introduced into image

inpainting for learning semantic content. Global and local [7]
discriminators are commonly used to distinguish generated
image in global and local regions while enforcing the
consistency of generated image in missing regions. Yu et al. [9]
firstly introduce patch match in deep feature for filling missing
holes. Liu et al. [22] devise a partial convolution to express
different weights for different holes region. Liu et al. [17]
design a strategy to limit the hole filling characteristics and the
relationship between adjacent and outer regions. By
introducing contour constraint, Nazeri et al. [23] propose that
contour repair can be carried out gradually to fill the global
region. Yu et al. [24] normalize pixels from the corrupted and
uncorrupted regions separately based on the original inpainting
mask to solve the mean and variance shift problem. These
methods have improved the image inpainting accuracy
somehow but lack effective constraints on the hole center and
lack effective semantic reasoning ability in some complex
scenarios.

B. Progressive inpainting
Li et al. [25] propose to leverage a shared module to

gradually repair the edge of the hole to enhance the constraint
on the center of the hole. Yang et al. [26] devise a pyramid
structure loss to supervise structure learning and embedding
for additional structural constraints. Yi et al. [27] design a
contextual residual aggregation module as the residuals of
generated features so that the incremental generation of target
features ensures the detailed texture of generated results. Zeng
et al. [28] propose a deep generation model with a feedback
mechanism, which outputs the feature map as well as the result
of the repair feature. In their method, the highly trusted feature
pixel will be used as the valid information in the next iteration.
All these methods infer subsequent features by appending the
predicted features as prior knowledge, while the repaired
features depend on the features of the previously filled area of
the hole, the essence of their methods is that the following
inferred features come from the initial effective features. This
strong correlation makes it impossible to decouple the effective
regions from the holes region.

C. VAE-based inpainting
Zhao et al. [18] use an effective reference image as the

image inpainting style and further couple the hole image with
the reference image based on cross-attention. Peng et al. [19]
develop a structural attention module based on a hierarchical
vectorized variational auto-encoder to capture the distance
relationship, which allows for a variety of repair results. Wan
et al. [20] train two variational auto-encoders to transform old
photos and clean photos into two latent spaces, respectively.
And the translation between these two latent spaces is learned
with synthetic paired data. This method generalizes well to real
photos because the domain gap is closed in the compact latent
space. Du et al. [21] introduce discrete disentangling
representation and adversarial domain adaption into general
domain transfer framework, aided by extra self-supervised
modules including background and semantic consistency
constraints, learning robust representation under dual-domain
constraints (for example the feature and image domains).
The goal of VAEs is to train a generative model in the form

of )|()(),( zxpzpzxp  where )(zp is a prior
distribution over latent variables z and )|( zxp is the
likelihood function or decoder that generates data x given
variable z . Since the true posterior distribution )|( xzp is
in general intractable, the generative model is trained with the
aid of an approximate posterior distribution or encoder

)|( xzq .
In deep hierarchical VAEs, to increase the expressiveness

of both the approximate posterior and prior, the latent
variables are partitioned into disjoint groups, z={z1, z2,...,zl},
where L is the number of groups. Then, the prior is presented
by )|()( lll zzpzp  and the approximate posterior by

),|()|( xzzqxzq lll  where each conditional in the

prior )|( ll zzp  and the approximate posterior
),|( xzzq ll  are represented by factorial Normal

distributions. We can write the variational lower
bound )(xLvae on ))(log( xp as :

 
l llllxzqvae zzpzxzqKLzxpExL ))|(||),|(()]|([log)( )|( (1)

The objective is trained using the reparameterization trick.

Figure 1. pipeline for image inpainting. The two domains are resolved into
a normally distributed space by the same weighted encoder. Multi-level
point sampling is used to obtain the distribution relations at different
levels, which is conducive to the reliability of the results.



III. PROPOSED FRAMEWORK

For the proposed framework of image inpainting, We firstly
introduce assumptions in section A. Then, we introduce in
detail the cycle-consistency constraint introduced in the
framework in section B. The implementation of the conversion
on different domains through a common encoder is described
in section C. In section D, the differential sampling method is
devised to avoid ill-posed sampling. In section E, various loss
functions are proposed, and numerical values are obtained by
calculation. Finally, we illustrate in detail the composition of
the loss function of the proposed image inpainting framework.
A. Assumption of the proposed framework
Let t and ,...)2,1( mm be true image domain and

m-th mask image domain respectively. In unsupervised
image-to-image translation, we are given samples drawn from
the marginal distribution )( tt x

P and )( mm xP . The goal is to
formulate a mapping from p1 to p2 to fill the image with holes.
Since an infinite set of possible joint distributions can yield the
given marginal distributions, we could infer nothing about the
joint distribution from the marginal samples without additional
assumptions [14].
Just as the experts can associate the masked image with the

true image and consider them as the same image, we
hypothesize that they have the shared-latent space. Explicitly,
we formulate for any given pair of images tx and

,...)2,1( mxm , there exists a shared latent code z in a
shared latent space, such that we can recover both images from
this code, and we can compute this code from each of the two
images. That is we postulate there exists functions E, G such
that, given a pair of corresponding images ),( mt xx from the

joint distribution, we have )()( **
mmtt xExEz  and

conversely )(* zGxt  . In this model the function

)(*
mtmt xFx  that maps from ))(()( ***

mmmtm xEGxF  ,
which is a many-to-one mapping. Therefore, we can
reconstruct the input image by translating it back to the
translated input image. In other words, the proposed shared
latent space assumption supports the cycle-consistency
assumption, but not vice versa.
B. Self-cycle consistency

Feature learning of missing images deviates from the real
image distribution is an important cause of learning failure,
and the learning of real valid features will fix the distribution
ambiguity caused by this ill deviation. Our goal is to focus on
learning the best *

tmF  .The migration feature of

ill-conditioned mx will make the adaptive relationships within
the model become locally valid. In the process of learning and
training, the local adaptation relationship is further enhanced,
and the encoder can't learn the distribution scheme that follows
the whole real sample. This is fatal for re-parameterized
sampling prior to decoding due to the offset of the distribution.
Therefore, we can apply self-cycle consistency constraints in

the proposed framework to further regularize the ill-posed
unsupervised image inpainting problem. Formally,

))((: **
ttt xEGx  . This ensures complete representation

learning within the image range.
C. Encoder-sharing

Based on the assumption of the shared implicit space
proposed above, the true image and the masked image are
distributed in different domains, so it is a good scheme to use
two different encoders to map different domains. However, it
notes that because two different encoders learn different spatial
features, it does not transfer the learned mapping relationship
to the masked image. Correspondingly, we use the same
encoder to realize the transformation of two different domains
to the same domain through the dynamic weighting method.
Formally, we specify the input feature as X and the mask as M.
we can get ** : tm EME  . Similarly, the mask is updated by
the following rules:



 


otherwise

MXsumif
m

,0
0))((,1

' (2)

To implement the shared latent space assumption, we
further assume a shared intermediate representation h such that
the process of generating a pair of corresponding images
admits a form of.

Figure 2. sampling module. The feature distribution obtained by the encoder
is firstly filled with the hole features by the block matching strategy.
Secondly, the decoded features from the high-level distribution sampling are
concatenated to the repaired features to further obtain the joint feature
distribution.

D. Distinctive Sampling
The absence of content leads to the ill-conditioned

representation of true distribution features, and this
ill-conditioned representation further limits sampling errors



due to global content sampling. Correspondingly, the sample
errors further lead to the blurring and artificial imprinting of
inpainting areas. The fundamental reason for this phenomenon
is the use of consistent feature re-parameterized sampling for
both valid and invalid feature regions, while ignoring the
undesirable bias of invalid feature regions. Therefore, we
conduct differentiated sampling in this region, which will no
longer sample the features as a whole alone, but focus on the
inpainting of sample bias in invalid feature regions. Moreover,
it can not be ignored that the characteristics of invalid areas of
different sizes and locations correspond to the different
distribution of environmental characteristics, so we perform
the sampling based on the joint distribution of the environment,
regardless of the size and location of the region of the holes.
Actually, we formulate an equation )|( xzqf i

i  . To
obtain the feature distribution of the hole region, we match the
similarity of the patch region.
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where i
yxyxsim ',',, indicates the similarity between the

feature at the location of ),( yx and )','( yx . Further, the
softmax function is used to calculate the attention
score )max( ',',,',',,

i
yxyx

i
yxyx simsoftscore  . Eventually,

attention scores are used to reconstruct the feature distribution.

 i
yx

i
yxyx

i
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ˆ (4)
The results of the filled feature distribution are linked to

the prior distribution from the upper-level, and the joint
probability distribution ),|( 1ii zxzq is obtained from the
existing residual blocks.
E.Loss Function

The loss function of the proposed framework for image
inpainting includes the sum of the three sub-loss functions, the
KL divergence loss, the reconstruction lass as well as the GAN
constraints. Details of the loss functions are described as
follows.
1) KL Divergence Loss
Inspired by NAVE hierarchical sampling, we adopt a similar

strategy for deeper-levels sampling. Practically, we examine
the KL term in vaeL , as illustrated in equation

KL(q(��|x)| p �� = 1
2

∆��
2

��
2 + ∆��2 − ���∆��2 − 1 (5)

where ∆�� and ∆�� are the relative location and scale of the
approximate posterior concerning the prior
2) Reconstruction Loss
Our network translates instance images into completion

images in an unsupervised way. At times, the instance image is
different from the corresponding completion image in pixel
level. It is desired that the instance image is the same as the
corresponding completion image in low-dimensional visible
space. Therefore, the latent space loss is defined as:

����� = ||��∗ �� − ��∗ � ��∗ �� ||1 (6)

For each masked image mx there is only one ground

true image tx corresponding to it. When its corresponding

ground truth image tx is used as the guided instance image,

the output of the generation module is tx . Therefore, an
identical reconstruction constraint is needed, which is defined
as follows:

����
� = ||�� − �(��∗ (��))||1 (7)

3) GAN Constraints
To refine our generation effects, we use a patch

discriminator to activation the mapping of different range.
The adversarial loss is defined as:

))))](((1log()(log[maxminL *
~~

,
adv * mmPdataxtPdatax

DEG
xEGDExDE

mt
m

 (8)

4) Total Loss
As is shown in equation (9), the total loss of our

method consists of three groups of component losses.
������ = �������� + ���� ����� + ����

� + �������� (9)
IV. EXPERIMENTS

The effectiveness and the superiority of the proposed
framework for image inpainting are tested on the CelebA
dataset [29]. The CelebA dataset contains more than 180,000
training images of face images. All images are re-sized and
cropped to 256×256 for training and testing. Our framework is
trained using the Adam [30] optimizer with the batch size of 6.
We use the initial learning rate as 1e-4 to train the framework,
and the learning rate is fine-tuned with learning rate of 5e-5
and decay rate of 0.02. We compare our method with several
state-of-the-art methods based on the above-mentioned dataset.
The qualitative comparisons between proposed framework
and other methods are presented in Figure 3. Compared to
other methods, the proposed framework shows more
consistency with the true face effect in general and the result
produced by the proposed framework with more detailed
texture, but the image with some blur.

In addition, we also perform the quantitative comparison
between the proposed framework with the NVAE method. It
should be note that since the first three methods cannot
generate diverse results for image inpainting, therefore these
methods have only single output in the numerical comparison
with the proposed framework, so the quantitative comparison
is only performed to the NVAE method. The metrics of the
quantitative comparison is summarized in Table 1 for the
CelebA dataset. It can be seen that the proposed framework
has better image reconstruction accuracy than NVAE for all
the tested metrics of SSIM, PSNR, and MEAN l1. More
detailed results are presented as follows.

Figure 3. Qualitative comparisons the inpainting effect of the proposed
framework (Ours) and existing methods on the CelebA dataset.



A.Diverse Generation
As is reported in section III, since our framework covers

multiple levels of sampling, and the sampling parameters can
be customized for each level of sampling deviation, of which
ensures a variety of results generated. Figure 4 shows the
inpainting results when setting different level of sampling
parameters. It is showed that under different sampling
parameters, the images generated by the guidance have
different local features such as mouth shape. Visually
compared to the NAVE method, the proposed framework
produces more fine textures for the repaired images.

Figure 4. Under different sampling deviations, our method produces better
texture characteristics than other method.

SSIM PSNR MEAN l1
(%)

NVAE 0.7055 25.3406 4.0404

Ours 0.7649 27.7054 3.2793

Table 1. Quantitative comparison the inpainting accuracy of the
proposed framework (Ours) and NAVE method on CelebA

dataset.
B. Effectiveness of Distinctive Sampling

In the proposed framework, we introduce the
differentiated sampling module. The differentiated sampling
module is essentially a feature repair stack, which is
conducive to obtaining more accurate feature distribution
information. In order to verify the validity of this module, we
test the image inpainting effects with and without the
corresponding module in the proposed framework. The
comparison is presented in Figure 5. We can see that with the
distinctive sampling module we get more pleased inpainting
result, where the evaluation metrics of SSIM, PSNR, MEAN
L1 get improvement with the distinctive sampling module.

Input Without Distinctive
Sampling

0.6672/23.2338/5.1048

Distinctive Sampling
0.7364/26.3136/3.8974

Figure 5. Comparison of image inpainting results with and without the
corresponding module in the proposed framework (ssim/psnr/mean l1).
The effectiveness of distinctive sampling can be inferred from metrics
of SSIM, PSNR and MEAN l1.

V.CONCLUSIONS
In this paper, we propose an unsupervised image inpainting

framework, of which can ensures the generation of credible
results through domain sharing hypothesis with KL and
refactoring constraints. We come up the strategy of encoder
sharing to greatly simplifies the proposed framework. In
addition, in order to ensure the repaired image have great
consistent texture features with ground truth in the hole areas,
we also devise a differentiated sampling strategy to
distinguish the sampling parameters of the mask region and
the effective region. Experimental results show the
effectiveness and superiority of the proposed framework,
which verifies the hypothesis behind the proposed method.
However, there still have some defects for the proposed
framework in current stage, for example, the blur
phenomenon in the generated images. On one hand, this
phenomenon comes from the limitation of VAE-based image
generation. On the other hand, some features of the input
image are missing, which will inevitably lead to the deviation
of the overall features of the image. Although we have filled
the missing features in the generation process of the proposed
framework, however, this deviation is irreversible. In the next
step of our research, we are going to address this issue and
further improve the image inpainting effect.
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