
DOI reference number: 10.18293/SEKE2022-010

Analyzing Cyber-Physical Systems with Learning Enabled Components

using Hybrid Predicate Transition Nets

Xudong He

Knight Foundation School of Computing and Information Sciences

Florida International University

Miami, USA

hex@cs.fiu.edu

Abstract — Cyber-physical systems (CPSs) are ubiquitous and

are becoming increasingly important in the functioning of our

society. CPSs have complex discrete and continuous behaviors. In

recent years, learning enabled components (LECs) built using

machine learning approaches are increasingly used in CPSs to

perform autonomous tasks to deal with uncertain and unfamiliar

environments. CPSs with LECs are even more difficult to develop.

We have developed a methodology for formally modeling and

analyzing CPSs with LECs. Hybrid predicate transition nets

(HPrTNs) are used as the underlying formal method to model

CPSs with LECs and their training through their simulation

capability. In this paper, we present our new analysis methodology

for CPSs with LECs consisting of three complementary

techniques, including a testing technique based on HPrTN

simulation capability, a simulation guided barrier certificate

technique, and a SMT based bounded model checking technique.

The above analysis methodology is partially supported by a tool

chain and is demonstrated through an example.

Keywords — cyber-physical systems; learning enabled

components; formal methods; hybrid predicate transition nets;

barrier certificate; bounded model checking

I. INTRODUCTION

Cyber-physical systems (CPSs) are ubiquitous and are
becoming increasingly important in the functioning of our
society. CPSs are hybrid systems that contain physical devices
having continuous dynamics and computational control
processes with discrete behaviors. These systems are extremely
difficult to build and error-prone. In recent years, CPSs have
started to use learning enabled components (LECs) as part of the
control loop for performing various perception-based autonomy
tasks. These data-driven components are trained using machine
learning (ML) approaches such as deep learning – deep neural
nets (DNNs) and reinforcement learning (RL) [17]. These
approaches have provided CPSs the capability to continuously
learn and work in uncertain and unfamiliar environments.
Although many ML techniques have been developed in the past
few decades and tremendous progresses have been made in the
last decade, there is very little understanding of the properties of
these data-driven models built using ML. Research on the
formal analysis of these data-driven models has just emerged in
recent years. LECs have added additional dimensions of
difficulties to those of CPSs.

We have developed a methodology for modeling and
analyzing CPSs with LECs, which contains the following new
results: (1) A method for modeling deep neural nets (DNNs)
using hybrid predicate transition nets (HPrTNs), (2) An

reinforcement learning (RL) technique to train DNNs with an
environment (plant) using HPrTNs, (3) A Simplex architecture
to integrate advanced controller (a trained DNN) with a baseline
controller defined using ordinary differential equations such that
the overall system has a closed loop dynamics, (4) A simulation
analysis method based on the dynamic semantics of HPrTNs and
supported in tool PIPE+, (5) A barrier certificate analysis
technique based on inductive invariant reasoning supported in
tool Pyomo with linear program solver Gurobi and SMT solver
Z3, (6) A bounded model checking analysis approach supported
by tool dReach and backend solver dReal. We have presented
our detailed modeling method that covers results (1) to (3) in [7].
In this paper, we will provide a brief overview of the modeling
method while focus on the analysis techniques covering results
(5) to (6). In the following sections, we provide some
background information on the modeling method and the details
of the analysis techniques.

II. HYBRID PREDICATE TRANSITION NETS

In this section, a formal definition of HPrTNs [6] is
provided.

 An HPrTN is a tuple 𝑁 = (𝑃, 𝑇, 𝐹, 𝛼, 𝛽, 𝛾, 𝜇, , 𝑀0), where
(1) 𝑃 = 𝑃𝑑 ∪ 𝑃𝑐 is a non-empty finite set of discrete places 𝑃𝑑

and continuous places 𝑃𝑐 (graphically represented by
circles and double circles respectively);

(2) 𝑇 is a non-empty finite set of discrete transitions
(graphically represented by bars or boxes), which disjoins
𝑃, i.e. 𝑃 ∩ 𝑇 = ∅;

(3) 𝐹 𝑃 × 𝑇 ∪ 𝑇 × 𝑃 is a flow relation (the arcs of 𝑁);
(4) 𝛼: 𝑃 → 𝑇𝑦𝑝𝑒 associates each place 𝑝 ∈ 𝑃 with a type in

𝑇𝑦𝑝𝑒. 𝑇𝑦𝑝𝑒 defines the structure of the data the places can
hold. The basic types include String, Integer, and Real; and
the composite types are defined using Cartesian product
and power set;

(5) 𝛽: 𝑇 → 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 associates each transition 𝑡 ∈ 𝑇 with a
constraint. Each constraint is a disjunction ⋁ 𝑑𝑖𝑖 for 𝑖 ≥ 1,
where each disjunct 𝑑𝑖 has a canonical form 𝑝𝑟𝑒𝑖𝑝𝑜𝑠𝑡𝑖
that defines the precondition (enabling condition) and post-
condition (output result) of a case of 𝑡 respectively. The
precondition contains only variables appearing in the labels
of incoming arcs and the post-condition contains variables
appearing in the labels of outgoing arcs;

(6) 𝛾: 𝐹 → 𝐿𝑎𝑏𝑒𝑙 associates each arc 𝑓 ∈ 𝐹 with a label in the
form of a simple variable 𝑥 or a set element {𝑥};

(7) 𝜇: 𝑃𝑐 → (×)
𝑛 associates each continuous component

of a continuous place with a pair of lower and upper bounds,
where 𝑛 is the number of continuous components;

(8) : 𝑃𝑐 → 𝑂𝐷𝐸
𝑛 associates each continuous component of a

continuous place an ordinary differential equation that
defines its evolution;

(9) 𝑀0: 𝑃 → 𝑇𝑜𝑘𝑒𝑛 is an initial marking and associates each
place 𝑝 ∈ 𝑃 with some valid tokens (respecting the type of
𝑝 and the bounds for continuous components). Each
continuous place can only hold at most one token.

The dynamic semantics of HPrTNs are defined based on the
markings (states) 𝑀:𝑃 → 𝑇𝑜𝑘𝑒𝑛. A transition 𝑡 ∈ 𝑇 is enabled
in marking 𝑀 if one of its precondition is true, Formally: ∀𝑝 ∈
𝑃. (𝜃(�̅�(𝑝, 𝑡)) 𝑀(𝑝) ∃𝑖. (𝜃(𝛽(𝑡). 𝑝𝑟𝑒𝑖))) , where 𝜃 is a

substitution that instantiates all the variables in relevant arcs and
constraint expression.

An enabled transition 𝑡 ∈ 𝑇 in marking 𝑀 with substitution
𝜃 can fire. The firing of transition 𝑡 results in a new marking 𝑀′
defined by ∀𝑝 ∈ 𝑃. (𝑀′(𝑝) = 𝑀(𝑝) ∪ 𝜃(�̅�(𝑡, 𝑝)) −

𝜃(�̅�(𝑝, 𝑡))) , which is denoted as: 𝑀
𝑡/𝜃
→ 𝑀′ . The firing of a

transition is instant and does not consume time. Two enabled
transitions are in conflict if the firing of one of them disables the
other. Non-conflict enabled transitions can fire concurrently.

Tokens in continuous places are continuously evolving
according to the differential equations governing the change
rates as long as their bounds are not violated. Given a marking
𝑀, we use [𝑀] to denote the state space covering all possible
continuous token evolution with the same token distribution.

Let 𝑇𝑖 be a set of concurrently enabled non-conflict
transitions with corresponding substitutions 𝜃𝑖 in marking [𝑀𝑖],
and [𝑀𝑖+1] be the resulting new marking after firing 𝑇𝑖 with 𝜃𝑖.
The behavior of the net 𝑁 consists of the set of all firing

sequences [𝑀0]
𝑇0/𝜃0
→ [𝑀1]⋯ [𝑀𝑖]

𝑇𝑖/𝜃𝑖
→ [𝑀𝑖+1]⋯. The set of all

reachable markings is denoted as [[𝑀0] >.

III. MODELING CPS WITH LECS USING HPRTNS

Our modeling methodology based on HPrTNs consists of
three steps: (1) modeling LECs using DNNs, (2) training LECs
though modeling environment and system dynamics using
reinforcement learning, and (3) modeling and integrating LECs
with other conventional system components within the HPrTN
paradigm. We briefly discuss our modeling methods in steps (1)
and (2) below.

DNNs have become a dominant deep learning approach in
recent years. A DNN has an architecture, which consists of an
input layer, multiple hidden layers and an output layer. Each
layer contains multiple neurons (each is represented by a circle)
that contain numerical values. The value of a neuron in layer 𝑙
is calculated through an activation function on the weighed input
from neurons in layer 𝑙 − 1 . Different types of DNN
architecture can be obtained based on how the adjacent layers
are connected, including feedforward (fully connected),
convolution, and recurrent. DNNs are trained using the output
results. A cost function defined on the output is used to calculate
the final error rate. By calculating and propagating the error rates

layer by layer backwards starting from the final error rate, we
can adjust the weights and biases based on the error rates.

 We have developed a novel HPrTN template to model a
DNN with backpropagation, where the architecture of the DNN
is modeled as follows:

(1) Each layer 𝑙 in DNN is modeled by a discrete place 𝑝𝑙 of
type × …×, where the cardinality determines the number
of neurons within the layer;

(2) Modeling neurons – each neuron is modeled by a token (or
a token component) of a real type, and the neurons within the
same layer is modeled by a structured token;

(3) Let 𝑙 and 𝑙 + 1 be two layers with cardinality 𝑚 and 𝑛
respectively, a discrete place 𝑤𝑙 of type (𝑚)𝑛 is used to
model the weight matrix between these two layers and a
discrete place 𝑏𝑙 of type 𝑛 is used to represent the bias vector;

(4) A transition 𝑡𝑙 with input places 𝑝𝑙 , 𝑤𝑙 , 𝑏𝑙, and output place
𝑝𝑙+1 is used to model activation function between these two

layers, the transition constraint ⋀ 𝑧𝑖 = 𝜎(𝑤
𝑖𝑥𝑇 + 𝑏𝑖)

𝑛
𝑖=1

defines the algebraic relationships between the activations (the
neurons) in these two layers, where each 𝑧𝑖 is a weighted input
to neuron 𝑖 in layer 𝑙 + 1;

(5) A transition 𝑐𝑜𝑠𝑡 is added with the constraint defining
initial error estimation. This transition has the place modeling
the final output layer as an input, and an output place for error
propagation;

(6) A place 𝑑𝑜𝑢𝑡𝑝𝑢𝑡 is added as an input to the 𝑐𝑜𝑠𝑡 transition,
a token specifying the desirable output 𝑦 resides in this place;

(7) A place 𝑒𝑙 abstracting backward error propagation is added
between layers 𝑙 and 𝑙 + 1;

(8) A transition 𝑔𝑙 is added between layers 𝑙 and 𝑙 + 1; this
transition produces the backward error and updates the weights
and biases of layer 𝑙 + 1.

Fig. 1 shows an HPrTN of two adjacent layers of a DNN
with backpropagation:

Reinforcement learning (RL) is a major machine learning
approach, which learns how to attain a complex objective (goal)
or how to maximize along a particular dimension over many
steps. An agent (controller) continuously interacts with an
environment (plant). The agent selects some action 𝑎 according
to a policy 𝜋 defined using a value function on an input state 𝑠
and reward 𝑟 or defined using a Q-value function on an input
pair of state 𝑠 and action 𝑎. The environment generates a new

state 𝑠′ and reward 𝑟′ according to the given action 𝑎. The goal
is to maximize cumulative rewards when a final state is reached.

Our method is based on neural fitted Q-learning process
[10], which builds an HPrTN model for a CPS with LECs and
uses the simulation capability of HPrTNs to train LECs modeled
as a DNN where a baseline controller or plant is used as the
learning environment. We have developed several HPrTN
templates to capture temporal difference methods in RL, which
support a variety of RL learning settings, including on / off line,
model based / model free, stationary / non-stationary, and
discrete / continuous.

To demonstrate the applicability of the method to model and

train a LEC, we have used the following car system adapted

from [1]: a car needs to move along a circular track as closely

as possible. The sensors (simulated) of the car can detect the

center of the track. The car’s position is defined by its

coordinates (x, y). The car has a direction 𝜃 and a speed v. The

car has three modes straight, left, and right and the dynamics in

each mode is as follows:

• Right: �̇� = (𝑣𝑐𝑜𝑠𝜃)/2, �̇� = (𝑣𝑠𝑖𝑛𝜃)/2, �̇� = −𝜋, 𝑑 ≥ 𝑒;

• Straight: �̇� = 𝑣𝑐𝑜𝑠𝜃, �̇� = 𝑣𝑠𝑖𝑛𝜃, �̇� = 0, −𝑒 ≤ 𝑑 ≤ 𝑒;

• Left: �̇� = (𝑣𝑐𝑜𝑠𝜃)/2, �̇� = (𝑣𝑠𝑖𝑛𝜃)/2, �̇� = 𝜋, 𝑑 ≤ −𝑒.

A parameter e is used to define the error margin [-e, e], and
the distance 𝑑 between the car’s current position and the center
of the track is calculated dynamically to control the switching
between modes. A baseline controller mimicking the
environment of the car and several advanced controllers (LECs)
using different DNN architectures and activation functions have
been tried. Fig. 2 shows a trained advanced controller (AC)
together with a baseline controller (BC) modeled using an
HPrTN developed in PIPE+ [14].

Training is done using HPrTN’s simulation capability. For
example, we have run six batches with randomly generated with

position (x, y), and direction . Each batch contains 1000
execution steps. The overall training involves firing 100,000
transitions and takes 31673 milliseconds on a PC with Intel(R)
Core(TM) i7-4770S CPU @ 3.10 GHz and 8 GB RAM running
Windows 10 OS.

IV. ANALYZING CPSS WITH LECS

Three techniques for analyzing CPSs with LECs are
explored, including simulation, barrier certificate, and SMT
based bounded model checking. Simulation is supported by the
operational semantics of HPrTNs, which can be used to train
LECs as well as test CPSs with LECs by selecting targeted or
random initial markings. Simulation results also provide the
basis for barrier certificate analysis. Simulation is easy to use,
scalable, and fully automatic. Simulation is supported by our
tool environment PIPE+. In the following sections, we describe
the barrier certificate and the bounded model checking
techniques.

A. Barrier Certificate Technique

Barrier certificate technique is based on symbolic
simulations for finding inductive invariants to prove the safety
requirements of a dynamic system. Since a CPS with LECs
modeled in an HPrTN is executable and produces simulation
traces, we can apply barrier certificate technique to analyze the
dynamics of the whole closed loop system.

A barrier certificate is a differentiable function B from the
set of states of the dynamical system to the set of real numbers
satisfying the following conditions:

(1) ∀𝑥 ∈ 𝑋0: 𝐵(𝑥) ≤ 0, where 𝑋0 is the set of possible initial
states,

(2) ∀𝑥 ∈ 𝑈: 𝐵(𝑥) > 0, where 𝑈 is the set of unsafe states,

(3) ∀𝑥: 𝐵(𝑥) = 0 ⇒ (𝐵)𝑇•𝑓(𝑥) < 0 , where (𝐵)𝑇 is the

transpose of gradient 𝐵 = (
𝐵

𝑥1
, … ,

𝐵

𝑥𝑛
) and 𝑓(𝑥) defines the

system dynamics.

Condition (3) ensures future system states are safe by

ensuring the separation the set of unsafe states from the set of

reachable states from the given initial states 𝑋0. Thus a barrier

certificate provides an unbounded-time safety certificate of the

system.

The key idea is to find a symbolic representation of a barrier

certificate from sample simulation traces. This analysis

technique was first used to analyze hybrid systems in [15], and

more recently applied to study CPSs with LECs [18]. We have

adapted the process in [18] to find candidate barrier certificates

using optimization system Pyomo [9] with linear solver Gurobi

and to validate a barrier certificate using SMT solver Z3.

First, a candidate barrier certificate W (similar to find a
Lyapunov candidate in stability analysis is found using a typical
template (sum of squares polynomials): 𝑊(𝑥) = 𝑥𝑇𝑃𝑥, where

𝑃 ∈ 𝑚×𝑚 is symmetric. The key is to find the values of 𝑃
using linear constraints: 𝑊(𝑥[𝑡𝑖]) > 0 and 𝑊(𝑥[𝑡𝑖]) −
𝑊(𝑥[𝑡𝑖+1]) > 0, where 𝑥[𝑡𝑖] (0 ≤ 𝑖 ≤ 𝑁) is a simulation trace
of the closed loop (including both plant and DNN controller)
system dynamics 𝑓. The above linear constraints correspond to
the negations of conditions (1) and (3) in barrier certificate. W
is a positive function and decreases along system trajectories.
Then, a level 𝑙 is found such that 𝐵(𝑥) = 𝑊(𝑥) − 𝑙, where 𝑙 is
a non-negative real number that separates 𝑋0 from 𝑈 . The
overall process in [18] is shown in Fig. 3.

Fig.2. An HPrTN representing a CPS with a LEC

In the above process:

• Equation (3.1): ∀𝑥 ∈ 𝐷. (𝑥𝑋0 (𝑊)𝑇•𝑓(𝑥) ≥ −𝛾)
• Equation (3.2): ∃𝑥 ∈ 𝑋0. (𝑥𝑥|𝑊(𝑥) − 𝑙 ≤ 0})
• Equation (3.3): ∃𝑥 ∈ {𝑥|𝑊(𝑥) − 𝑙 ≤ 0 }. (𝑥 ∈ 𝑈)

Equations (3.2) and (3.3) define the opposite of separation,
i.e. unsafe.

The barrier certificate technique is applied to the car
system presented in a previous section. Eight simulation traces
(200 steps) of the LEC automated vehicle are run and collected

around the region x: [-1,1], y: [49, 51], and : [-5, 5]. Python is
used to process the raw simulation data into 10 steps of data of

system error dynamics (distance error: √𝑥2 + 𝑦2-50, where 50

is the radius of the circular track, and angular error: 0). The sum
of squares polynomials template is used to fit the simulation
data, and the resulting equations are solved using optimization
system Pyomo [9] with solvers glpk and Gurobi. Among the 8
sets of equations, four are successfully solved while the other
four have no solutions.

One of the candidate barrier certificate is 𝑊(𝑑, 𝜃) =

0.776 ∗ 𝑑2 + 0.2 ∗ 𝜃 ∗ 𝑑 + 0.013𝜃2 , where 𝑑 = √𝑥2 + 𝑦2 −

50 and 𝑊 = (
𝑊

𝑑
,
𝑊

𝜃
) = (1.552 ∗ 𝑑 + 0.2 ∗ 𝜃, 0.2 ∗ 𝑑 +

0.026 ∗ 𝜃). The error dynamics is 𝑓 = [�̇�, �̇�]: �̇� = (𝑥 ∗ �̇� + 𝑦 ∗

�̇�)/√𝑥2 + 𝑦2 = (𝑥 ∗ sin (𝜃) + 𝑦 ∗ cos (𝜃))/√𝑥2 + 𝑦2 , and

Equation (3.1) is ∀𝑥 ∈ 𝐷. (𝑥𝑋0 (𝑊)𝑇•𝑓(𝑥) ≥ −𝛾) ,
where 𝛾 = 0.0001 , which is formulated as a constraint
satisfaction problem using Pyomo and solved using Z3. Z3
confirms 𝑊(𝑑, 𝜃) as a valid barrier certificate candidate. Z3 is
then applied to check Equation (3.2) in finding level 𝑙 = 60,
and thus the barrier certificate 𝐵(𝑥, 𝑦, 𝜃) = 𝑊(𝑥, 𝑦, 𝜃) − 60.
Finally, Z3 is used to check Equation (3.3) to ensure the safety
region, where unsafe region is defined by half spaces: 𝑥 ≤ −5,
𝑥 ≥ 5, y ≤ 48, 𝑥 ≥ 52.

B. Bounded Model Checking Technique

Bounded model checking was first developed to analyze
safety properties of discrete systems [3]. In bounded model
checking, the following logic formula

𝑘
 is constructed from a

given system model and property:
𝑘
=

𝐼(𝑠0)⋀ 𝑇(𝑠𝑖 , 𝑠𝑖+1)
𝑘−1
𝑖=0 ⋁ 𝑓(𝑠𝑖)

𝑘
𝑖=0 , where 𝐼(𝑠0) is the

characteristic function of the initial state 𝑠0 , 𝑇(𝑠𝑖 , 𝑠𝑖+1) is the
characteristic function of the transition relation, and 𝑓(𝑠𝑖)
represents the negated safety property in unrolled state 𝑠𝑖 (0 ≤
𝑖 ≤ 𝑘). If

𝑘
 is satisfiable, there is a transition sequence or a

trace from the initial state 𝑠0 to a state 𝑠𝑖 that satisfies f, thus
violates the safety property. An SMT solver is used to check

𝑘
.

Bounded model checking can be used to find violation of a
safety property through a counter example, and can ensure a
safety property up to 𝑘 steps.

Bounded model checking techniques have been generalized
to analyze hybrid systems with limited successes in the past
decade ([2], [4], [5], [13]) and thus can be applied to analyze
CPSs. However formal analysis techniques for LECs modeled
using DNNs barely exist, a few existing works ([8], [12], [16])
can only handle simple activation functions such as ReLU.

A recent work [11] shows promise to formally analyze CPSs
with LECs, in which the LEC modeled in DNN is transformed
into a hybrid automaton, and then the overall system is analyzed
by composing the LEC generated hybrid automaton with the
hybrid automaton modeling the rest of the system. The overall
closed loop system model in [11] is shown in Fig. 4.

 The plant dynamics is defined by �̇� = 𝑓𝑝(𝑥, 𝑢) and 𝑦 =
𝑔(𝑥), where 𝑥 ∈ 𝑛 is system state, and 𝑢 ∈ 𝑚 is the input,
𝑓𝑝 is a locally Lipschitz-continuous vector field, 𝑔:𝑛→ 𝑞 .

The DNN controller is defined by 𝑢 = ℎ(𝑦) , where
ℎ:𝑞→ 𝑚 . The closed loop system dynamics: �̇� =
𝑓𝑝(𝑥, ℎ(𝑔(𝑥))).

 The DNN is transformed into a hybrid automaton as follows:
ℎ(𝑦) = ℎ𝐿°ℎ𝐿−1°… °ℎ1(y), where each hidden layer 𝑖 has an
element-wise sigmoid activation function ℎ𝑖(𝑦) = 1/(1 +
𝑒−(𝑊𝑖𝑦+𝑏𝑖)), with the last layer being a linear function: ℎ𝐿(𝑦) =
𝑊𝐿𝑦 + 𝑏𝐿 . The derivative of sigmoid function 𝜎(𝑦) = 1/(1 +

𝑒−𝑦) is
𝑑𝜎

𝑑𝑦
= 𝜎(𝑦)(1 − 𝜎(𝑦)) . The timed proxy function

𝜎(𝑡, 𝑦) = 1/(1 + 𝑒−𝑡𝑦) is used to define evolution with

derivative: �̇�(𝑡, 𝑦) =
𝜎

𝑡
= 𝑦𝜎(𝑡, 𝑦)(1 − 𝜎(𝑡, 𝑦)). The resulting

hybrid automaton has one mode for each DNN layer. A set of
continuous variables (each corresponding to a neuron) is
introduced. The flow of continuous variable 𝑦𝑗 in each mode 𝑖

Fig.3. The process of finding barrier certificate

Fig.4. The closed loop system of a controller with plant

is defined by proxy function 𝜎𝑖𝑗(𝑡, 𝑦) from 𝑡 = 0.5 to 1 defined

using differential equation 𝜎𝑖𝑗̇ (𝑡, 𝑦). Another set of continuous

variables are used to keep track the linear functions (weighted
sums) of each neuron and have constant change rates 0. Discrete
jumps between modes happen when 𝑡 = 1. The overall closed
loop system model (composition) is 𝑆 = ℎ ||𝐻𝑝, where 𝐻𝑝 is the

plant automaton with dynamics 𝑓𝑝(𝑥, 𝑢) . The reachability

property on plant with initial state 𝑋0 is defined by (𝑋0) ⇒
𝑓(𝑥(𝑡)), for 𝑡 ≥ 0.

 A bounded model checking technique has been developed
for CPSs with LECs in this research. The approach in [11] is
adapted to translate the component of an HPrTN representing a
LEC into a hybrid automaton. The translation of the rest part of
HPrTN to a hybrid automaton is straightforward based on the
relationships between HPrTNs and hybrid automata given in [6].
Bounded model checker dReach [13] with dReal [5] for non-
linear hybrid automata are used to check the resulting composed
hybrid automaton.

 The bounded model checking technique is applied to the car
system presented in a previous section. The Plant (Car) 𝐻𝑝 has

3 continuous variables – location x and y and direction angle ,
and three modes – forward, left, and right. The controller (DNN)
ℎ has three layers with one hidden layer containing sigmoid
activation function. The overall closed loop system model 𝑆 =
ℎ ||𝐻𝑝 contains 6 modes (after reduction), and twelve

continuous variables (including time). The reachability property
to check (the car off the center of circular track of radius 50 by
5) is 𝑠𝑞𝑟𝑡(𝑥2 + 𝑦2) − 50 > 5 𝑠𝑞𝑟𝑡(𝑥2 + 𝑦2) − 50 < −5 .
The model checking results are shown Table I below:

V. CONCLUDING REMARKS

HPrTNs are well suited for modeling CPSs with LECs due to
(1) their capability to capture concurrency and hybrid behaviors
in typical CPSs, (2) their graphical representation and
executability to naturally fit the machine learning techniques
based DNNs and RL, and (3) their distributed and concurrent
data flow computational model to easily integrate different
system components. This paper contributes a unique analysis
methodology to analyze CPSs with LECs modeled using
HPrTNs. Although both barrier certificate and bounded model
checking techniques have been around for decades, their
applications to deal with LECs only happened in recent years.
Integrating both analysis techniques within the same framework
with unique tool support is a new contribution of this work.

More case studies will be carried out to show the
effectiveness and scalability of this analysis methodology.
Additional research will be done to develop new techniques to

analyze the robustness of DNNs and the overall stability and
safety of CPSs with LECs built using neural fitted RL.

ACKNOWLEDGMENT

This work was partially supported by AFRL under FA8750-15-2-0106

and FA9550-15-0001. The U.S. Government is authorized to

reproduce and distribute reprints for Governmental purposes

notwithstanding any copyright notation thereon.

REFERENCES

[1] R. Alur: “Principles of Cyber-Physical Systems”, The MIT Press, 2015.

[2] K. Bae and S. Gao: “Modular SMT-based analysis of nonlinear hybrid
systems,” 2017 Formal Methods in Computer Aided Design (FMCAD),
Vienna, 2017, pp. 180-187.

[3] E. Clarke, A. Biere, R. Raimi, Y. Zhu: “Bounded model checking using
satisfiability solving”. Formal Methods in System Design 19(1), 7–34
(2001).

[4] A. Cimatti, S. Mover, and S. Tonetta: “SMT-based verification of hybrid
systems”. In Proc. AAAI, 2012.

[5] S. Gao, S. Kong, and E. M. Clarke: “dReal: An SMT solver for nonlinear
theories over the reals”. In CADE, volume 7898 of LNCS, pages 208–
214. Springer, 2013.

[6] X. He and D. Alam: “Hybrid Predicate Transition Nets - A Formal Method
for Modeling and Analyzing Cyber-Physical Systems”, Proc. of The 2019
IEEE International Conference on Software Quality, Reliability &
Security (QRS’19), Sofia, Bulgaria, 2019, 216-227.

[7] X. He: “Modeling and Analyzing Cyber Physical Systems with Learning
Enabled Components using Hybrid Predicate Transition Nets”, Proc. of
2021 IEEE 21th International Conference on Software Quality,
Reliability and Security Companion (QRS-C), Hainan, China, 2021.

[8] X. Huang, M. Kwiatkowska, S. Wang, and M. Wu: “Safety verification of
deep neural networks”, In International Conference on Computer Aided
Verification, 2017, Springer, 3–29.

[9] W. E. Hart, C. D. Laird, J. Watson, D. L. Woodruff, G. A. Hackebeil, B. L.
Nicholson, J. D. Siirola: “Pyomo – Optimization Modeling in Python”,
Springer, 2017.

[10] R. Hafner, M. Riedmiller: “Reinforcement learning in feedback control –
Challenges and benchmarks from technical process control”, Mach Learn
(2011) 84:137–169.

[11] R. Ivanov, J. Weimer, R. Alur, G. J Pappas, and I. Lee: “Verisig: verifying
safety properties of hybrid systems with neural network controllers” In
Proceedings of the 22nd ACM International Conference on Hybrid
Systems: Computation and Control (HSCC’19), 2019, 169–178.

[12] G. Katz, C. Barrett, D. L Dill, K. Julian, and M. J Kochenderfer: “Reluplex:
An efficient SMT solver for verifying deep neural networks”, In
International Conference on Computer Aided Verification. Springer,
2017, 97–117.

[13] S. Kong, S. Gao, W. Chen, and E. M. Clarke: “dReach: -reachability
analysis for hybrid systems”. In TACAS, volume 9035 of LNCS.
Springer, 2015.

[14] S. Liu, R. Zeng, X. He: “PIPE+ - A Modeling Tool for High Level Petri
Nets”, Proc. of International Conference on Software Engineering and
Knowledge Engineering (SEKE11), Miami, July 2011, 115 - 121.

[15] S. Prajna and A. Jadbabaie: “Safety Verification of Hybrid Systems Using
Barrier Certificates”. In In Hybrid Systems: Computation and Control.
Springer, 477–492, 2004.

[16] L. Pulina and A. Tacchella: “An Abstraction-Refinement Approach to
Verification of Artificial Neural Networks”. In Proc. 22nd Int. Conf. on
Computer Aided Verification (CAV), pages 243-257, 2010.

[17] R. S. Sutton, and A. G. Barto: “Reinforcement Learning: An Introduction”,
(2nd edition), Cambridge, MA: MIT Press, 2018.

[18] C. Tuncali, J. Kapinski, H. Ito, J. Deshmukh: “Reasoning about Safety of
Learning-Enabled Components in Autonomous Cyber-physical
Systems”. Design Automation Conference (DAC) 2018.

Table I Bounded model checking results

