
Zero-Shot Object Detection with Multi-label Context

Yongxian Wei, Yong Ma
School of Computer Science and Engineering, Nanjing University of Science and Technology

Nanjing, China
{wei yx,mayong}@njust.edu.cn

ABSTRACT
Zero-shot detection (ZSD) , the problem of object detection
when training and test objects are disjoint, i.e. no training
examples of the target classes are available. ZSD increas-
ingly gains importance for large scale applications because
collecting and labeling sufficient data is extremely hard. In
this paper, inspired from human cognitive experience, we pro-
pose a simple but effective Multi-label Context (MLC) frame-
work to facilitate the detection ability for both seen and un-
seen objects by mining contextual cues. We design a multi-
label classifier which leverages the holistic image-level con-
text to learn object-level concepts. Then, novel RoI features
are generated by exploiting context information beneath both
whole images and interested regions. Moreover, background
dynamic generator (BDG) can reduce the confusion between
background and unseen classes. Our extensive experiments
show that MLC outperforms the current state-of-the-art meth-
ods on MS-COCO.

Index Terms— Zero-Shot Object Detection, Multi-label
Learning, Context Embedding, Computer Vision

1. INTRODUCTION

While object detection methods based on deep learning have
achieved great progress over the last few years [1, 2, 3, 4, 5],
these gains can be attributed to the availability of the fully su-
pervised training data. Although researchers have struggled
to acquire larger datasets with a broader set of categories, the
processing procedure is time consuming and tedious. Fur-
thermore, it is hard to collect enough training data for rare
categories. Zero-shot learning (ZSL) has been proposed to
address the problem for reasoning unseen classes [6, 7, 8],
Traditional ZSL researches mainly focus on the classification
of unseen objects and achieve high classification accuracy [7].
However, there is still a big gap between ZSL settings and
real-world scenes. ZSL only focuses on identifying unseen
objects, not detecting them. For example, most of datasets
used as ZSL benchmark have only one dominant object per
image [9, 10], while in real-world, various objects may appear
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Fig. 1. Motivation and example results of our MLC frame-
work. By incorporating discriminative context information,
the semantic features of “car” are strong evidences for detect-
ing objects that are highly dependent on context information,
such as “traffic light”.

in a single image without being precisely localized. To close
this gap, [11] introduced a new “zero-shot object detection”
(ZSD) problem setting method, which aims at detecting ob-
jects seen during training as well as detecting unseen classes
as and when they appear at test-time.

Existing ZSD approaches mainly focus on learning a
visual-semantic correspondence based on intrinsic properties
of the target objects by the means of human-defined attributes
or distributed representations learned from text corpora. They
only focus on local information near an object’s region of in-
terest while ignoring rich contextual information within the
image, which has been shown to benefit the object detection
performance [12, 13, 14].

We therefore propose a novel framework named Multi-
label Context (MLC) for ZSD. In this paper, we revisit the
RoI features in region-based detectors from the perspective
of context information embedding. Our key motivation is that
while each RoI in very deep CNNs may have a very large the-
oretical receptive field which usually spans the whole input
image [1]. However, the effective receptive field [15] may
only occupy a fraction of the entire theoretical receptive field,
making the RoI features insufficient for characterizing objects
that are highly dependent on context information. We use a
simple but effective process to generate contextual RoI fea-



tures by exploiting embedded multi-label context information
beneath both whole images and interested regions, which are
also complementary to conventional RoI features.

MLC learns from the cognitive science about how hu-
mans reason objects through semantic information. Humans
can learn the mapping relationship between vision objects and
semantic description from seen objects and transfer it to de-
tect unseen objects. In addition, conventional object detec-
tion approaches generally tend to relegate unseen objects into
the background leading to missed detection of unseen ob-
jects. Previous works [16, 11] used the word-vector of the
“background” word to represent background class. Due to
the rough word-vector for background class used in detec-
tor head is inability to exactly represent the complex back-
ground, MLC develops a component denoted as background
dynamic generator (BDG) to learn an appropriate word-vector
for background class. Our study shows that replacing the
rough background word-vector in detector head with the new
one learned from BDG can effectively increase the recall rate
of unseen classes.

In summary, the contributions of this paper are three-fold:
(i) we develop a novel ZSD approach that adaptively exploits
the whole image context to learn discriminative features for
context-dependent object categories; (ii) to the best of our
knowledge, it is the first time to introduce multi-label learn-
ing into ZSD task; (iii) extensive experiments on two different
MS-COCO splits show significant performance improvement
on the existing ZSD benchmarks.

2. METHOD

2.1. Problem Formulation

We begin by defining the problem and then present our ap-
proach. We denote the set of all classes as C = CS ∪ CU ,
where CS denotes the set of seen classes and CU denotes the
set of unseen classes, and CS ∩ CU = ϕ. Each image is de-
noted as I ∈ Rw×h×3, with corresponding bounding boxes
and ground truth labels denoted as bi ∈ N4 and yi ∈ C re-
spectively. Let DS denotes the training dataset, which only
contains the objects belonging to CS to train the network and
use the unseen classes objects dataset DU to evaluate the de-
tection performance for unseen classes. For GZSD setting,
the test dataset DT contains objects from both seen and un-
seen classes (c ∈ C = CS ∪ CU ).

2.2. MLC Framework

The overall framework of our MLC consists of four compo-
nents: Multi-Label Head for advancing the feature learning of
the objects that are highly dependent on larger context clues,
contextual RoI features generated by fusing both instance-
level and global-level information derived from Multi-Label
Head, BDG for generating suitable background word-vector,
and Zero-Shot Head for classifying the extracted objects into

seen and unseen classes and locating them. The details are
indicated in Figure 2.

2.2.1. Multi-Label Head

In parallel with the RPN branch, we exploit Multi-Label Head
upon the detection backbone, enabling the backbone to learn
object-level concepts adaptively from global-level context. It
is worth mentioning that Multi-Label Head does not require
additional annotations, as the image-level labels can be conve-
niently obtained by collecting all instance-level categories in
an image. Specifically, we first apply a 3×3 convolution layer
on the output of ResNet conv5 to obtain the input feature map,
and then follow the practice in [17] to employ both global
max-pooling (GMP) and global average-pooling (GAP) for
feature aggregation. Formally, let X ∈ Rd×w×h denote the
input feature map, where d is the channel dimensionality, w
and h are the width and height, respectively. Then, the multi-
label classifier is constructed by NS binary classifiers for all
categories:

ŷ = fCLS(fGMP (X) + fGAP (X)) ∈ RNS , (1)

where NS denotes the number of seen classes, each element
of ŷ is a confidence score (logits), and fCLS is binary clas-
sifier modeled as one fully-connected layer. We assume that
the ground truth label of an image is y ∈ RNS , where yi =
{0, 1} denotes whether object of category i appears in the im-
age or not. The multi-label loss can be formulated as follows:

LMLL = −
NS∑
i=1

yiln(
1

1 + e−ŷi
) + (1− yi)ln(

e−ŷi

1 + e−ŷi
),

(2)

2.2.2. Contextual RoI Feature Generation

With the purpose of leveraging larger context, We apply
RoIAlign [4] with proposals generated by RPN on the
context-embedded feature map X to obtain RoI features:

xglobal = fRoIAlign(X;w, h) ∈ Rd×7×7, (3)

where fRoIAlign is the RoIAlign operation and w and h are
the width and height of the input image, respectively. As the
resulting RoI feature xglobal absorbs rich context informa-
tion from the context-embedded image feature X, it is by na-
ture complementary to the conventional RoI feature extracted
from the feature pyramid network (FPN) [18]. To integrate
our contextual RoI features xglobal into the detection pipeline,
it is natural to fuse them with the original RoI features ex-
tracted from the feature pyramid network (FPN) with element
addition. Formally, let xinstance denote the original RoI fea-
ture extracted from FPN, and xfusion denote the fused RoI
feature, then we have:

xfusion = xglobal + xinstance ∈ Rd×7×7, (4)



Fig. 2. The architecture for MLC. After acquiring feature map from the backbone, Multi-Label Head enables the network to
learn object-level concepts from global-level context. Then, contextual RoI features which are complementary to conventional
RoI features, are generated by fusing both instance-level and global-level information. Finally, the Zero-Shot Head uses the
xfusion and BDG to locate and classify the seen and unseen objects, respectively.

As shown in Figure 2, the fused feature map xfusion is
then fed into the Zero-Shot Head to produce refined bounding
boxes and classification scores.

2.2.3. Background Dynamic Generator

We set a fully connected layer called vb without bias and
make it trainable. vb is used to represent vector for back-
ground class, which is initialized with the mean word vectors
for all seen classes. BDG will update vb during training so
that we can learn a new word-vector vb for background class.
During training, we feed the visual features derived from the
backbone network to the BDG branch and get the background
binary classification score. The calculation process is formu-
lated as follows:

c =
1

1 + e−xTvb
, (5)

specifically, T ∈ RN×d is an FC layer which is used to ad-
just the dimension of input objective feature to fit d, i.e. the
dimension of word vector.

2.2.4. Zero-Shot Head

The main idea for our Zero-Shot Head is learning the re-
lationship between visual and semantic concepts from seen
classes data and transferring it to detect unseen objects. To
this end, we replace the classification branch in Faster R-CNN
with a new semantic-classification branch. Keeping the non-
trainable seen class word vectors WS , we allow projection

of the visual feature xfusion to the word embedding space
to calculate classification scores PS . In inference, we follow
[11] to use an additional procedure to calculate the classifi-
cation scores for unseen classes. The process can be briefly
demonstrated as follows:

PU = (PSW
T
S )WU , PS = Te(xfusion)WS , (6)

where, WU contains unseen class word vectors. So we can
get the scores by performing the matrix multiplication of the
semantic feature and WU .

2.2.5. Loss Function

The whole loss function LMLC for our end-to-end network
has four components:

LMLC = LMLL + LRPN + LBDG + LZSH ,

LBDG = −(c log(ĉ) + (1− c) log(1− ĉ)),

LZSH = −
NS∑
i=1

PS,i log(PS,i) + l1(r, r̂),

(7)

where LZSH is the losses for Zero-Shot Head and it con-
tains smooth l1 regression loss. All loss terms are considered
equally important, without extra hyper-parameters to charac-
terize the trade-off between them, which reveals MLC is gen-
eralized and not trick.



Table 1. ZSD performance of Recall@100 and mAP with
different IoU thresholds on MS COCO dataset.

Method Seen/Unseen Recall@100 mAP

0.4 0.5 0.6 0.5

SB [16] 48/17 34.46 22.14 11.31 0.32
DSES [16] 48/17 40.23 27.19 13.63 0.54

TD [11] 48/17 45.50 34.30 18.10 -
PL [19] 48/17 - 43.59 - 10.10

Gtnet [20] 48/17 47.30 44.60 35.50 -
BLC [21] 48/17 51.33 48.87 45.03 10.60

Ours 48/17 56.03 52.52 47.73 11.30

PL [19] 65/15 - 37.72 - 12.40
BLC [21] 65/15 57.23 54.68 51.22 14.70

Ours 65/15 60.11 57.81 52.49 15.70

Table 2. Comparison of Recall@100 and mAP at IoU=0.5
under GZSD setting on MS COCO dataset. HM denotes the
harmonic average for seen and unseen classes.

Method Seen/Unseen seen unseen HM

mAP Recall mAP Recall mAP Recall

DSES [16] 48/17 - 15.02 - 15.32 - 15.17
PL [19] 48/17 35.92 38.24 4.12 26.32 7.39 31.18

BLC [21] 48/17 42.10 57.56 4.50 46.36 8.20 51.37

Ours 48/17 47.26 71.46 5.39 50.92 9.68 59.46

PL [19] 65/15 34.07 36.38 12.40 37.16 18.18 36.76
BLC [21] 65/15 36.00 56.39 13.10 51.65 19.20 53.92

Ours 65/15 40.95 67.83 14.86 59.64 21.81 63.47

3. EXPERIMENT

3.1. Dataset and Setting

We validate our proposed method on the widely used object
detection dataset MSCOCO. This dataset is more challenging
than Pascal VOC as it has 80 object classes, more small ob-
jects, and more complex background. Following the dataset
splits of MSCOCO proposed in [16] and [19], we use both
two splits of the dataset in experiments: (1) 48 seen classes
and 17 unseen classes; (2) 65 seen classes and 15 unseen
classes. Note that the seen classes and unseen classes are dis-
joint.

We use mAP and Recall@100 as the evaluation metrics,
in which 100 means that only the top 100 detections are valid
for evaluation. The experimental results are reported under
ZSD (zero shot detection) and GZSD (generalized zero shot
detection) benchmarks. The ZSD setting only requires the
detection results of unseen objects, while for GZSD setting, it

Table 3. Ablation study of our method in different splits.
ZSH means Zero-Shot Head and MLH means Multi-Label
Head.

Seen/Unseen ZSH MLH BDG Recall/mAP

seen unseen HM

48/17
✓ 65.1/40.7 43.1/4.5 51.8/7.7
✓ ✓ 70.9/47.1 45.3/5.5 55.3/9.8
✓ ✓ ✓ 71.4/47.2 50.9/5.3 59.4/9.6

65/15
✓ 60.6/32.0 54.3/12.7 57.3/18.2
✓ ✓ 65.7/39.2 55.0/14.6 59.9/21.3
✓ ✓ ✓ 67.8/40.9 59.6/14.8 63.4/21.8

requires the model predict both the seen and unseen objects.
GZSD is more challenging than ZSD, and more suitable for
practical application.

3.2. Comparison with Other Methods

We compare the performance for MLC with the state-of-the-
art zero-shot detection approaches on both 48/17 and 65/15
splits of MSCOCO under ZSD and GZSD settings. For ZSD
setting, we show the results in Table 1. Our method outper-
forms all other work and improves up to 30.38% and 20.09%
of the Recall@100 metric over the 48/17 and 65/15 splits, re-
spectively. Moreover, the improvement in mAP also shows
that the contextual RoI feature has an effective discrimination
ability to unseen class. For GZSD setting, we report the re-
sults in Table 2. MLC surpasses all previous works in terms of
mAP and Recall@100 on both seen and unseen classes. The
“HM” performance gain reveals that our method maintains a
good balance between seen and unseen classes.

3.3. Ablation Study

We conduct a controlled study of our proposed method on
GZSD evaluation. As shown in Table 3, the baseline method
with Zero-Shot Head gives a foundation and achieves com-
parable mAP and recall at IoU = 0.5. Our method is able to
consistently bring improvement on both seen and unseen cat-
egories. From these results, we can learn the significant effec-
tiveness of the Multi-Label Head. We can also observe that
BDG brings an improvement of 4.6% in terms of Recall@100
for unseen classes.

4. CONCLUSION AND FUTURE WORK

In this paper, we find that contextual information is quite
important in zero-shot detection, hence we propose a novel
framework to embed global-level context to advance the
learning of context-dependent categories with the help of
multi-label learning. In the experiment part, we described the
extensive experiments which were conducted to demonstrate



the superiority of the proposed model, and investigated the ef-
fectiveness of different components. In the future, we would
like to find a better approach to obtain the semantic feature
since traditional word vectors like word2vec are noisy.
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