
Correlation Feature Mining Model Based on Dual
Attention for Feature Envy Detection

1st Shuxin Zhao
Beijing Institute of Technology

School of Computer Science
Beijing, China

zhaosx@bit.edu.cn

2nd Chongyang Shi*
Beijing Institute of Technology

School of Computer Science
Beijing, China

cy shi@bit.edu.cn

3rd Shaojun Ren
Beijing Institute of Technology

School of Computer Science
Beijing, China

3120191036@bit.edu.cn

4th Hufsa Mohsin
Beijing Institute of Technology

School of Computer Science
Beijing, China

hufsa.bit@yahoo.com

Abstract—Feature Envy is a code smell due to the abnormal
calling relationships between methods and classes, which ad-
versely affects software scalability and maintainability. Existing
methods mainly use various technologies to model abnormal
relationships to detect feature envy. However, these methods
only rely on local features such as entity names, which is
not robust enough. Moreover, the mining depth of correlation
features between entities involved in feature envy is limited. In
this paper, we propose a correlation feature mining model based
on dual attention to detect feature envy. Firstly, we propose a
multi-view-based entity representation strategy, which enhanced
the robustness of the model while improving the suitability of
the correlation feature and model. Secondly, we add attention
mechanism to the channel dimension and spatial dimension
of CNN to control the flow of information and capture the
correlation features between entities more accurately. Finally,
the evaluation results on projects both with and without feature
envy injected show that our proposed approach outperforms the
state-of-the-art methods.

Index Terms—Code Smell, Feature Envy, Software Refactor-
ing, Attention Mechanism, Deep Learning

I. INTRODUCTION

A code smell is a potential problem in code caused by non-
standard programming [1], [2]. Feature envy is a common code
smell that has a significant impact on the degree of coupling
and cohesion of software [3]–[5]. An accurate and widely
accepted definition, first proposed by Beck and Fowler [6],
is more interested in a class other than the one it actually is
in. Based on this definition, many methods have been proposed
to complete the critical step of the refactoring operation, that
is, the detection of feature envy [7], [8].

The core of the existing feature envy detection methods is
to model the abnormal calling relationship between methods
and classes, which can be divided into the traditional method
based on structural information (code metrics) [8] and the
deep learning method based on text information [9]–[11]. The
code metrics represent the element overlap degree between
the method and the class, but this method relies heavily on
artificial design features and selection threshold. In the case

DOI reference number:10.18293/SEKE2022-009
This work is supported by the National Key Research and Development

Program of China(No. 2018YFB1003903), National Natural Science Founda-
tion of China (No. 61502033) and the Fundamental Research Funds for the
Central Universities.

that the coding specification is met, there will be a certain
correlation between the name of the method and the name of
the class. Therefore, many deep learning methods are proposed
to automate the end-to-end complex feature mapping [11].

Although deep learning methods based on text information
have achieved good performance in feature envy detection,
there are two key problems with such methods: 1) the selected
local feature of entity name cannot fully represent the entity
[11], [12], and the robustness of the model is also affected by
the singleness of the feature, for example, when the method
name conforms to the specification but the called variable is
completely contained in another class. 2) Existing methods
usually use CNN or RNN to extract correlation features [11],
[13], but they cannot accurately capture effective information
and filter other information, resulting in limited expression the
ability of the model.

To solve the above problems, we first propose a multi-
view based entity representation strategy, which selected name,
context and content to represent the entity [14], [15]. The
above entity representation strategy was mainly based on the
following three observations:

• Name is usually an accurate summary of the entity’s
function, and the method name in the right place should
have some correlation with the class name.

• Context refers to the external inputs of a method and its
outputs to the external. For a method, the inputs are its
parameters and the outputs are its return values. In a class
with good cohesion, the methods contained in it must be
similar in function or goal, which means that the context
of multiple methods is similar.

• Content of a method includes the external properties and
methods called by the method, and two methods that
are similar in function are also similar in content. And
for method names, which are intuitive generalizations
of method functions, we can find deeper correlations
between method functions due to the fine-grained nature
of the content.

To sum up, we should select information from the three
views of method, contain class and target class to get a
comprehensive representation. In addition, in order to more
accurately capture the correlation features in the selected text

Fig. 1. Data generation process.

information, we propose a correlation feature mining model
based on dual attention. The framework is illustrated in Fig.1.
Inspired by CBAM [16], this model adds attention mechanism
to channel dimension and spatial dimension of feature map
obtained by CNN. It can assign more weight to the important
feature and the level of the important feature, so the local
correlation feature can be accurately captured and filtered.
Finally, we use GRU to combine the context among the three
entities to obtain the overall correlation from the global view.

The evaluation of the proposed method consists of two parts.
1) On an existing large-scale data-set, which was obtained by
manually injecting feature envy through the operation of move
methods on seven high-quality open-source Java projects [11].
On this data-set, our method can reach F-measure 55%, which
is higher than the state-of-the-art. 2) We tested the proposed
method on three open-source Java projects without feature
envy injection, and the results showed that the performance
of our method is still higher than the existing tools and
technologies. The paper makes the following contributions:

• We propose a multi-view based entity representation strat-
egy, which extracts text information from name, context
and content to comprehensively represent the entity, so
that the entity integrates more correlation features and
improves the robustness of the model.

• We propose a dual attention based correlation feature
mining model for feature envy detection, based on the
comprehensive representation of entities. Dual-channel
attention mechanism can expand the depth of text in-
formation and accurately filter and capture correlation
features.

• The evaluation results on open source projects with
and without feature envy injection show that our ap-
proach achieves better performance than state-of-the-art
approaches.

The remainder of this paper is organized as follows. Section
II introduces the work related to feature envy detection. Sec-
tion III explains the proposed approach, after which Section
IV presents the results of the proposed approach. Finally, the
conclusions are drawn in Section V.

II. RELATED WORK
Feature envy is a common code smell characterized by being

more interested in a class other than the one it actually is in
[9]. Many methods have been proposed to detect this code
smell, including the traditional method based on structural
information (code metrics) and the deep learning method based
on text information.

Existing feature envy detection methods rely primarily on a
metrics that can measure the relationship between the method
entity and the class entity [17], [18], which was first proposed
by Simon et al. [19] in 2001 . They propose a metric based
on the set operation to indicate the distance between entities,
as follows:

distance(e1, e2) = 1− |p(e1) ∩ p(e2)|
|p(e1) ∪ p(e2)|

(1)

The change rules of p(e) with the entity types of e are as
follows:

p(e) =

{
{e, entitiesCalled}, if e is method

{e, entitiesAccess}, if e is attribute
(2)

Entities in code are divided into method entities and attribute
entities, where e represents an entity. Here, P (e) represents
the set of properties possessed by e. If e is a method, the
set contains the entity itself, along with the attribute and
method entities that are called by e. If e is an attribute, the set
contains the entity itself and all methods that directly access e.
Based on the filtered entity set and calculation formula (1)(2),

the distance between entities can be obtained. If the distance
between a method entity and the entities in its class is greater
than the distance between the entity and the entities in other
classes, this method is associated with feature envy.

Tsantalis et al. [20] propose a new metric to define the
distance between entities, that differs from that proposed by
Simon et al. Although they divide entities into methods and
attributes, the final result is the distance between method
entities and classes; by contrast, Simon et al. focuses on the
distance between method entities and attribute entities [19]. If
the method entity m being detected belongs to the class entity
C, the formula for calculating the distance is as follows :

distance(m,C) = 1− Sm ∩ SC

Sm ∪ SC
, where SC =

⋃
eiϵC

{ei} (3)

Otherwise, the distance is computed as follows:

distance(m,C) = 1−Sm ∩ S
′

C

Sm ∪ S
′
C

, where S
′

C = SC\{m} (4)

In formula (3)(4), m represents a method entity, Sm repre-
sents the collection of entities called by the method entity, and
SC represents the method and attribute entities contained in
the class; moreover, the measured method entities should be
excluded from the collection of their classes. If the final result
shows that the distance between a method and the containing
class exceeds the distance between the method and the target
class, then the method is deemed to be associated with feature
envy. This method is implemented by JDeodorant, a well-
known code smell detection tool, has become the most com-
monly used benchmark in the code smell detection research
field [11].

To make better use of metric information and text infor-
mation, Liu et al. propose feature envy detection based on
deep learning [11], [13]. This method can automatically extract
the text information and metrics required by the training
classifier from the open-source applications; here the metrics
information is the distance metrics proposed by Tsantalis et
al. [20], [21], [22]. The text information mainly includes the
identifier of the method and the corresponding identifiers of the
containing class and the target class [23], [24]. The classifier
primarily uses the CNN neural network structure to extract the
internal features of the input information. Finally, the extracted
features are spliced into the linear layer to predict whether the
method and target class is “smelly” or “non-smelly”. They
are the first to apply deep learning techniques to feature envy
detection, and the detection effect is much higher than other
methods.

III. METHODOLOGY

A. Data Generation

As we employ deep learning technology to build a mapping
between input information containing comprehensive features
and feature envy judgment, we need large-scale data to train
the model. However, due to the characteristics of code smell,
it is difficult to compile relevant training data on a large scale,

making it necessary to artificially inject feature envy into the
code to generate such large-scale data. We here utilize the
method of automatic large-scale data generation proposed by
Liu et al. [11].

Finally, we can obtain any number of positive and negative
items, as shown in formula (5).

Item = < Input,Output > (5)
Input = < inputm, inputC , inputT > (6)
Output = < 0/1 > (7)

Respectively, the inputm, inputC , and inputT elements of
input represent the information extracted from the movable
method m, the containing class C, and the target class T .
This information comprises three main parts: name, context,
and content, as shown in the following formula (8)(9)(10). The
Output information 0 / 1 respectively represents whether this
item is negative or positive, as shown in formula (7).

inputm = < name(m), context(m), content(m) > (8)
inputC = < name(C), context(C), content(C) > (9)
inputT = < name(T), context(T), content(T) > (10)

B. Information Processing

Based on the sample generation method, we can get text
information that contains correlation features. However, in
order to meet the input specifications of the neural network
and make better use of data, we still need to process the data.

1) Text Processing: The information we obtain is composed
of many identifiers, each of which is generally a combination
of one or more words. Thus, to change the input into a form
acceptable to the neural network, we need to do the following
[25]:

• Divide the identifier into a sequence of words according
to the camel case method based on lower-line change,
uppercase letters, and numbers.

• Change all words to lowercase.
• Remove programming keywords, special characters and

English stop words.

2) Information Combination: Among the three views em-
phasized by representation strategy, name and content indicate
performance of different levels of function, for its part, the
context focuses on the input and output of a method, which
are the most intuitive representation of a method’s interaction
with the external environment. Therefore, we combine the
name and content modules to represent the internal functional
features of a method or class, while the context modules of
the method and class are combined to explore the features
of the interaction among the method, containing class and
target class. By using this combination method, we get a
comprehensive representation of entities, and obtain the com-
bination information which is beneficial to correlation mining.
We verify the effectiveness of this combination method for
feature envy detection in Section IV.

C. Correlation Feature Mining

After the above processing, we have nine unordered sets of
words from name, context, and content of three entities. Since
the structure is the same, we chose the method name as an
example to illustrate our model flow.

First, we obtain a dense embedding matrix X ∈ RN×d

by embedding the sequence of words forming method name
through the embedding space, where N is the number of
words and d is the dimension. Most of the text information
extracted was short text, so we chose CNN (convolutional
neural network) with good local feature extraction ability to
process X .

F = Conv(Emb(X)) (11)

As shown in formula (11), the size of three convolution
kernels are 2 ×d, 3×d and 4×d respectively, F is the set of
feature maps obtained after convolution.

In order to accurately capture features, inspired by CBAM,
we add attention mechanisms in channel and spatial dimen-
sions respectively, where channel attention focuses on the
difference in importance of features and spatial attention
focuses on the difference in location of features.

F ′ = F × σ(W1(W0(Favg)) +W1(W0(Fmax)) (12)

F ′′ = F ′ × σ(f(F ′
avg;F

′
max)) (13)

The operation is shown in formula (12)(13), and the feature
map set F ′′ containing weights is obtained. We then perform
another convolution operation on F ′′ to capture the deep
features.

As mentioned in the above chapter, context interaction is the
most direct expression of the correlation of the three entities.
Therefore, context information Sm, Sc and St of the three
entities are input into GRU as state flow. The update process
of GRU is as formula (14). The hidden state hi in formula X
contains the correlation features of three contexts.

zi = σ(Wzxi + Uzhi−1) (14)
ri = σ(Wrxi + Urhi−1) (15)

h̃i = tanh(Wxi + U(ri ⊙ hi−1)) (16)

hi = (1− zi)hi−1 + zih̃i (17)

Finally, to extract the global correlation features, we con-
catenate the name and content of each entity, that is, F ′′ ob-
tained in formula (13), the concatenate results and hi from for-
mula (14) are entered into the fully connected neural network,
whose output represents the final classification result: smelly
or no-smelly. In addition, we select binary crossentropy as
loss function, which is defined as follows:

L =

N∑
i=1

y(i) log ˆy(i) + (1− y(i)) log(1− ˆy(i)) (18)

where ˆy(i) is the true type of the method, and y(i) is the
prediction of our proposed model.

IV. EXPERIMENTS
A. Research Questions

We evaluate our proposed approach by answering the fol-
lowing research questions.

• RQ1: Does our proposed approach outperform the state-
of-the-art approaches in detecting feature envy?

• RQ2: How does our proposed method perform on real
projects without feature envy injected?

• RQ3: Are the proposed representation strategy and dual
attention mechanism helpful for FE detection?

Both RQ1 and RQ2 focus on the performance difference
between our proposed method and other technologies in fea-
ture envy detection, so we choose the deep learning-based
method proposed by Liu et al. [11] and the two popular code
smell detection tools JDeodorant and JMove as comparison
methods. RQ3 is mainly to verify the validity of the model.
We verify the combination of name, context and content. At
the same time, we also conduct an ablation experiment on the
dual-attention mechanism.

B. Dataset and Experimental Design

The data used for experimental evaluation can be divided
into two parts; (i) Large-scale data with feature envy automat-
ically injected for training and verification of the classifier. (ii)
Small-scale data without feature envy injected that is used to
evaluate the effectiveness of the proposed approach on real
projects.

To avoid over-fitting and reduce the impact of insufficient
data size on the detection results, we choose to use the k-
fold cross-validation method. Moreover, we selected three
commonly used indicators, F1, Recall, and Precision, to
evaluate the effect of each method (19) (20) (21).

precision =
true positives

true positives+ false positives
(19)

recall =
true positives

true positives+ false negatives
(20)

F1 = 2× precision× recall

precision+ recall
(21)

C. RQ1: Detection on Injected Projects

To effectively verify that our proposed approach performs
better than the best comparison approach, we select the
highest-performance deep learning-based method and two pop-
ular code smell detection tools for comparison. The evaluation
results are presented in Table I. From the above data, it
can be determined that our method outperforms the best
existing technology. Specifically, the method we proposed is
achieves significantly better results than the traditional tool
JDeodorant and JMove on the three indicators. Moreover,
compared to the method proposed by Liu et al., which also
uses deep learning technology, our method has higher preci-
sion but slightly lower recall, and finally, our method performs
better in terms of comprehensive indicators.

The improvement of precision indicates that the prediction
results of our method are more reliable, which in turn suggests

TABLE I
EVALUATION RESULT ON FEATURE ENVY DETECTION

Applications
Proposed Approach Approach of Liu JDeodorant JMove

precision recall F1 precision recall F1 precision recall F1 precision recall F1
JUnit 51.90% 100.00% 68.33% 40.59% 91.11% 56.16% 30.76% 14.82% 20% 22.72% 18.52% 20.41%

PMD 67.44% 78.38% 72.50% 41.27% 68.42% 51.49% 15.79% 5.36% 8% 30% 26.79% 28.3%

JExcelAPI 25.52% 68.52% 37.19% 31.9% 92.85% 47.49% 60% 10.7% 18.18% 27.27% 16.07% 20.22%

Areca 38.42% 75.26% 50.87% 46.05% 72.16% 56.23% 32.14% 9.28% 14.4% 26.76% 39.18% 31.8%

Freeplane 63.16% 75.29% 68.69% 38.09% 68.58% 48.97% 21.62% 8.94% 12.65% 24.83% 13.79% 17.73%

jEdit 34.66% 72.73% 46.94% 42.63% 78.57% 55.28% 22.73% 4.55% 7.58% 17.43% 13.57% 15.26%

Weka 35.19% 66.25% 45.97% 40.05% 86% 54.65% 58.33% 17.5% 26.92% 11.22% 11.75% 11.48%

Average 45.18% 76.63% 55.79% 39.79% 79.27% 52.98% 39.51% 12.22% 18.66% 18.37% 16.3% 17.27%
The data of approach of Liu, JDeodorant and Jmove are cited from Deep Learning Based Feature Envy Detection [11].

that the complementary relationship between the three views of
representation strategy that we propose has indeed corrected
the erroneous preference in prediction. Since a certain con-
tradiction exists between the two indicators of precision and
recall, the inconsistency of the two indicators is also within
the acceptable range: specifically, precision and recall for our
method is 31.45% (76.63%-45.18%), which is much smaller
than the 39.48% (79.27%-39.79%) of the method proposed
by Liu et al. This further proves that our extraction of feature
envy features is highly comprehensive, allowing us to obtain
a more reliable and stable detector.

D. RQ2: Detection on Projects without Injection

As shown in Table I, our proposed method outperforms
the best technology on java projects that automatically inject
feature envy. However, the automatically injected feature envy
characteristics must be based on the assumption that there is
no misplaced method in this project, which is difficult to fully
guarantee. Moreover, the feature envy created by the moving
method may have certain key differences when compared to
real feature envy, which leads to deviations in the extracted
features and affects the effect of the detector. We accordingly
choose to verify our method on real projects without injected
feature envy to its effectiveness in real-world scenarios. Four
graduate students with rich Java development experience will
review the test results and provide their opinions on whether
the findings can be accepted as true feature envy, and take
more than half of the opinions will be taken as the final
result. Finally, we conducted feature envy testing on three real
projects according to the process. The results are shown in
Table II.

From the table, we can construct our method is still superior
to other methods on real projects without feature envy injec-
tion. Compared with Liu’s method, the detection accuracy of
our method is 16.97% (58.20%-41.23%) higher. Moreover, our
method also achieves performance improvements of 30.61%
(58.20%-27.59%) and 42.85% (58.20%-15.35%) relative to
JDeodorant and JMove respectively.

E. RQ3: The Effectiveness of Model

To verify the effectiveness of each of the three perspectives,
we set up four sets of experiments. (i) The information con-
tains three modules. (ii) Name module deleted; (iii) Context
module deleted; (iv) Content module deleted. The results of
the experiments are shown in Fig. 2. From the figure, it can

Fig. 2. Results of three perspectives.

be observed that deleting any module will lead to a decline in
the detection result, which proves that all three perspectives
complement each other and lead to more comprehensive
feature representation. After deleting the context module, f1
dropped by 18.31% (55.79%-37.48%), which is the largest
drop; this indicates that the context module is most important
for feature envy detection.

Inside the neural network, we added a dual attention mech-
anism on CNN. To prove the effectiveness of this operation,
we deleted the operation and got the results as shown in the
following Table III:

As can be seen from the table, after deleting the dual
attention mechanism, the three indicators of precision, recall,
and F1 were reduced by 4.01% (45.18%-41.17%), 3.67%
(76.63%-72.96%), and 3.55% (55.79-52.24%). Therefore, the

TABLE II
EVALUATION RESULT ON PROJECTS WITHOUT INJECTING FEATURE ENVY

Metrics
Proposed Approach Approach of Liu JDeodorant JMove

XMD JSmooth Neuroph Total XMD JSmooth Neuroph Total XMD JSmooth Neuroph Total XMD JSmooth Neurpoh Total

Reported 40 22 72 134 32 26 56 114 8 3 18 29 106 27 82 215

Accepted 28 10 40 78 15 11 21 47 3 1 4 8 12 5 16 33

Precision 70.00% 45.45% 55.56% 58.20% 46.88% 42.31% 37.5% 41.23% 37.5% 33.33% 22.22% 27.59% 11.32% 18.52% 19.51% 15.35%

The data of approach of Liu, JDeodorant and Jmove are cited from Deep Learning Based Feature Envy Detection [11].

TABLE III
DETECTION RESULT WITHOUT JOINT FEATURES EXTRACTION

Applications Precision Recall F1

JUnit 55.93% 80.49% 66.00%

PMD 52.54% 83.78% 64.58%

JExcelAPI 22.00% 61.11% 32.35%

Areca 41.72% 70.10% 52.31%

Freeplane 51.90% 85.88% 64.70%

jEdit 31.01% 60.61% 41.03%

Weka 33.09% 68.75% 44.68%

Average 41.17% 72.96% 52.24%

dual attention mechanism does enhance the expressive ability
of the model.

V. CONCLUSION

In this paper, a correlation feature mining model based on
dual attention to detect feature envy is proposed. At first, a
new representation strategy is proposed, which extracts the
text information from the three views of name, content and
context to comprehensively express entities. Secondly, a dual
attention mechanism is used to accurately capture local and
global correlation features to detect Feature envy. Lastly, We
respectively evaluated the method on seven open-source Java
projects that automatically injected feature envy and three
open-source Java projects that did not inject feature envy.
The results show that the feature envy detection effect of
the proposed method is indeed superior to the state-of-the-art.
Recommending suitable target class for methods with feature
envy will be considered as a potential future work.

REFERENCES

[1] A. April and A. Abran, Software maintenance management: evaluation
and continuous improvement, vol. 67. John Wiley & Sons, 2012.

[2] W. J. Brown, R. C. Malveau, H. W. McCormick III, and T. J. Mowbray,
“Refactoring software, architectures, and projects in crisis,” 1998.

[3] A. K. Das, S. Yadav, and S. Dhal, “Detecting code smells using
deep learning,” in TENCON 2019 - 2019 IEEE Region 10 Conference
(TENCON), pp. 2081–2086, Oct 2019.

[4] T. Sharma and D. Spinellis, “A survey on software smells,” Journal of
Systems and Software, vol. 138, pp. 158–173, 2018.

[5] P. Kruchten, R. L. Nord, and I. Ozkaya, “Technical debt: From metaphor
to theory and practice,” Ieee software, vol. 29, no. 6, pp. 18–21, 2012.

[6] M. Fowler, Refactoring: Improving the Design of Existing Code.
Addison-Wesley Signature Series (Fowler), Pearson Education, 2018.

[7] N. Moha, Y.-G. Guéhéneuc, L. Duchien, and A.-F. Le Meur, “Decor: A
method for the specification and detection of code and design smells,”
IEEE Transactions on Software Engineering, vol. 36, no. 1, pp. 20–36,
2009.

[8] R. Marinescu, “Detection strategies: Metrics-based rules for detecting
design flaws,” in 20th IEEE International Conference on Software
Maintenance, 2004. Proceedings., pp. 350–359, IEEE, 2004.

[9] M. I. Azeem, F. Palomba, L. Shi, and Q. Wang, “Machine learning
techniques for code smell detection: A systematic literature review and
meta-analysis,” Information and Software Technology, vol. 108, pp. 115–
138, 2019.

[10] F. Palomba, A. Panichella, A. De Lucia, R. Oliveto, and A. Zaidman,
“A textual-based technique for smell detection,” in 2016 IEEE 24th
international conference on program comprehension (ICPC), pp. 1–10,
IEEE, 2016.

[11] H. Liu, Z. Xu, and Y. Zou, “Deep learning based feature envy detection,”
in Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering, pp. 385–396, 2018.

[12] X. Guo, C. Shi, and H. Jiang, “Deep semantic-based feature envy
identification,” in Proceedings of the 11th Asia-Pacific Symposium on
Internetware, pp. 1–6, 2019.

[13] H. Liu, J. Jin, Z. Xu, Y. Bu, Y. Zou, and L. Zhang, “Deep learning based
code smell detection,” IEEE transactions on Software Engineering,
2019.

[14] N. Tsantalis and A. Chatzigeorgiou, “Identification of extract method
refactoring opportunities for the decomposition of methods,” Journal of
Systems and Software, vol. 84, no. 10, pp. 1757–1782, 2011.

[15] J. Chang and D. M. Blei, “Hierarchical relational models for document
networks,” The Annals of Applied Statistics, pp. 124–150, 2010.

[16] S. Woo, J. Park, J.-Y. Lee, and I. S. Kweon, “Cbam: Convolutional
block attention module,” in Proceedings of the European conference on
computer vision (ECCV), pp. 3–19, 2018.

[17] N. Anquetil and T. C. Lethbridge, “Experiments with clustering as a
software remodularization method,” in Sixth Working Conference on
Reverse Engineering (Cat. No. PR00303), pp. 235–255, IEEE, 1999.

[18] T. Mens, N. Van Eetvelde, S. Demeyer, and D. Janssens, “Formalizing
refactorings with graph transformations,” Journal of Software Mainte-
nance and Evolution: Research and Practice, vol. 17, no. 4, pp. 247–276,
2005.

[19] F. Simon, F. Steinbruckner, and C. Lewerentz, “Metrics based refactor-
ing,” in Proceedings fifth european conference on software maintenance
and reengineering, pp. 30–38, IEEE, 2001.

[20] N. Tsantalis and A. Chatzigeorgiou, “Identification of move method
refactoring opportunities,” IEEE Transactions on Software Engineering,
vol. 35, no. 3, pp. 347–367, 2009.

[21] S. Wang, L. L. Minku, and X. Yao, “Resampling-based ensemble
methods for online class imbalance learning,” IEEE Transactions on
Knowledge and Data Engineering, vol. 27, no. 5, pp. 1356–1368, 2014.

[22] O. Sagi and L. Rokach, “Ensemble learning: A survey,” Wiley Interdisci-
plinary Reviews: Data Mining and Knowledge Discovery, vol. 8, no. 4,
p. e1249, 2018.

[23] H. Liu, M. Shen, J. Zhu, N. Niu, G. Li, and L. Zhang, “Deep learning
based program generation from requirements text: Are we there yet?,”
IEEE Transactions on Software Engineering, pp. 1–1, 2020.

[24] Y. Jiang, H. Liu, and L. Zhang, “Semantic relation based expansion
of abbreviations,” in Proceedings of the 2019 27th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, pp. 131–141, 2019.

[25] M. F. Porter, “An algorithm for suffix stripping,” Program, 1980.

