
Problem-specific knowledge based artificial bee
colony algorithm for the rectangle layout
optimization problem in satellite design

Yichun Xu1,2,Shuzhen Wan2,Fangmin Dong2

1Hubei Province Engineering Technology Research Center for Construction Quality Testing Equipments
2College of Computer and Information Technology

China Three Gorges University, Yichang 443002, Hubei, China
xuyichun@ctgu.edu.cn, wanshuzhen@163.com, fmdong@ctgu.edu.cn

Abstract—The layout optimization problem is brought from
the design of the recoverable satellite, where a set of objects
(equipments or devices) are required to be installed on a circular
load board. The aim of the problem is to find a layout of
the objects with no interference, less unbalance, and less space
occupied. Artificial bee colony (ABC) algorithms show good
performance in many engineering problems. In this article,
based on the analysis of the solution distribution, a problem-
specific knowledge based ABC is proposed, which is configured
with special initialization and parameter settings. On an open
benchmark with ten instances, the proposed ABC is compared
with two widely used algorithms. Its performance outperforms
the genetic algorithm on all the instances, and outperforms the
quasi-human algorithm on nine instances.

Keywords—swarm intelligence; artificial bee colony algorithm;
layout optimization problem; weighted rectangle packing

I. INTRODUCTION

In the design of the recoverable satellite, some objects
(devices or equipments) are required to be installed on a
circular load board (Fig. 1). Three kinds of constrains or
objectives should be concerned: 1. There should be no inter-
ference between objects. 2. The layout of the objects should
be compact so that they occupy less space. 3. The unbalance
of the system should be small enough, so the system is easy to
control. In this article, we study the two-dimensional problem
that the shapes of the objects are modeled as rectangles, which
is called the rectangle layout optimization problem (RLOP).

RLOP was first proposed in [1], where the authors studied
the isomorphism of the layouts by graph theory and group
theory, and then proposed a global optimization framework.
From then on, some meta-heuristics were proposed for this
problem, such as the genetic algorithms (GA)[2], the particle
swarm optimization (PSO) [3, 4], the simulated annealing
algorithm (SA) [5], and the ant colony optimization (ACO)
[6]. Another class of algorithms are based on the quasi-physics
and quasi-human strategies [7], that an elastic potential energy
function is defined to measure the overlaps between objects,
and then the overlaps are reduced by the elastic force step by
step. Recently, [8] proposed a three-dimensional model, that

DOI reference number: 10.18293/SEKE2022-014

(a) 3D model (b) 2D model

Fig. 1: Installing equipments on the load board of a recoverable
satellite

the items have height and there are multiple layers to install
the items. Except for assigning a layer for each item, their
layout optimization algorithm is basically an application of the
algorithm for two-dimensional models. In general, the existing
algorithms are with good results on the small-scale RLOP.
With the increase of the rectangle numbers, they become time
consuming and the solutions decline in quality.

This article aims at designing a new algorithm for RLOP
with the help of some “guiders”. The main idea is based
on the observation that in a good layout, the bigger and the
heavier objects often locate at the center of load board. This
observation leads us to design a new greedy strategy. We
then combine the greedy strategy into an artificial bee colony
(ABC) framework. The artificial bee colony (ABC) algorithm
is a kind of nature-inspired optimizer in swarm intelligence
proposed by Karaboga [9]. Because ABC algorithm needs
fewer parameters and the performance is often good, it is very
popular in most engineering fields [10].

On an open benchmark with ten instances, the performance
of the proposed ABC outperforms the widely used genetic
algorithm [2] and the quasi-human algorithm [7].

II. MATHEMATICAL MODEL

In two-dimensional case, we need to pack a set of rectangles
with masses into a containing circle as Fig. 1(b). For the
constraints, the rectangles cannot overlap each other, and the
center of mass of the system should be near the center of
the containing circle to keep the equilibrium. The aim of the

problem is to minimize the envelopment circle which covers
all the rectangles. The problem can also be stated as follows.

Define n rectangles by a list R = (l1, w1,m1), (l2, w2,m2),
. . . , (ln, wn,mn), where li, wi, and mi are the length, the
width, and mass of rectangle i. Assume the center of mass
and shape is located at the same point in each rectangle. In
a two-dimensional Cartesian coordinate system, we set the
Cartesian origin to the center of the containing circle. The
list X = (x1, y1, θ1), (x2, y2, θ2), . . . , (xn, yn, θn) denotes a
layout, where xi, yi is the center of the rectangle i, and θi
denotes its orientation. The aim of the problem is to find a
layout X to satisfy the following constraints:

1) θi ∈ {0, 1}, where θi=0 or 1 mean that the edge with
length li is parallel or perpendicular to the x axis, then
the items are placed orthogonal to each other.

2) There is no overlap between any two rectangles, that is,
for all i 6= j, at least one of the following conditions
should be satisfied:

xi + l′i/2 ≤ xj − l′j/2 (1)
xi − l′i/2 ≥ xj + l′j/2 (2)
yi + w′i/2 ≤ yj − w′j/2 (3)
yi − w′i/2 ≥ yj + w′j/2 (4)

where l′i and w′i are related to the length and width after
considering the orientation θi, which satisfy

l′i = li(1− θi) + wiθi (5)
w′i = wi(1− θi) + wiθi (6)

3) The center of mass of all rectangles should be located
at the center of the circle for equilibrium, that is, given
a small positive permissible value of δ

(xw, yw) = (

∑i=n
i=1 mixi∑i=n
i=1 mi

,

∑i=n
i=1 miyi∑i=n
i=1 mi

) (7)√
x2w + y2w ≤ δ (8)

such that the radius r of the envelopment circle is minimized,
where

r = max
1≤i≤n

(√
(|xi|+ l′i/2)

2 + (|yi|+ w′i/2)
2

)
. (9)

III. ABC ALGORITHM

Before introducing the design of ABC for RLOP, we first
give out a constructive heuristic to compose a layout, which
is an important building block.

A. Constructive kernel heuristic (CKH)

The ABC algorithm is based on a constructive heuristic first
appeared in [2]. At first, all the rectangles are waited in a
queue, and the first rectangle is packed in the center of the
circle. When packing a rectangle, for the goal of minimizing
envelopment radius, we require it close to an already packed
rectangle. As in Fig. 2(a), an already packed rectangle i
provides 8 regions along its edges and vertices. A rectangle
j to be packed should choose a region with an orientation

�

✁

✂

✄

☎

✆

✝ ✞

✟

(a) regions

�

✁

�

✁

(b) placement

Fig. 2: The regions provided by a rectangle(a) and the place-
ment of a rectangle in a region with different orientation(b)

(Fig. 2(b)), so there are totally 16 schemes to place j beside
i. After deletion of the schemes with overlap, there are still
many feasible schemes besides all the packed rectangles, and
the algorithm will select one by a greedy strategy–the region
leads to the minimal temporary envelopment circle will be
chosen.

B. Inversion count and distribution of the solutions

The application of CKH in this article is different from
[2]. In the CKH, the output layout X is dependent on the
permutation p. Because there are n! permutations in total, the
blind search such as [2] has very low efficiency. According
to the computational practice, we find that the bigger and
heavier objects should be placed first, which means a greedy
permutation ggg in the descending order of liwimi can lead to
a good layout. This finding relates the concept of inversion
count to the goodness of a permutation.

For a permutation p, an inversion exists between the items
pi and pj , if lpi

wpi
mpi

< lpj
wpj

mpj
and i < j. According

to the number theory, the inversion count of a permutation
ranges from 0 to n(n−1)

2 , and the greedy permutation g has a
inversion count of 0.

By the computational experiences, a permutation with small
inversion count often results in a better layout. On a randomly
chosen RLOP instance with 10 rectangles (larger instance
is in similar situation), we enumerate all the permutations
and get the corresponding layouts and their envelopment
radii by CKH. The minimal radii from the permutations with
same inversion count are plotted in Fig. 3(a). The number
of permutations with the same inversion count are illustrated
in the histogram Fig. 3(b). We found that the permutations
with inversion count less than 10 are obvious have better
results, Moreover, the number of such types of permutations
is relatively small that it is easy to search them.

C. ABC algorithm based on inversion count

ABC algorithm is a meta-heuristic based on the foraging
behavior of honey bees. There are three kinds of bees in
a colony. The employed bees work on a food source and
share the information with the onlooker bees by dancing. The
onlooker bees select a food source after watching the dance
and try to improve it. When the food source is exhausted, the

(a) minimal radius (b) histogram

Fig. 3: The distribution of the solutions

related employed bee becomes a scout bee, who tries to find a
new resource. The ABC algorithm for the RLOP is described
in algorithm 1.

Algorithm 1 ABC algorithm

1: Initialize the first generation s1, s2, . . . , sn by the greedy
strategy

2: for generation = 2 to G do
3: for i=1 to n do {Employed phase}
4: si:=best of (si, INSERT(si))
5: end for
6: for i=1 to n do {Onlooker phase}
7: Randomly select a sk with probability of P (sk)
8: sk:=best of (sk, INSERT(sk))
9: end for

10: for i=1 to n do {Scout phase}
11: if si is not improved for T generations then
12: Restore si from the first generation
13: end if
14: end for
15: end for
16: return the best solution

1) Individual and fitness function: The individual solution
si is a permutation p, which can be evaluated by the fitness
function as (10), where r(si) is the envelopment radius result
of CKH.

f(si) =
1

r(si)
(10)

2) first generation: The first generation defines the start
points of the search. Based on the analysis in section III-B, we
should focus on the permutations with small inversion count.
We initial the fist generation with the greedy permutation g and
other n− 1 permutations generated by swapping the adjacent
elements of g. The inversion count of the first generation is
less than or equal to 1.

3) Mutation operator : In the employed phase, we choose
the INSERT mutation operator like the genetic algorithm [11].
In a permutation p, after a block of pi, pi+1, . . . , pi+k−1
is chosen, the INSERT operator moves pi+k−1 before pi.
The mutation operator can change the inversion count of the
permutation. Moreover, the larger the block size k, the more

Fig. 4: Results on different initialization

the inversion count is changed. So the block size k should
have an upper bound.

4) Selection probability: The selection probability for an
individual in the onlooker phase is proportional to its fitness
value, which is defined as (11)

P (si) =
f(si)∑n
i=1 f(si)

(11)

IV. COMPUTATIONAL RESULTS

The numerical experiments were on a Dell OptiPlex 7080
Tower, with a 3.10 GHz Intel i5-10500 CPU,16 GB RAM,
Win10 OS. And the programs were compiled by Dev C++
5.9.2. By the experiences, the block size of INSERT is set to
5, and the initialization interval T in the scout phase is set to
10.

A. Experiment 1: Comparison of greedy initialization and
random initialization

This experiment is to compare the greedy initialization and
the popular random initialization in ABC. 30 instances with
20 rectangles for each were randomly generated that wi, li
are in range of [1,200] and mi is near wili for each rectangle
i. In the experiment, the average radii of the 30 instances
were recorded in each generation. The convergence curves
are provided in Fig. 4. The results show that the greedy
initialization is more advantage than the random initialization.
Even after 100 generations of search, the average radii with
random initialization is still worse than the start point of
the greedy initialization. The ABC algorithm with random
initialization wastes too much search energy in the subspace
of permutation with larger inversion count.

B. Experiment 2: Numerical computation on an open bench-
mark with large-scale instances

In this experiment, we ran the ABC algorithm on a bench-
mark provided in [7], that there are 10 test instances R1, R2,
. . . , R10, and the numbers of rectangles are 10, 20, . . . , 100
respectively. Two algorithms in the literatures were selected
as the baselines, which are the quasi-human algorithm (IBF)
in [7] and the genetic algorithm (GA) in [2].

TABLE I: Results on 10 instances

inst rtarget GA IBF ABC

Fail time(s) Fail time(s) Fail time(s)
R1 36.90 5 / 0 113.79 5 /
R2 65.30 5 / 4 746.96 0 378.16
R3 56.05 5 / 5 / 0 530.71
R4 75.30 5 / 5 / 0 50.48
R5 91.55 5 / 5 / 1 317.02
R6 101.79 5 / 5 / 0 88.18
R7 102.89 5 / 5 / 0 128.74
R8 109.09 5 / 5 / 0 407.82
R9 115.32 5 / 5 / 0 1628.23

R10 124.10 5 / 5 / 1 881.53

IBF uses the container radius as an input and its objective
is to find a layout smaller than the given radius. To make a
fair comparison with IBF, we defined a target container radius
(rtarget) for each instance, and then used the time of finding a
valid layout as the metric of performance. We set the stopping
criterion of all the three algorithm as obtaining a layout with
envelopment radius less than the target, or execution time
exceeding an hour. The other parameters of the baselines were
set as the literatures. In the ABC, the number of individual n
was set to the number of rectangles in each instance. The three
algorithms were executed on each instance for 5 times. If an
execution did not output a layout in an hour, we marked it
as one ‘failure’. Excluding the failed executions, we provide
the average time of the rest executions on each instance. The
results are listed in Table I and we give the layout diagram of
the instance R10 by ABC in Fig. 5.

From the detailed data in Table I, GA fails in all the tests
and shows the worst performance among the three algorithms.
The reason why GA loses is that it tries to search the whole
solution space and wastes much energy on the space with poor
solutions, while the proposed ABC makes the search around
the greedy solution, many good results are in this subspace.

IBF only passes the first 2 smaller instances, that it gets
best results in R1, and gets a layout for R2 after 4 failures.
It fails all the tests on the last 8 instances. But on the other
side, ABC gets the best results in the rest 9 instances except
R1, and passes 43 tests among the total 45 tests. The only
two failures in tests of instance 5 and 10 should be because
we set harder targets. ABC’s failures in R1 is because of the
shortcoming of CKH. It places the objects at certain positions,
which restricts the pattern of the solution, so it may miss the
optimal layout of smaller instances.

V. CONCLUSION

A problem-specific knowledge based artificial bee colony
(ABC) algorithm for the layout optimization problem in the
satellite design is presented in this article. After the investigate
of the distribution of the solutions, the ABC algorithm is
designed to search the most likely subspace containing high
quality solutions, so that it can easily find a good solution in
short time. On an open benchmark with 10 instances, ABC
algorithm is compared with two widely used algorithms. It

(a) R10

Fig. 5: Layout diagram of ABC on R10

outperforms the genetic algorithm on all the instances, and
outperforms the quasi-human algorithm on nine of them. The
proposed ABC algorithm may have great practical value to find
the rational layout of the objects in the aerospace industry.

REFERENCES

[1] E. Feng, X. Wang, X. Wang, and H. Teng, “A global optimization
agorithm for layout problems with behavior constraints,” Applied Math-
ematics, A Journal of Chinese Universities, vol. 14, no. 1, pp. 98–104,
1999.

[2] Y. Xu, F. Dong, Y. Liu, and R. Xiao, “Genetic algorithm for rectangle
layout optimization with equilibrium constraints,” Pattern Recognition
and Artificial Intelligence, vol. 23, no. 6, pp. 794–801, 2010.

[3] Y.-C. Xu, R.-B. Xiao, and M. Amos, “Particle swarm algorithm for
weighted rectangle placement,” in the 3rd Int’l Conf. on Natural Com-
putation, pp. 728–732, 2007.

[4] Z. Huang and R. Xiao, “Hybrid algorithm for the rectangular packing
problem with constraints of equilibrium,” Journal of Huazhong Univer-
sity of Science and Technology (Natural Science Edition), vol. 9, no. 3,
pp. 96–99, 2011.

[5] Y.-C. Xu, R.-B. Xiao, and M. Amos, “Simulated annealing for weighted
polygon packing.” https://arxiv.org/abs/0809.5005, 2008.

[6] M. Ji and R. Xiao, “Ant colony optimization and heuristic algorithms
for rectangle layout optimization problem with equilibrium constraints,”
Journal of Computer Applications, vol. 30, no. 11, pp. 2898–2901, 2010.

[7] J. Liu, J. Li, Z. Lv, and Y. Xue, “A quasi-human strategy-based improved
basin filling algorithm for the orthogonal rectangular packing problem
with mass balance constraint,” Computers and Industrial Engineering,
vol. 107, pp. 196–210, 2017.

[8] C.-Q. Zhong, Z.-Z. Xu, and H.-F. Teng, “Multi-module satellite com-
ponent assignment and layout optimization,” Applied Soft Computing,
vol. 75, pp. 148–161, 2019.

[9] D. Karaboga, “An idea based on honey bee swarm for numerical
optimization,” Tech. Rep. tr062005, Erciyes University, Engineering
Faculty, Computer Engineering Department, 2005.

[10] B. Akay, D. Karaboga, B. Gorkemli, and E. Kaya, “A survey on the
artificial bee colony algorithm variants for binary, integer and mixed
integer programming problems,” Applied Soft Computing, vol. 106,
no. 3, p. 107351, 2021.

[11] M. Serpell and J. Smith, “Self-adaptation of mutation operator and
probability for permutation representations in genetic algorithms,” Evo-
lutionary Computation, 2010.

