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Abstract—Similarity measurement is an important basis in time 

series analysis. Among them, dynamic time warping distance 

(DTW) is considered to be the most effective distance 

measurement method. However DTW’s huge computational 

overhead is difficult to meet the application requirements in the 

era of big data. Previous optimization methods often focus on 

reducing unnecessary calculation objects and do not involve 

warping distance calculation itself. After studying many related 

optimization algorithms, we propose a DTW matching algorithm 

based on key structure point alignment. By extracting the key 

structure points of time series and calculating the warping 

alignment relationship between the key structure points, the 

constraint range of the cumulative distance matrix of the 

approximate optimal warping distance from the path is mapped, 

which greatly reduces the amount of calculation of the distance 

cumulative matrix, then approximate warping distance can be 

calculated quickly. The experimental results show that the 

calculation speed of our method is significantly improved 

compared with the traditional algorithm in similarity matching, 

and it also has a good performance in classification accuracy. 

Keywords-time series; data mining; dynamic time warping 

distance 

I.  INTRODUCTION  

Time series is a concept derived from data mining, which 
generally refers to an ordered set of the same statistical index 
values arranged according to their time order. The analysis of 
time series has made important applications in the fields of 
finance, medical treatment, meteorology, geology and so on[1-
4]. 

The similarity measurement is an important basis of time 
series analysis. Comparing and judging the similarities and 
differences of two groups of time series can further realize the 
classification and clustering of time series, thus it can be used as 
an important basis for time series analysis. In related research, 
distance is usually used as the measure of similarity between 
time series. The smaller the distance is, the more similar the time 
series is. Euclidean distance is the most classical time series 
distance measurement, which is simple and fast to calculate, but 
the calculation method of point-to-point alignment can not be 

used for the comparison of unequal time series, nor can it solve 
the problems of distortion, scaling and drift on the time axis, so 
it is rarely used in practical application. 

Another common classical distance measure, dynamic time 
warping (DTW)[5], has been proposed for many years and still 
plays an important role. It aligns each series point through 
dynamic programming to find the minimum cumulative distance, 
allows warping alignment in time axis, and solves the limitation 
of Euclidean distance, but the calculation cost of cumulative 
distance matrix is large, The time complexity of DTW is O(n2), 
which is hard to apply to the time series analysis of big data. 

Many other distance measurement algorithms have also been 
proposed. For example, the symbolic editing distance based on 
time series (EDR)[6], the longest common subsequence 
(LCSS)[7], the most similar subsequence (TSW)[8], etc. they are 
also algorithms based on dynamic programming, which has 
considerable time  complexity compared with DTW. In addition, 
there are non dynamic programming methods, although the 
complexity is lower, but the accuracy is often insufficient. The 
maximum shifting correlation distance[9] has only the time 
complexity of O(n). It finds the maximum Pearson correlation 
coefficient of the two time series through the sliding window to 
obtain the approximate distance. The fragment alignment 
distance[10] uses the approximate derivative and the number of 
continuous segments of each segment of the sequence to 
represent a segment of subsequence, and calculates the distance 
in the way of approximate diagonal alignment. Since the 
complex alignment is not considered, the computational 
complexity is reduced to linear. The fluctuation features  
distance[11] considers the trend change of time series and 
calculates the distance by weighting the change value. The 
MPdist[12] uses the method of matrix representation of the 
sequence, divides the sequence into multiple subsequence 
groups, puts forward the closest subsequence pair to form a 
sequence, and takes a large enough value as the distance result. 

However, due to its excellent universality and matching 
accuracy, DTW is still difficult to replace. In order to solve the 
computational cost of DTW, researchers have proposed many 
methods, such as the following boundary distance[13,14], early 
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abandonment[15]. At the ACM SIGKDD conference, Thanawin 
et al.[16] proposed the UCR suite, which integrates important 
DTW acceleration methods in the past. These methods try to 
skip the calculation of part of the warping distance, so as to save 
the overall calculation time, and do not involve the calculation 
of the warping distance itself. Another idea is to reduce the 
dimension of time series, and then calculate the distance by 
dynamic programming as usual. Pr-DTW[17] method represents 
the segmented time series by weighting multiple statistical 
indicators, and calculates the distance after greatly reducing the 
amount of data. Soft-DTW[18] proposes a method to find the 
approximate warping path by subdividing the warping distance 
matrix step by step, which does not need to calculate the 
complete warping distance matrix. 

Based on these studies, this paper proposes a distance 
measurement algorithm based on key point alignment. The 
cumulative distance is calculated by finding the near optimal 
path through the key points, which significantly reduces the 
computational complexity. The algorithm in this paper is used 
for the measurement of 1-NN classifier for experimental test. 
The results show that compared with the traditional algorithm, 
the algorithm in this paper significantly reduces the time cost and 
maintains good matching accuracy. 

II. PRE KNOWLEDGE 

A. Classical dynamic time warping method 

Set the time series as 𝑋{𝑥1, 𝑥2, 𝑥3, … … 𝑥𝑚} , and 𝑌{𝑦1,
𝑦2, 𝑦3, … … 𝑦𝑛}, define the DTW distance between the two time 
series as DTW (X, Y), and construct an matrix D of size m × n, 

calculate the value of each matrix element D[i][j] (i∈[1, m], j∈
[1, n]) according to the following method: 

𝑫[1][1] = 𝑑(1,1)       (1) 

𝑫[𝑖][𝑗] = 𝑑(𝑖, 𝑗) + min {

𝑫[𝑖 − 1][𝑗]

𝑫[𝑖][𝑗 − 1]

𝑫[𝑖 − 1][𝑗 − 1]
 (2) 

𝑑(𝑖, 𝑗) = |𝑥𝑖 − 𝑦𝑗|  or  (𝑥𝑖 − 𝑦𝑗)2   (3) 

Then D[m][n] is DTW (X, Y). In the process of calculating 
DTW (X, Y), connect the minimum values of D[i][j] to obtain a 
path of warping distance accumulation:  

𝑝𝑎𝑡ℎ = {(1, 1), … … (𝑖, 𝑗) … … , (𝑚, 𝑛)}           (4) 

where the two values in each binary represent two elements 
from two time series, and i and j represent their time axis 
positions in their respective series. When path can make the 

cumulative distance function ∑  𝑑(𝑥𝑖 , 𝑦𝑗)
𝑙𝑒𝑛(𝑝𝑎𝑡ℎ)
𝑖,𝑗 𝑖𝑛 𝑝𝑎𝑡ℎ gets the 

minimum value, that is, DTW (X, Y), at this time, the path is 
called the optimal alignment path of these two time series, and 
each pair of binary in the path is called the "alignment" 
relationship.  

B. Constraint range 

The calculation of DTW (X, Y) needs to traverse all elements 
in the calculation matrix. Its complexity is O(m×n) , can be 
recorded as O(n2). Global constraint is an idea of optimizing 

DTW distance calculation, which reduces the amount of 
calculation by limiting the cumulative range of warping distance. 
For 𝑋{𝑥1, 𝑥2, 𝑥3, … … 𝑥𝑚}  and 𝑌{𝑦1 , 𝑦2, 𝑦3, … … 𝑦𝑛} , the 
element that far from the diagonal in the warping distance matrix, 
such as D[1][n], reflect the alignment between the first element 
in X and the last element in Y. This means that time series is 
aligned with the time axis in a very distorted state.  

This alignment usually does not conform to the actual 
situation. The value on the matrix is often too large to be added 
to the final result. In fact, this part of the calculation can be 
omitted. In the methods of Itakura constraint[19] and Sakoe-
Chuba constraint[20], as shown in Figure 1, the calculation 
range is limited near the diagonal of the warping distance matrix, 
as  the dark part in the figure.  

However, this global constraint method lacks flexibility. If 
the alignment path is outside the constraint range, there will be 
a large error between the calculation result and the optimal 
distance. When the alignment path is in the constraint range, 
there is still a large computational overhead. 

 

Figure 1.  Itakura constraint and Sakoe-Chuba constraint  

 

III. METHOD 

In fact, to get the final DTW distance value, only needs to 
calculated the value on the optimal alignment path in the matrix. 
Because the value on the path only depends on the minimum of 
the three candidate cumulative distance values. The problem is 
that the optimal alignment path cannot be known until the 
complete warping matrix is calculated, but the near optimal 
alignment path can be found through some methods. By 
constraining the calculation range of the waping distance matrix 
near the near optimal path, a very close DTW distance can be 
obtained. 

A. Find key structural points 

Due to the continuity of the time series, a few key structural 
points in the time series can reflect the approximate trend shape 
of the whole time series image. Therefore, a set 𝑋′{(𝑘1, 𝑥𝑘1)，
(𝑘2, 𝑥𝑘2), (𝑘3, 𝑥𝑘3), … … (𝑘𝑝, 𝑥𝑘𝑝)}  can be used to represent 

time series 𝑋{𝑥1, 𝑥2, 𝑥3, … … 𝑥𝑚}  approximantely. Where ki 

represents the time axis position of each key structure point, p is 
the number of key stuctural points in the time series image, and 
p is much smaller than m. 

In order to find the key points of the time series, firstly use 
the PAA[21] method to process the time series data to reduce the 
noise jitter of the time series image and improve the operation 
efficiency. Then the extreme points in all time series image 
points should be screened. The left and right derivatives of the 
extreme points are opposite, as shown follows: 



{𝑥𝑖|(𝑥𝑖 − 𝑥𝑖−1)(𝑥𝑖+1 − 𝑥𝑖) < 0}    (5) 

And add those non extreme points 𝑥𝑖  with large turning 
points, as shown follows: 

{𝑥𝑖||𝑎𝑟𝑐𝑡𝑎𝑛(𝑥𝑖 − 𝑥𝑖−1) − 𝑎𝑟𝑐𝑡𝑎𝑛(𝑥𝑖+1 − 𝑥𝑖)| > 𝛾}    (6) 

Where γ is the threshold, its value is π/6 in this paper. 

Some time series data may have local jitter, resulting in the 
aggregation of key points in a small section. In order to ensure 
that the key points reflect the overall morphological trend of the 
time series, these points need to be further filtered to reduce local 
aggregation. When the distance between a newly added key 
point and the previous key point is lower than the threshold 𝛾𝑐, 
it will not be added to the key points set. And 𝛾𝑐  can be 
calculated as equation (7): 

𝛾𝑐 = 0.1 ∗ √(max(𝑥) − min (𝑥))2 + 𝑚2 (7) 

In addition, the first and last points of each time series are 
specified as key points. 

 Assuming that there are time series 𝑋{𝑥1, 𝑥2, 𝑥3, … … 𝑥𝑚} 
and 𝑌{𝑦1, 𝑦2 , 𝑦3 , … … 𝑦𝑛} , 𝑋′{(𝑘1, 𝑥𝑘1), (𝑘2, 𝑥𝑘2), … … ,
(𝑘i, 𝑥𝑘i), … … (𝑘𝑝, 𝑥𝑘𝑝)}  and 𝑌′{(𝑙1, 𝑦𝑙1),  (𝑙2, 𝑦𝑙2), … … , (𝑙j,
𝑦𝑙j), … … (𝑙𝑞 , 𝑦𝑙𝑞)} are obtained after key point filtering. Where 

ki and lj respectively represent the time axis position of key 
points in the corresponding time series, and p and q are the 
number of key points in the corresponding time series. 

B. Key structural points alignment 

Elements of the distance accumulation matrix K of the key 
point sequence  𝑋′ and 𝑌′ is calculated as follows, and the size 

is p×q: 

𝑲[1][1] = 𝑑𝑘(1,1)          (8) 

𝑲[𝑖][𝑗] = 𝑑𝑘(𝑖, 𝑗) + min {

𝑲[𝑖 − 1][𝑗]

𝑲[𝑖][𝑗 − 1]

𝑲[𝑖 − 1][𝑗 − 1]
 (9) 

𝑑𝑘(𝑖, 𝑗) = |𝑥𝑘𝑖 − 𝑦𝑙𝑗| ∗ (1 + |𝑘𝑖/𝑘𝑝 − 𝑙𝑗/𝑙𝑞|) (10) 

When calculating the distance accumulation matrix of key 
points, in addition to calculating the difference of time series  
elements corresponding to key points, it can be multiplied by the 
correction value of time axis position to obtain a more 
reasonable alignment relationship. After calculating the 
cumulative distance matrix K of key points, the optimal 
alignment path of key points pathkp can be obtained. 

We get the pathkp reflecting the alignment relationship of key 
points. Due to the morphological continuity of time series, the 
alignment relationship between key points will be affected by 
key points. We can approximate the alignment path of the 
original time series by mapping the alignment path of the key 
points. 

C. Mapping to original distance matrix 

Construct the cumulative distance matrix D of the original 
time series, with the size of m×n. The corresponding points in 

the pathkp obtained in the previous step are mapped into the 
warping distance matrix of the original time series. 

For each (i, j) in pathkp indicates that the key point (𝑘i, 𝑥𝑘i) 
from 𝑋′  is aligned with (𝑙j, 𝑦𝑙j)  from 𝑌′ , and mapped to the 

original distance matrix D is [𝑘𝑖][𝑙𝑗]. Each group of alignment 

relations in the pathkp are mapped to D in turn to obtain a series 
of points on the near optimal path of the original time series, as 
shown in Figure 2. 

Connecting them, as shown in the red part of the matrix in 
Figure 3, we can get a path similar to the optimal alignment path 
(the gray part of the matrix). As shown in Figure 4, expand the 
connection path outward by r areas range. The greater the value 
of r, the closer the result to the optimal distance can be obtained. 
In this paper, r = 1, and the final distance calculation constraint 
range can be obtained. 

 

Figure 2. Mapping to distance matrix    

 

Figure 3. Approximate alignment path 

 

Figure 4. Constraint range 



D. Calculate distance under the constraint range 

Through the above methods, we get a constraint range close 
to the optimal warping path, which is based on the key structure 
alignment of the time series. Compared with the global 
constraint, it is more suitable for the actual alignment of the time 
series.  

Under the constraint range, the calculation of distance matrix 
can be reduced, the result is closer to the optimal distance, and 
no need to traverse the entire distance matrix, but only the part 
of the matrix within the constraint range. The pseudo code for 
calculating the near optimal warping distance under the 
constraint range is as follows: 

Algorithm 1 Constrainted warping distance 

Input: Constraint C , series X and Y 

Output: Distance  

dist(1, 1) = d(1,1) 

for (i, j) in C 

  if (i-1, j) in C 

d1 = d(i-1, j) 

if (i, j-1) in C 

d2 = d(i, j-1) 

if (i-1, j-1) in C 

d3 = d(i-1, j-1) 

  dist(i, j) = min(d1, d2, d3) 

return dist(C.end) 

 

IV. EXPERIMENTAL 

UCR[22] is a representative data set in time series research. 
It contains 128 sub data sets from different sources, and the 
amount of data is very abundant. So we chose to run the 
experiment on the UCR dataset. In the experiment we take the 
measurement algorithm in this paper as the distance 
measurement of 1-NN classifier, preprocess it with PAA 
reduction method and Z-score standardization, and test its 
classification performance. We mainly investigate its running 
time and classification error rate, reflecting the calculation 
efficiency and matching accuracy of the algorithm respectively. 
We selected four algorithms DTW, EDR, LCSS, and TSW as 
the control. TABLE I lists the basic information of the data sets 
used. 

In PAA reduction, we can control the processed time series 
length by modifying the window w size of PAA. The larger w is, 
the smaller the processed length is. When w = 1, the original time 
series is returned. We counted the time taken by each algorithm 
to complete a similarity search on the arrowhead training set for 
the same data set. Figure 5 shows the change of each algorithm 
time with the PAA window w. Among them, KPDTW is the 
algorithm of this paper, and the rest are four control algorithms. 
In the chart, as the w value increases, that is, the time series 
length decreases. We can see the time of the control algorithm 
decreases sharply, and the time of the algorithm in this paper 
decreases gently, which is lower than that of the control  
algorithm. Conversely, as the w value decreases, that is, the time 
series length increases, the time of the control algorithm 
increases sharply, while the time growth of the algorithm in this 
paper is relatively flat. This shows that the algorithm in this 

paper has better time complexity performance when the amount 
of data increases. 

TABLE I.  DATA SET INFORMATION  

Name of data set 
Size of 

train sets 

Size of 

test sets 
length 

Number 

of classes 

Adiac 390 391 176 37 

ArrowHead 36 175 251 3 

BME 30 150 128 3 

CBF 30 900 128 3 

Coffee 28 28 286 2 

CricketX 390 390 300 12 

ECG200 100 100 93 2 

FaceAll 560 1690 131 14 

GestureMidAirD1 208 130 Vary 26 

GesturePebbleZ1 132 172 vary 6 

Gunpoint 50 150 150 2 

Lightning7 70 73 319 7 

OliveOil 30 30 570 4 

Plane 105 105 144 7 

ShapesAll 600 600 512 60 

Symbols 25 995 398 6 

ToeSegmentation1 40 228 277 2 

Trace 100 100 275 4 

TwoPatterns 1000 4000 128 4 

UMD 36 144 150 3 

UWaveGestureLibra

ryX 
896 3582 315 8 

Wafer 1000 6164 152 2 

WordSynonyms 267 638 270 25 

Yoga 300 3000 426 2 

 
 

Figure 5. The relationship between spend time of each algorithm and w 

(ArrowHead dataset) 

 
 

By running the classification test under 24 data sets, Figure 
6 shows the cumulative running time of each algorithm. It can 
be seen that with the increase of the running data set, the 
cumulative time growth of the control algorithm is significantly 
higher than that of the algorithm in this paper which is expressed 
in KPDTW, especially in the data set with longer length, the 
running time will rise sharply. After running the classification 
tasks of 24 data sets, the algorithm in this paper saves several 
times the time overhead compared with the control algorithm. 



In TABLE II, the classification error rates of different data 
sets of this algorithm and four control algorithms under 1-NN 
classifier are listed. The lower the error rate, the more accurate 
the matching result is. The algorithm with the best performance 
will be expressed in bold. The results show that the algorithm in 
this paper has excellent performance in five algorithms, achieves 
low error rate in 24 data sets, and the average ranking is slightly 
better than DTW algorithm. 

Figure 7 shows the error rate comparison between the 
algorithm KPDTW in this paper and the control algorithm. It can 
be seen that the algorithm in this paper is highly close to DTW. 

 

 

Figure 6. The accumulated time of each algorithms 
 

TABLE II.  CLASSIFICATION ERROR RATE OF ALGORITHM 

Name of data set 
Error rate 

KPDTW DTW EDR LCSS TSW 

Adiac 0.399 0.391 0.859 0.849 0.847 

ArrowHead 0.251 0.210 0.268 0.229 0.234 

BME 0.060 0.053 0.167 0.193 0.227 

CBF 0.002 0.004 0.009 0.013 0.007 

Coffee 0.036 0.000 0.071 0.071 0.071 

CricketX 0.267 0.297 0.464 0.428 0.490 

ECG200 0.120 0.150 0.310 0.170 0.140 

FaceAll 0.015 0.025 0.050 0.045 0.090 

GestureMidAirD1 0.346 0.362 0.477 0.777 0.685 

GesturePebbleZ1 0.181 0.175 0.199 0.649 0.333 

Gunpoint 0.067 0.087 0.160 0.080 0.093 

Lightning7 0.288 0.288 0.341 0.301 0.301 

OliveOil 0.167 0.133 0.833 0.833 0.833 

Plane 0.000 0.000 0.028 0.000 0.000 

ShapesAll 0.145 0.198 0.230 0.130 0.100 

Symbols 0.053 0.062 0.179 0.104 0.124 

ToeSegmentation1 0.145 0.170 0.195 0.215 0.145 

Trace 0.010 0.010 0.030 0.230 0.110 

TwoPatterns 0.000 0.002 0.050 0.090 0.095 

UMD 0.028 0.028 0.139 0.250 0.243 

UWaveGestureLibrar

yX 
0.297 0.227 0.343 0.300 0.350 

Wafer 0.005 0.005 0.055 0.000 0.005 

WordSynonyms 0.280 0.262 0.455 0.340 0.345 

Yoga 0.188 0.156 0.274 0.178 0.188 

Average ranking 1.542 1.583 4.167 3.375 3.417 

 
Figure.7  Error rate comparison of algorithms 

 

V. RESULT ANALYSIS 

As the most robust distance measurement method, DTW can 
ignore the distortion and stretching of time series in time axis 
through warping alignment, which has a good performance in 
many data sets. The algorithm in this paper is based on DTW 
and obtains the approximate optimal alignment relationship 
through the alignment of key points. The better the key point 
series fits the original time series, the closer the approximate 



distance is to the DTW distance, and the matching accuracy of 
the experimental results is also similar to DTW.  Although the 
algorithm in this paper obtains the approximate distance, the 
approximate distance also reduces the influence of local noise, it 
has achieved better results in the matching accuracy under some 
data sets. Compared with DTW, the algorithm in this paper only 
sacrifices little accuracy, but the computational efficiency is 
significantly improved. 

Let the length of the time series be n, the time complexity of 
extracting the time series of key points be O(n), the number of 
key points be p, the time complexity of key point alignment and 
near optimal path generation be O(p2), the constraint range 
obtained is a fixed width, and its coverage is only linearly related 
to the data length. So the time complexity of calculating the near 
optimal distance under the constraint is O(n), The final total time 
complexity of calculating the distance once is O (p2 + n). 

In the worst case, that is, each point of the time series 
sequence is taken as the key point, it becomes the same time 
complexity O (n2) as DTW algorithm. Generally, considering 
that the number of key structure points is often much less than 
the length of the whole time series, generally p << n, the 
complexity of this algorithm is significantly lower than O(n2) of 
DTW. The experimental results verify this. 

VI. SUMMARY 

In this paper, a time series matching algorithm based on the 
key points alignment is proposed. It constructs the approximate 
constraint range based on the alignment relationship of key 
points, which significantly reduces the computational overhead 
of distance matrix. The experimental results under multiple time 
series data sets show that compared with the traditional 
algorithm, the algorithm in this paper significantly improves the 
computing speed while maintaining good matching accuracy. 
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