
Research on Identification and Refactoring Approach

of Event-driven Architecture Based on Ontology

Li WANG1,2

1School of Computer

Science and Engineering

Southeast University

Nanjing, China
2Jiangsu Automation

Research Institute

Lianyungang, China

wangli1218@seu.edu.cn

Xiang-long KONG
School of Computer

Science and Engineering

Southeast University

Nanjing , China

xlkong@seu.edu.cn

Xiao-fei WANG
NARI Group corporation

Nanjing, China

wangxiaofei@sgepri.sgcc.c

om.cn

Bi-xin LI‡
School of Computer

Science and Engineering

Southeast University

Nanjing , China

bx.li@seu.edu.cn

Abstract—Event-driven architecture is one of the common

software architecture patterns. In the process of software

evolution, the deviation and corrosion often occur to architecture,

which leads to larger deviation between actual software

architecture and design architecture. Therefore, it is of great

significance to study the approach of software architecture

identification and refactoring. To solve this problem, we propose

an identification and refactoring approach of event-driven based

on ontology, i.e., IRABO. We evaluated IRABO on 50 open-source

projects and the results show that it performs effectively and

efficiently.

Keywords-Event-driven Architecture; Architecture

Identification; Architecture Refactoring

I. INTRODUCTION

Appropriate pattern can solve the design problem of software
architecture[1]. Event-driven architecture is a very popular
architecture pattern at present, which is usually used in systems
that require high agility and quickly response[2]. The event-
driven architecture can fulfill that requirement quite well. But,
in the process of software evolution, many factors may make the
software architecture deviate from the original design, such as
the change of requirements, the improvement of functions, et al.
So, it is necessary to refactor the architecture. Architecture
patterns provide a good direction for refactoring [3].

In this paper, we propose identification and refactoring
approach of event-driven architecture based on ontology, i.e.,
IRABO, which consists of two parts. We firstly extract the
dependency information from source code to build the program
dependency graph. Then we convert the program dependency
graph into RDF (The Resource Description Framework) triples
to build the ontology of instance layer. Finally, we use the event-
driven architecture usage specification to locate the refactoring
point in the identification result, and refactor the software
architecture.

To evaluate the effectiveness accuracy and efficiency of
IRABO, we conduct experiments on 50 open-sourced projects
with manual analysis approach. The results show that IRABO
performs much better in terms of accuracy and effectiveness

efficiency in our experiments. In summary, our paper makes the
following novel contributions:

We put forward the ontology-based event-driven
architecture pattern identification approach and the architecture
refactoring approach based on event-driven architecture.

We build the experiment for ontology-based event-driven
architecture identification and refactoring to verify the ontology-
based event-driven pattern identification and refactoring
approach.

II. APPROACH

In this section, we present the details of the identification and
refactoring approach of event-driven based on ontology, i.e.,
IRABO. The technique comprises two main steps, identification
approach of event-driven architecture based on ontology,
refactoring approach of event-driven architecture based on
ontology.

A. Identifying Event-driven Architecture Based on Ontology

Event-driven architecture identification based on ontology is
essentially a process of abstract matching between source code
and event-driven architecture. As presented in Fig.1, First, we
use the source code analysis tool to extract the dependency
information. Second, we use ontology to descript the
dependency information to construct instance layer ontology;
meanwhile, we use ontology to describe the structural behavior
characteristics of event-driven architecture to construct concept
layer ontology. The instance layer ontology and concept layer
ontology form the Ontology Knowledgebase. We use ontology
inference engine to process the Ontology knowledgebase to
obtain the instance of event-driven architecture. Compared with
other semi-automatic or manual approaches, IRABO can
improve the accuracy and automation of event-driven
architecture identification.

1) Construction instance layer ontology:
In this paper, the object of identification is Java projects. We

choose JDT to generate an Abstract Syntax Tree, i.e., AST.

‡ Corresponding author

* Project supported by the National Natural Science Foundation

of China (No. 61872078)

DOI:10.18293/SEKE2022-013

mailto:xlkong@seu.edu.cn
mailto:xlkong@seu.edu.cn
mailto:bx.li@seu.edu.cn

Instance layer

ontology

Knowledge base

Ontology

inference engine
Concept layer

ontology

Regulation

Extended

knowledge base

Event-driven

mode instance

Dependent

information

source

code
parsing

Describe with

 ontology

Reasoning Querying

Figure 1. Event-driven architecture identification based on ontology

We extract the dependency information by traversing the ADT

to build a dependency graph. As shown in Fig 2, the node

represents the program entities, and the directed edge represents

the dependency between program entities. We convert the nodes

and directed edges into RDF triples set.

A

C

B

D E

inheritance

composition

invocation

Figure 2. RDF triple set

2) Construction concept layer ontology:

 In this paper, we choose the common ontology building Jena
to build ontology of the event-driven architecture. First, we use
ontology to describe the observer pattern and its specific
application in event-driven architecture, thus indirectly
describing the behavior characteristics of event-driven
architecture. Second, we use ontology to describe the component
reuse behavior of the event-driven system to the event-driven
framework.

The event-driven architecture has three components: event,
listener and event source. The listener acts as the observer, and
the event source acts as the observed[3][4] [5]. The behavior
characteristics of the event-driven architecture are shown in Fig
3.

Event Source

ListenerEvent

Registration/monitoring
Generating

 Component reuse

 Handling

Component reuse

Component reuse

Observer mode

Event-driven

mechanism

framework

Figure 3. Behavior characteristics of event-driven architecture

An important behavioral feature of event-driven architecture
is the component reuse behavior of event-driven framework, as
shown in Fig 4. When programmers develop event-driven
systems under the framework of event-driven mechanism, they
only need to define the listeners through the listener interface,
and inherit the sensible operating components under the
framework to define their own event sources and the event

classes under the framework to define their own events[6]. We
describe the event-driven architecture indirectly by describing
observer pattern and event-driven framework. We build
ontology to describe the component reuse behavior of the event-
driven framework on the ontology building platform.

EventDrivenSystem

User_Listener User_EventSource User_Event

EventDrivenFrame

frame_Listener frame_EventSource frame_Event

implements/extends extends extends

Figure 4. Event-driven pattern framework reuses behavior

3) Reasoning and inquiry

We reason and query based on ontology to match between the

target system and the event-driven architecture, so as to obtain

the event-driven architecture instance. We reason and query the

model defined by Jena[7][8]. We use the ontology query

function to obtain the instance of event-driven architecture in the

extended ontology knowledgebase.

B. Refactor event-driven architecture

In this section, we refactor architecture based on event-
driven architecture identification. As shown in Fig 5, we use the
event-driven architecture violate specification to locate the
refactoring points. Then we choose the corresponding
refactoring scheme to eliminate or reduce the violation of the
event-driven architecture, so as to obtain a new architecture.
Repeat the steps until there is no violation of event-driven
architecture in the target system.

Step 1: We locate the refactoring point in the identification
result of event-driven architecture. Refactoring point is the
violate specification of event-driven architecture. The event-
driven architecture is a distributed processing pattern composed
of highly decoupled event listeners with single responsibility.
Therefore, the most important usage specifications of the event-
driven architecture are the single responsibility of the listener
specification and the distributed processing specification. The
single responsibility of the listener specification requires a
listener to handle only one type of events. If a listener class
handles multiple types of events, the change of one event

Current

version

refactored

version

Event-driven

architecture pattern

identification

Positioning

refactoring

point

Implement the

refactoring

scheme

Figure 5. Refactoring process of event-driven architecture

handling method may weaken the handling ability of other
events[9]. The distributed processing specification requires that
the events are generated and processed in different classes. If a
class is both an event source and a listener, it violates the
distributed processing specification[5].

Step 2: we implement the scheme for the refactoring points.
The appropriate refactoring scheme should specify the
refactoring operation according to different refactoring points.
In this paper, we propose two refactoring schemes, i.e., RS, for
the refactoring points located by the single specification of
listener responsibility and the distributed processing.

RS 1: The refactoring scheme for the single responsibility of
the listener.

The refactoring scheme is proposed to eliminate the violation
of the single responsibility of the listener. In this kind of
violation, a listener class handles more than one type of events.
The refactoring scheme is to split the listener class into several
classes and let each class handle one type of events. As shown
in Fig 6, we define a new empty listener class, and transfer the
one of the events to the new class. At the same time, the
corresponding dependencies are transferred.

MultiListener

Handling

Event1

Event2

Handling

MultiListener

Handling Event1

Event2Handling

MultiListener1

Method migration/

dependency transfer
Splitting

Class

Figure 6. Split listener classes that handle various types of events.

RS 2: The refactoring scheme for distributed processing.

The refactoring scheme is proposed to eliminate the violation
of the regulations of the distributed processing. In this kind of
violation, the class is both an event source and a listener. The
refactoring scheme is to split the class into two classes, one class
is listener and the other is event source.

MultiComp

Generating/Handling

event

MultiComp

Handling

Event

listener1

Method migration/

dependency transfer
Generating

Figure 7. Splitting classes that are both event sources and listeners

 As shown in Fig 7, we define a new empty listener class, and
transfer the events handling to the new class. At the same time,
the corresponding dependencies are transferred. The original
class acts as an event source and the new class acts as a listener.

III. EXPERIMENT AND RESULTS

The identification and refactoring approach of event-driven
architecture can identification and refactoring event-driven
architecture based on ontology accuracy and efficiency, which
can help developers understand and maintain software projects.
In this section, we aim to answer the following research
questions:

RQ1: How about the accuracy of the software architecture
identification technique?

RQ2: How about the accuracy of the software architecture
refactoring technique?

RQ3: How about the efficiency of the software architecture
refactoring technique?

A. Experimental Setup

1) Subject projects
To answer the above research questions, we select 50 Java

projects from GitHub and SourceForge according to the
popularity of Java projects. These projects are more popularity
with the key words, such as game, game engine, Java awt, Java
swing and event-driven. We analysis the documents and source
codes of these 50 projects manually to obtain the ground-truth
architecture. We select freecol and shiro to analyze their
refactoring points.

2) Measurement
We use Precision, Recall and Accuracy to measure the

accuracy of software architecture identification technique. It is
defined by the following formulas

TP
P

TP FP
=

+
 (1)

TP
R

TP FN
=

+
 (2)

TP TN
A

TP FP

+
=

+
 (3)

Where P indicates Precision, R indicates Recall, A indicates
Accuracy, TP, FN, FP and TN indicate four numerical values in
the confusion matrix of identification results.

TABLE I. CONFUSION MATRIX OF IDENTIFICATION RESULTS

Manual analysis results
Identification result

Yes No

Yes TP FN

No FP TN

We use Accuracy, CostRate and Effectiveness to measure
the efficiency of the software architecture refactoring technique.

The Accuracy of refactoring point location is the proportion
of correctly located refactoring points in all the refactoring
points located by this technique.

The CostRate is the proportion of the number of classes to
be refactored to the total number of classes in the object.

The Effectiveness is the proportion of eliminated refactoring
points in all the refactoring points located by this technique.

3) Experimental steps
For each studied subject, we performed the following steps:

Step1: We collect 50 Java projects from GitHub and
SourceForge with the key words.

Step2: For each selected project, we identify their
architecture pattern manually to confirm wither they are event-
driven architecture project.

Step3: For freecol and shiro, we obtain their ground-truth
architecture manually to build the comparative experiments.

Step4: For freecol and shiro, we refactor their architecture
base on ontology, and we collect all the results to analyze the
accuracy and effectiveness.

Step5: For each event-driven architecture project, we obtain
the refactoring points and process the refactoring schemes by
manual analysis as reference, the effectiveness of the refactoring
method based on event-driven architecture identification is
evaluated through the accuracy of refactoring point positioning

and refactoring cost rate.

In the experiments, we use computer with 64-bit Windows
10 and 8G memory. We use JDK1.8, Eclipse Neon 4.6.0, and
MySql 5.6. The ontology inference engine witch we use is Jena
3.10.0.

B. Results analysis

RQ1: The accuracy of the software architecture identification

technique
To evaluate accuracy of the event-driven architecture

identification-based ontology, we apply the IRABO, and manual
analysis work on the 50 projects. The manual analysis work of
clone, freecol, jmonkeyengine, Jadventure, libgdx, AndEngine,
overlap2d, GameHelper and Shiro is based on the source code
and documents. The other 41 projects can only be analyzed
according to the source code because of missing documents.

Table II presents the results, “√” means the project is event-

driven architecture, “×” means the project isn’ t event-

driven architecture.

From Table III, we can find that there are 13 projects with
event-driven architecture by manual analysis. There are 12
projects with event-driven architecture by IRABO identification.
There are 8 projects whose manual analysis and RABO
identification results are both event-driven architectures. The
Precision, recall and accuracy of IRABO are 66.6%, 61.54% and
82%. There are 18% identification error rate of IRABO.

The reason of identification error rate of IRABO is false
negative and false positive. The reason of false negative is as
follows:

IRABO only considers the typical event-driven architecture
when identifying the architecture, but it fails to identify the
project with atypical event-driven architecture.

IRABO only considers the mainstream event-driven
framework when identifying the architecture, but it fails to
identify the non-mainstream event-driven framework.

TABLE II. IDENTIFICATION RESULTS

Project IRABO Manual analysis Project IRABO Manual analysis Project IRABO Manual analysis

clone √ √ Terasology × × blog × ×

openbbs × × pixel-dungeon × × jnativehook × ×

MyBlog × × FunGameRefresh × × jmonkeyengine √ √

freecol √ √ WorldEdit × × Jadventure × √

terrier × × JustWeEngine × √ jadx × ×

lionengine √ √ overlap2d √ × JHotDraw × ×

junit4 × × StormPlane × × libgdx × √

la4j √ × OpenRTS √ √ AndEngine × √

okhttp × × PretendYoureXyzzy √ × HikariCP × ×

mybatis × × Essentials × × arthas × ×

vert.x × × GameHelper × × Mosby × ×

beautyeye √ × druid × × latexdraw × ×

symphony × × SSH-master × × MARIO × ×

mockito × × ssm-master × × log4j × ×

junit5 × × Examination_System × × FXGL × ×

litiengine √ √ shiro √ √ JabRef × ×

inxedu × × realm × ×

IRABO describes the event-driven architecture by
describing the structural behavior characteristics of the observer
pattern and its application. Therefore, the false identification of
the observer pattern will lead to the false identification of the
event-driven architecture.

TABLE III. EXPERIMENTAL RESULTS

Manual analysis
IRABO

Yes No Total

Yes 8 5 13

No 4 33 37

Total 12 38 50

Precision 66.67%

Recall 61.54%

Accuracy 82%

The reason of false positives is as follows:

Architecture is the overall design of software. When the
project partially implements the event-driven mechanism,
IRABO would identify it as an event-driven architecture project.

We obtain the ground-truth architecture by manual analysis,
and the false of manual analysis results will lead to false
positives.

RQ2: The accuracy of the software architecture refactoring
technique

We choose two typical event-driven architecture projects,
freecol and shiro. We use IRABO to obtain the event-driven
architecture instances of two projects compare with manual
analysis results. The accuracy of IRABO is measured by
Precision and Recall, as shown in Table IV.

TABLE IV. THE ACCURACY OF IRABO

Project Component Precision Recall

freecol

audio monitor 75.45% 65.76%

event 54.23% 44.54%

Event source 58.51% 41.71%

shiro

audio monitor 83.35% 66.23%

event 57.68% 46.54%

Event source 65.43% 58.92%

Average value 65.78% 53.95%

From Table IV, we can find that the average Precision and
Recall of IRABO are 65.78% and 53.95%. The false positives
and false negatives in the event-driven architecture identification
results are caused by event-driven architecture variants and false
manual analysis result.

RQ3: The efficiency of the software architecture refactoring
technique

a) Eliminate the single responsibility of listener
specification violation

We positioned refactoring points that violate the single
specification of listener responsibilities in all the event-driven
architecture. We fined refactoring points in clone, freecol,
lionengine and litiengine by IRABO and manual analysis. The
Refactoring points positioned by IRABO and manual analysis
work are shown in Table V. In clone, freecol, lionengine and
litiengine, the Accuracy of IRABO is 50%, 39.1%, 46.2% and

60.2%, and the CostRate of IRABO is 0.035, 0.153, 0.172 and
0.272.

TABLE V. REFACTORING POINTS

Project Classes

Refactoring

points

 (IRABO)

Refactoring

points

(Manual)

Classes needing

refactoring

clone 115 2 1 4

freecol 1224 192 75 188

lionengine 843 132 61 145

litiengine 445 88 53 121

We choose a refactoring point CanvasMouseListener in
freecol, which violates the single specification of the listener
specification. Then we refactor CanvasMouseListener by RS 1
to eliminate the single responsibility of listener specification
violation.

b) Eliminate the distributed processing specification
verification

We positioned refactoring points that violate the distributed
processing specification in all the event-driven architecture. We
fined refactoring points in reecol, lionengine and litiengine by
IRABO and manual analysis. The Refactoring points positioned
by IRABO and manual analysis work are shown in Table VI. In
reecol, lionengine and litiengine, the Accuracy of IRABO is
75%, 65.2% and 77.3%, and the CostRate of IRABO is 0.009,
0.018 and 0.038.

TABLE VI. REFACTORING POINTS

Project Classes

Refactoring

points

(IRABO)

Refactoring

points

(Manual)

Classes

needing

refactoring

freecol 1224 12 9 11

lionengine 843 23 15 15

litiengine 445 22 17 17

We choose a refactoring point BuildingPanel in freecol,
which violates the distributed processing specification. Then we
refactor BuildingPanel by RS 2 to eliminate the distributed
processing specification verification.

IV. THREATS TO VALIDITY

Threats to external validity. The ground-truth architecture
obtained by manual analysis is used to verify the accuracy of the
architecture obtained by IRABO. Influenced by the ability of
analysts or the complexity and scale of the project, the
architecture obtained by manual analysis is subjective to some
extent. That may threaten the accuracy of the software
architecture identification and refactoring technique. To reduce
this threat, we will select more excellent open-source projects of
event-driven architectures; conduct a more comprehensive
analysis to obtain ground-truth architecture more accurately.

Threats to internal validity. IRABO only considers the
typical event-driven architecture when identifying the
architecture. For the projects with atypical event-driven
architecture, false negative and false positive may occur. To
reduce this threat, we will consider more variants of event-driven
architecture to build a more complete ontology knowledge base
of event-driven architecture.

Limited by manpower and time, the projects selected in this
paper are small-scale, which cannot verify the accuracy and
effectiveness of this technique in large-scale projects. In the
future work, we will repeat the experiments with more large-
scale projects to reduce this threat.

V. RELATED WORK

In the aspect of pattern identification and description of
architecture, Mavridou Anastasia points out that architecture can
be represented by logic and architecture style can be described
by configuration[9]. Cortella Essav and others proposed to use
logical predicates to model anti-patterns, and build an engine
based on these logical predicates to detect anti-patterns in the
target system[10]. Rabiaz et al. proposed a method of knowledge
retrieval to identify instances of architecture patterns in software
systems.[11]. The powerful ability of ontology description is
exactly what is needed to describe the very high level of
abstraction such as architectural patterns.[12]. Velasco-Elizondo
P and others put forward an automatic analysis architecture
model based on knowledge representation and information
extraction, and then reconstructed the system according to the
analysis results.[13]. The main problem of the existing
architecture pattern identification and refactoring methods is the
lack of a special method for event-driven architecture
identification and refactoring. Therefore, this paper proposes an
ontology-based pattern identification and refactoring method for
event-driven architectures.

VI. CONCLUSION

In this paper, we present an approach of identification and
refactoring approach of event-driven architecture based on
ontology, i.e., IRABO. We identifying event-driven architecture
based on ontology. We refactor event-driven architecture
according to the usage specification of event-driven architecture.
Experiments verify the accuracy of pattern identification based
on ontology-based event-driven architecture and the
effectiveness of the refactoring scheme. We evaluate IRABO by
conducting experiments on 50 projects and compare with
manual analysis work. The results show that IRABO perform
efficiency and effectively. And there is still space for
improvement of architecture recovery effectiveness. The follow-
up work can start with the method of identification more variants

of event-driven architecture to further improve the accuracy and
effectiveness of software architecture recovery.

REFERENCES

[1] Ta’id Holmes, and U. Zdun . Refactoring Architecture Models for
Compliance with Custom Requirements[C]. ACM/IEEE 21st
International Conference on Model Driven Engineering Languages and
Systems ACM, 2018.

[2] Elish K O , Alshayeb M . Using Software Quality Attributes to Classify
Refactoring to Patterns[J]. Journal of Software, 2012, 7(2):p.408-419.

[3] Overbeek S , Janssen M , Bommel P V . Designing, formalizing, and
evaluating a flexible architecture for integrated service delivery:
combining event-driven and service-oriented architectures[J]. Service
Oriented Computing&Applications, 2012, 6(3):167-188.

[4] Tragatschnig S , Stevanetic S , Zdun U .Supporting the evolution of event-
driven service-oriented architectures using change patterns[J].
Information and Software Technology, (2018):133-146.

[5] Woodside M . Performance Models of Event-Driven Architectures[C].
CPE '21: ACM/SPEC International Conference on Performance
Engineering ACM, 2021.

[6] Abel Gómez, Iglesias-Urkia M , Urbieta A , et al. A model-based
approach for developing event-driven architectures with
AsyncAPI[C].MODELS '20: ACM/IEEE 23rd International Conference
on Model Driven Engineering Languages and Systems. ACM, 2020.

[7] Yu Lei, Ma Hui, Wang Cheng. Research on equipment PHM knowledge
ontology construction and semantic reasoning method[J]. ournal of
Ordnance Equipment Engineering, 2019,40(S1):126-130.

[8] Lerlertvanich R, Vatanawood W. Facade Layer for Apache JENA[J].

Arpn Journal of Systems & Software, 2012, 2(11).

[9] A. Mavridou, E. Baranov, S. Bliudze, et al. Configuration logics:

Modeling architecture styles[J]. Journal of Logical and Algebraic

Methods in Programming, 2017, 86(1): 2-29.

[10] V. Cortellessa, A. D. Marco, C. Trubiani. An approach for modeling and

detecting software performance antipatterns based on first-order logics[J].

Software & Systems Modeling, 2014, 13(1): 391-432.

[11] Rabinia Z , Moaven S , Habibi J . Towards a knowledge-based approach

for creating software architecture patterns ontology[C].International

Conference on Engineering & Mis. IEEE, 2016.

[12] Guessi M, Moreira D A, Abdalla G, et al. OntolAD: a Formal Ontology

for Architectural Descriptions[C].ACM SAC 2015. ACM, 2015.

[13] Velasco-Elizondo P, Marín-Piña R, Vazquez-Reyes S, et al. Knowledge

representation and information extraction for analysing architectural

patterns[J]. Science of Computer Programming, 2016, 121: 176-189.

