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Abstract — Cyber-physical systems (CPSs) are ubiquitous and 

are becoming increasingly important in the functioning of our 

society. CPSs have complex discrete and continuous behaviors. In 

recent years, learning enabled components (LECs) built using 

machine learning approaches are increasingly used in CPSs to 

perform autonomous tasks to deal with uncertain and unfamiliar 

environments. CPSs with LECs are even more difficult to develop. 

We have developed a methodology for formally modeling and 

analyzing CPSs with LECs. Hybrid predicate transition nets 

(HPrTNs) are used as the underlying formal method to model 

CPSs with LECs and their training through their simulation 

capability. In this paper, we present our new analysis methodology 

for CPSs with LECs consisting of three complementary 

techniques, including a testing technique based on HPrTN 

simulation capability, a simulation guided barrier certificate 

technique, and a SMT based bounded model checking technique. 

The above analysis methodology is partially supported by a tool 

chain and is demonstrated through an example. 
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I. INTRODUCTION  

Cyber-physical systems (CPSs) are ubiquitous and are 
becoming increasingly important in the functioning of our 
society. CPSs are hybrid systems that contain physical devices 
having continuous dynamics and computational control 
processes with discrete behaviors. These systems are extremely 
difficult to build and error-prone. In recent years, CPSs have 
started to use learning enabled components (LECs) as part of the 
control loop for performing various perception-based autonomy 
tasks. These data-driven components are trained using machine 
learning (ML) approaches such as deep learning – deep neural 
nets (DNNs) and reinforcement learning (RL) [17]. These 
approaches have provided CPSs the capability to continuously 
learn and work in uncertain and unfamiliar environments. 
Although many ML techniques have been developed in the past 
few decades and tremendous progresses have been made in the 
last decade, there is very little understanding of the properties of 
these data-driven models built using ML. Research on the 
formal analysis of these data-driven models has just emerged in 
recent years. LECs have added additional dimensions of 
difficulties to those of CPSs.  

We have developed a methodology for modeling and 
analyzing CPSs with LECs, which contains the following new 
results: (1) A method for modeling deep neural nets (DNNs) 
using hybrid predicate transition nets (HPrTNs), (2) An 

reinforcement learning (RL) technique to train DNNs with an 
environment (plant) using HPrTNs, (3) A Simplex architecture 
to integrate advanced controller (a trained DNN) with a baseline 
controller defined using ordinary differential equations such that 
the overall system has a closed loop dynamics, (4) A simulation 
analysis method based on the dynamic semantics of HPrTNs and 
supported in tool PIPE+, (5) A barrier certificate analysis 
technique based on inductive invariant reasoning supported in 
tool Pyomo with linear program solver Gurobi and SMT solver 
Z3, (6) A bounded model checking analysis approach supported 
by tool dReach and backend solver dReal. We have presented 
our detailed modeling method that covers results (1) to (3) in [7]. 
In this paper, we will provide a brief overview of the modeling 
method while focus on the analysis techniques covering results 
(5) to (6). In the following sections, we provide some 
background information on the modeling method and the details 
of the analysis techniques.  

II. HYBRID PREDICATE TRANSITION NETS 

In this section, a formal definition of HPrTNs [6] is 
provided.  

      An HPrTN is a tuple 𝑁 = (𝑃, 𝑇, 𝐹, 𝛼, 𝛽, 𝛾, 𝜇, , 𝑀0), where 
(1) 𝑃 = 𝑃𝑑 ∪ 𝑃𝑐  is a non-empty finite set of discrete places 𝑃𝑑 

and continuous places 𝑃𝑐  (graphically represented by 
circles and double circles respectively); 

(2) 𝑇  is a non-empty finite set of discrete transitions 
(graphically represented by bars or boxes), which disjoins 
𝑃, i.e. 𝑃 ∩ 𝑇 = ∅; 

(3) 𝐹  𝑃 × 𝑇 ∪ 𝑇 × 𝑃 is a flow relation (the arcs of 𝑁); 
(4) 𝛼: 𝑃 → 𝑇𝑦𝑝𝑒  associates each place 𝑝 ∈ 𝑃 with a type in 

𝑇𝑦𝑝𝑒. 𝑇𝑦𝑝𝑒 defines the structure of the data the places can 
hold. The basic types include String, Integer, and Real; and 
the composite types are defined using Cartesian product 
and power set; 

(5) 𝛽: 𝑇 → 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 associates each transition 𝑡 ∈ 𝑇 with a 
constraint. Each constraint is a disjunction ⋁ 𝑑𝑖𝑖  for 𝑖 ≥ 1, 
where each disjunct 𝑑𝑖  has a canonical form 𝑝𝑟𝑒𝑖𝑝𝑜𝑠𝑡𝑖 
that defines the precondition (enabling condition) and post-
condition (output result) of a case of 𝑡 respectively. The 
precondition contains only variables appearing in the labels 
of incoming arcs and the post-condition contains variables 
appearing in the labels of outgoing arcs; 

(6) 𝛾: 𝐹 → 𝐿𝑎𝑏𝑒𝑙 associates each arc 𝑓 ∈ 𝐹 with a label in the 
form of a simple variable 𝑥 or a set element {𝑥}; 



(7) 𝜇: 𝑃𝑐 → ( ×)
𝑛 associates each continuous component 

of a continuous place with a pair of lower and upper bounds, 
where 𝑛 is the number of continuous components; 

(8) : 𝑃𝑐 → 𝑂𝐷𝐸
𝑛  associates each continuous component of a 

continuous place an ordinary differential equation that 
defines its evolution; 

(9) 𝑀0: 𝑃 → 𝑇𝑜𝑘𝑒𝑛 is an initial marking and associates each 
place 𝑝 ∈ 𝑃 with some valid tokens (respecting the type of 
𝑝  and the bounds for continuous components). Each 
continuous place can only hold at most one token. 
 

The dynamic semantics of HPrTNs are defined based on the 
markings (states) 𝑀:𝑃 → 𝑇𝑜𝑘𝑒𝑛. A transition 𝑡 ∈ 𝑇 is enabled 
in marking 𝑀 if one of its precondition is true, Formally: ∀𝑝 ∈
𝑃. (𝜃(�̅�(𝑝, 𝑡))  𝑀(𝑝) ∃𝑖. (𝜃(𝛽(𝑡). 𝑝𝑟𝑒𝑖))) , where 𝜃  is a 

substitution that instantiates all the variables in relevant arcs and 
constraint expression. 

An enabled transition 𝑡 ∈ 𝑇 in marking 𝑀 with substitution 
𝜃 can fire. The firing of transition 𝑡 results in a new marking 𝑀′ 
defined by ∀𝑝 ∈ 𝑃. (𝑀′(𝑝) = 𝑀(𝑝) ∪ 𝜃(�̅�(𝑡, 𝑝)) −

𝜃(�̅�(𝑝, 𝑡))) , which is denoted as: 𝑀
𝑡/𝜃
→ 𝑀′ . The firing of a 

transition is instant and does not consume time. Two enabled 
transitions are in conflict if the firing of one of them disables the 
other. Non-conflict enabled transitions can fire concurrently. 

Tokens in continuous places are continuously evolving 
according to the differential equations governing the change 
rates as long as their bounds are not violated. Given a marking 
𝑀, we use [𝑀] to denote the state space covering all possible 
continuous token evolution with the same token distribution. 

Let 𝑇𝑖  be a set of concurrently enabled non-conflict 
transitions with corresponding substitutions 𝜃𝑖 in marking [𝑀𝑖], 
and [𝑀𝑖+1] be the resulting new marking after firing 𝑇𝑖  with 𝜃𝑖. 
The behavior of the net 𝑁  consists of the set of all firing 

sequences [𝑀0]
𝑇0/𝜃0
→   [𝑀1]⋯ [𝑀𝑖]

𝑇𝑖/𝜃𝑖
→   [𝑀𝑖+1]⋯. The set of all 

reachable markings is denoted as [[𝑀0] >. 

III. MODELING CPS WITH LECS USING HPRTNS 

Our modeling methodology based on HPrTNs consists of 
three steps: (1) modeling LECs using DNNs, (2) training LECs 
though modeling environment and system dynamics using 
reinforcement learning, and (3) modeling and integrating LECs 
with other conventional system components within the HPrTN 
paradigm.  We briefly discuss our modeling methods in steps (1) 
and (2) below. 

DNNs have become a dominant deep learning approach in 
recent years. A DNN has an architecture, which consists of an 
input layer, multiple hidden layers and an output layer. Each 
layer contains multiple neurons (each is represented by a circle) 
that contain numerical values. The value of a neuron in layer 𝑙 
is calculated through an activation function on the weighed input 
from neurons in layer 𝑙 − 1 . Different types of DNN 
architecture can be obtained based on how the adjacent layers 
are connected, including feedforward (fully connected), 
convolution, and recurrent. DNNs are trained using the output 
results. A cost function defined on the output is used to calculate 
the final error rate. By calculating and propagating the error rates 

layer by layer backwards starting from the final error rate, we 
can adjust the weights and biases based on the error rates. 

 We have developed a novel HPrTN template to model a 
DNN with backpropagation, where the architecture of the DNN 
is modeled as follows: 

(1) Each layer 𝑙 in DNN is modeled by a discrete place 𝑝𝑙  of 
type  × …×, where the cardinality determines the number 
of neurons within the layer;  

(2) Modeling neurons – each neuron is modeled by a token (or 
a token component) of a real type, and the neurons within the 
same layer is modeled by a structured token; 

(3) Let 𝑙  and 𝑙 + 1  be two layers with cardinality 𝑚  and 𝑛 
respectively, a discrete place 𝑤𝑙  of type (𝑚)𝑛 is used to 
model the weight matrix between these two layers and a 
discrete place 𝑏𝑙 of type 𝑛 is used to represent the bias vector; 

(4) A transition 𝑡𝑙 with input places 𝑝𝑙 , 𝑤𝑙 , 𝑏𝑙, and output place 
𝑝𝑙+1 is used to model activation function between these two 

layers, the transition constraint ⋀ 𝑧𝑖 = 𝜎(𝑤
𝑖𝑥𝑇 + 𝑏𝑖)

𝑛
𝑖=1  

defines the algebraic relationships between the activations (the 
neurons) in these two layers, where each 𝑧𝑖 is a weighted input 
to neuron 𝑖 in layer 𝑙 + 1; 

(5) A transition 𝑐𝑜𝑠𝑡 is added with the constraint defining 
initial error estimation. This transition has the place modeling 
the final output layer as an input, and an output place for error 
propagation; 

(6) A place 𝑑𝑜𝑢𝑡𝑝𝑢𝑡 is added as an input to the 𝑐𝑜𝑠𝑡 transition, 
a token specifying the desirable output 𝑦 resides in this place; 

(7) A place 𝑒𝑙 abstracting backward error propagation is added 
between layers 𝑙 and 𝑙 + 1; 

(8) A transition 𝑔𝑙  is added between layers 𝑙  and 𝑙 + 1; this 
transition produces the backward error and updates the weights 
and biases of layer 𝑙 + 1. 

Fig. 1 shows an HPrTN of two adjacent layers of a DNN 
with backpropagation: 

 

Reinforcement learning (RL) is a major machine learning 
approach, which learns how to attain a complex objective (goal) 
or how to maximize along a particular dimension over many 
steps. An agent (controller) continuously interacts with an 
environment (plant). The agent selects some action 𝑎 according 
to a policy 𝜋 defined using a value function on an input state 𝑠 
and reward 𝑟 or defined using a Q-value function on an input 
pair of state 𝑠 and action 𝑎. The environment generates a new 



state 𝑠′ and reward 𝑟′ according to the given action 𝑎. The goal 
is to maximize cumulative rewards when a final state is reached. 

Our method is based on neural fitted Q-learning process 
[10], which builds an HPrTN model for a CPS with LECs and 
uses the simulation capability of HPrTNs to train LECs modeled 
as a DNN where a baseline controller or plant is used as the 
learning environment. We have developed several HPrTN 
templates to capture temporal difference methods in RL, which 
support a variety of RL learning settings, including on / off line, 
model based / model free, stationary / non-stationary, and 
discrete / continuous. 

To demonstrate the applicability of the method to model and 

train a LEC, we have used the following car system adapted 

from [1]: a car needs to move along a circular track as closely 

as possible. The sensors (simulated) of the car can detect the 

center of the track. The car’s position is defined by its 

coordinates (x, y). The car has a direction 𝜃 and a speed v. The 

car has three modes straight, left, and right and the dynamics in 

each mode is as follows:  

• Right: �̇� = (𝑣𝑐𝑜𝑠𝜃)/2, �̇� = (𝑣𝑠𝑖𝑛𝜃)/2, �̇� = −𝜋, 𝑑 ≥ 𝑒; 

• Straight: �̇� = 𝑣𝑐𝑜𝑠𝜃, �̇� = 𝑣𝑠𝑖𝑛𝜃, �̇� = 0, −𝑒 ≤ 𝑑 ≤ 𝑒; 

• Left: �̇� = (𝑣𝑐𝑜𝑠𝜃)/2, �̇� = (𝑣𝑠𝑖𝑛𝜃)/2, �̇� = 𝜋, 𝑑 ≤ −𝑒. 

A parameter e is used to define the error margin [-e, e], and 
the distance 𝑑 between the car’s current position and the center 
of the track is calculated dynamically to control the switching 
between modes. A baseline controller mimicking the 
environment of the car and several advanced controllers (LECs) 
using different DNN architectures and activation functions have 
been tried. Fig. 2 shows a trained advanced controller (AC) 
together with a baseline controller (BC) modeled using an 
HPrTN developed in PIPE+ [14]. 

 

Training is done using HPrTN’s simulation capability. For 
example, we have run six batches with randomly generated with 

position (x, y), and direction . Each batch contains 1000 
execution steps. The overall training involves firing 100,000 
transitions and takes 31673 milliseconds on a PC with Intel(R) 
Core(TM) i7-4770S CPU @ 3.10 GHz and 8 GB RAM running 
Windows 10 OS. 

IV. ANALYZING CPSS WITH LECS  

Three techniques for analyzing CPSs with LECs are 
explored, including simulation, barrier certificate, and SMT 
based bounded model checking. Simulation is supported by the 
operational semantics of HPrTNs, which can be used to train 
LECs as well as test CPSs with LECs by selecting targeted or 
random initial markings. Simulation results also provide the 
basis for barrier certificate analysis. Simulation is easy to use, 
scalable, and fully automatic. Simulation is supported by our 
tool environment PIPE+. In the following sections, we describe 
the barrier certificate and the bounded model checking 
techniques. 

A. Barrier Certificate Technique  

Barrier certificate technique is based on symbolic 
simulations for finding inductive invariants to prove the safety 
requirements of a dynamic system. Since a CPS with LECs 
modeled in an HPrTN is executable and produces simulation 
traces, we can apply barrier certificate technique to analyze the 
dynamics of the whole closed loop system. 

A barrier certificate is a differentiable function B from the 
set of states of the dynamical system to the set of real numbers 
satisfying the following conditions: 

(1) ∀𝑥 ∈ 𝑋0: 𝐵(𝑥) ≤ 0,    where 𝑋0 is the set of possible initial 
states, 

(2) ∀𝑥 ∈ 𝑈: 𝐵(𝑥) > 0,   where 𝑈 is the set of unsafe states, 

(3) ∀𝑥:  𝐵(𝑥) = 0 ⇒ (𝐵)𝑇•𝑓(𝑥) < 0 , where (𝐵)𝑇  is the 

transpose of gradient 𝐵 = (
𝐵

𝑥1
, … ,

𝐵

𝑥𝑛
) and 𝑓(𝑥) defines the 

system dynamics. 

Condition (3) ensures future system states are safe by 

ensuring the separation the set of unsafe states from the set of 

reachable states from the given initial states 𝑋0. Thus a barrier 

certificate provides an unbounded-time safety certificate of the 

system. 

The key idea is to find a symbolic representation of a barrier 

certificate from sample simulation traces. This analysis 

technique was first used to analyze hybrid systems in [15], and 

more recently applied to study CPSs with LECs [18]. We have 

adapted the process in [18] to find candidate barrier certificates 

using optimization system Pyomo [9] with linear solver Gurobi 

and to validate a barrier certificate using SMT solver Z3. 

First, a candidate barrier certificate W (similar to find a 
Lyapunov candidate in stability analysis is found using a typical 
template (sum of squares polynomials): 𝑊(𝑥) = 𝑥𝑇𝑃𝑥, where 

𝑃 ∈ 𝑚×𝑚  is symmetric. The key is to find the values of 𝑃 
using linear constraints: 𝑊(𝑥[𝑡𝑖]) > 0  and 𝑊(𝑥[𝑡𝑖]) −
𝑊(𝑥[𝑡𝑖+1]) > 0, where 𝑥[𝑡𝑖] (0 ≤ 𝑖 ≤ 𝑁) is a simulation trace 
of the closed loop (including both plant and DNN controller) 
system dynamics 𝑓. The above linear constraints correspond to 
the negations of conditions (1) and (3) in barrier certificate. W 
is a positive function and decreases along system trajectories. 
Then, a level 𝑙 is found such that 𝐵(𝑥) = 𝑊(𝑥) − 𝑙, where 𝑙 is 
a non-negative real number that separates 𝑋0  from 𝑈 . The 
overall process in [18] is shown in Fig. 3. 

Fig.2. An HPrTN representing a CPS with a LEC  



In the above process: 

• Equation (3.1): ∀𝑥 ∈ 𝐷. (𝑥𝑋0  (𝑊)𝑇•𝑓(𝑥) ≥ −𝛾) 
• Equation (3.2): ∃𝑥 ∈ 𝑋0. (𝑥𝑥|𝑊(𝑥) − 𝑙 ≤ 0}) 
• Equation (3.3): ∃𝑥 ∈ {𝑥|𝑊(𝑥) − 𝑙 ≤ 0 }.  (𝑥 ∈ 𝑈) 

Equations (3.2) and (3.3) define the opposite of separation, 
i.e. unsafe. 

 

The barrier certificate technique is applied to the car 
system presented in a previous section. Eight simulation traces 
(200 steps) of the LEC automated vehicle are run and collected 

around the region x: [-1,1], y: [49, 51], and : [-5, 5]. Python is 
used to process the raw simulation data into 10 steps of data of 

system error dynamics (distance error: √𝑥2 + 𝑦2-50, where 50 

is the radius of the circular track, and angular error: 0). The sum 
of squares polynomials template is used to fit the simulation 
data, and the resulting equations are solved using optimization 
system Pyomo [9] with solvers glpk and Gurobi. Among the 8 
sets of equations, four are successfully solved while the other 
four have no solutions.  

One of the candidate barrier certificate is 𝑊(𝑑, 𝜃) =

0.776 ∗ 𝑑2 + 0.2 ∗ 𝜃 ∗ 𝑑 + 0.013𝜃2 , where 𝑑 = √𝑥2 + 𝑦2 −

50  and 𝑊 = (
𝑊

𝑑
,
𝑊

𝜃
)  = (1.552 ∗ 𝑑 + 0.2 ∗ 𝜃,   0.2 ∗ 𝑑 +

0.026 ∗ 𝜃). The error dynamics is 𝑓 = [�̇�, �̇�]: �̇� = (𝑥 ∗ �̇� + 𝑦 ∗

�̇�)/√𝑥2 + 𝑦2 = (𝑥 ∗ sin (𝜃) + 𝑦 ∗ cos (𝜃))/√𝑥2 + 𝑦2 , and 

Equation (3.1) is  ∀𝑥 ∈ 𝐷. (𝑥𝑋0  (𝑊)𝑇•𝑓(𝑥) ≥ −𝛾) , 
where 𝛾 = 0.0001 , which is formulated as a constraint 
satisfaction problem using Pyomo and solved using Z3. Z3 
confirms 𝑊(𝑑, 𝜃) as a valid barrier certificate candidate. Z3 is 
then applied to check Equation (3.2) in finding level 𝑙 = 60, 
and thus the barrier certificate 𝐵(𝑥, 𝑦, 𝜃) = 𝑊(𝑥, 𝑦, 𝜃) − 60. 
Finally, Z3 is used to check Equation (3.3) to ensure the safety 
region, where unsafe region is defined by half spaces: 𝑥 ≤ −5, 
𝑥 ≥ 5, y ≤ 48, 𝑥 ≥ 52. 

B. Bounded Model Checking Technique 

Bounded model checking was first developed to analyze 
safety properties of discrete systems [3]. In bounded model 
checking, the following logic formula 

𝑘
 is constructed from a 

given system model and property: 
𝑘
=

𝐼(𝑠0)⋀ 𝑇(𝑠𝑖 , 𝑠𝑖+1)
𝑘−1
𝑖=0 ⋁ 𝑓(𝑠𝑖)

𝑘
𝑖=0 , where 𝐼(𝑠0)  is the 

characteristic function of the initial state 𝑠0 , 𝑇(𝑠𝑖 , 𝑠𝑖+1) is the 
characteristic function of the transition relation, and 𝑓(𝑠𝑖) 
represents the negated safety property in unrolled state 𝑠𝑖 (0 ≤
𝑖 ≤ 𝑘). If 

𝑘
 is satisfiable, there is a transition sequence or a 

trace from the initial state 𝑠0 to a state 𝑠𝑖  that satisfies f, thus 
violates the safety property. An SMT solver is used to check 

𝑘
. 

Bounded model checking can be used to find violation of a 
safety property through a counter example, and can ensure a 
safety property up to 𝑘 steps. 

Bounded model checking techniques have been generalized 
to analyze hybrid systems with limited successes in the past 
decade ([2], [4], [5], [13]) and thus can be applied to analyze 
CPSs. However formal analysis techniques for LECs modeled 
using DNNs barely exist, a few existing works ( [8], [12], [16]) 
can only handle simple activation functions such as ReLU. 

A recent work [11] shows promise to formally analyze CPSs 
with LECs, in which the LEC modeled in DNN is transformed 
into a hybrid automaton, and then the overall system is analyzed 
by composing the LEC generated hybrid automaton with the 
hybrid automaton modeling the rest of the system. The overall 
closed loop system model in [11] is shown in Fig. 4. 

  

 The plant dynamics is defined by �̇� = 𝑓𝑝(𝑥, 𝑢)  and 𝑦 =
𝑔(𝑥), where 𝑥 ∈ 𝑛 is system state, and 𝑢 ∈ 𝑚 is the input, 
𝑓𝑝  is a locally Lipschitz-continuous vector field, 𝑔:𝑛→ 𝑞 . 

The DNN controller is defined by 𝑢 = ℎ(𝑦) , where 
ℎ:𝑞→ 𝑚 . The closed loop system dynamics: �̇� =
𝑓𝑝(𝑥, ℎ(𝑔(𝑥))). 

 The DNN is transformed into a hybrid automaton as follows: 
ℎ(𝑦) = ℎ𝐿°ℎ𝐿−1°… °ℎ1(y), where each hidden layer 𝑖  has an 
element-wise sigmoid activation function ℎ𝑖(𝑦) = 1/(1 +
𝑒−(𝑊𝑖𝑦+𝑏𝑖)), with the last layer being a linear function: ℎ𝐿(𝑦) =
𝑊𝐿𝑦 + 𝑏𝐿 . The derivative of sigmoid function 𝜎(𝑦) = 1/(1 +

𝑒−𝑦 ) is 
𝑑𝜎

𝑑𝑦
= 𝜎(𝑦)(1 − 𝜎(𝑦)) . The timed proxy function 

𝜎(𝑡, 𝑦) = 1/(1 + 𝑒−𝑡𝑦 ) is used to define evolution with 

derivative: �̇�(𝑡, 𝑦) = 
𝜎

𝑡
= 𝑦𝜎(𝑡, 𝑦)(1 − 𝜎(𝑡, 𝑦)). The resulting 

hybrid automaton has one mode for each DNN layer. A set of 
continuous variables (each corresponding to a neuron) is 
introduced. The flow of continuous variable 𝑦𝑗 in each mode 𝑖 

Fig.3. The process of finding barrier certificate 

Fig.4. The closed loop system of a controller with plant 



is defined by proxy function 𝜎𝑖𝑗(𝑡, 𝑦) from  𝑡 = 0.5 to 1 defined 

using differential equation 𝜎𝑖𝑗̇ (𝑡, 𝑦). Another set of continuous 

variables are used to keep track the linear functions (weighted 
sums) of each neuron and have constant change rates 0. Discrete 
jumps between modes happen when 𝑡 = 1. The overall closed 
loop system model (composition) is 𝑆 = ℎ ||𝐻𝑝, where 𝐻𝑝 is the 

plant automaton with dynamics 𝑓𝑝(𝑥, 𝑢) . The reachability 

property on plant with initial state 𝑋0  is defined by (𝑋0) ⇒
𝑓(𝑥(𝑡)),  for 𝑡 ≥ 0. 

 A bounded model checking technique has been developed 
for CPSs with LECs in this research. The approach in [11] is 
adapted to translate the component of an HPrTN representing a 
LEC into a hybrid automaton. The translation of the rest part of 
HPrTN to a hybrid automaton is straightforward based on the 
relationships between HPrTNs and hybrid automata given in [6]. 
Bounded model checker dReach [13] with dReal [5] for non-
linear hybrid automata are used to check the resulting composed 
hybrid automaton. 

 The bounded model checking technique is applied to the car 
system presented in a previous section. The Plant (Car) 𝐻𝑝 has 

3 continuous variables – location x and y and direction angle , 
and three modes – forward, left, and right. The controller (DNN) 
ℎ  has three layers with one hidden layer containing sigmoid 
activation function. The overall closed loop system model 𝑆 =
ℎ ||𝐻𝑝  contains 6 modes (after reduction), and twelve 

continuous variables (including time). The reachability property 
to check (the car off the center of circular track of radius 50 by 
5) is 𝑠𝑞𝑟𝑡(𝑥2 + 𝑦2) − 50 > 5  𝑠𝑞𝑟𝑡(𝑥2 + 𝑦2) − 50 < −5 . 
The model checking results are shown Table I below: 

 

V. CONCLUDING REMARKS  

HPrTNs are well suited for modeling CPSs with LECs due to 
(1) their capability to capture concurrency and hybrid behaviors 
in typical CPSs, (2) their graphical representation and 
executability to naturally fit the machine learning techniques 
based DNNs and RL, and (3) their distributed and concurrent 
data flow computational model to easily integrate different 
system components. This paper contributes a unique analysis 
methodology to analyze CPSs with LECs modeled using 
HPrTNs. Although both barrier certificate and bounded model 
checking techniques have been around for decades, their 
applications to deal with LECs only happened in recent years. 
Integrating both analysis techniques within the same framework 
with unique tool support is a new contribution of this work.  

More case studies will be carried out to show the 
effectiveness and scalability of this analysis methodology. 
Additional research will be done to develop new techniques to 

analyze the robustness of DNNs and the overall stability and 
safety of CPSs with LECs built using neural fitted RL. 
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