
Graph Embedding Models for Community Detection

Yinan Chen, Zhuanming Gao*, Dong Li+

South China University of Technology, Guangzhou 510006, China

Abstract—Graph embedding models, also known as network

representation models, have been tried to be applied to community

detection tasks. However, most existing graph embedding models

are not specially designed for community detection tasks and thus

may be incapable of revealing the community structures in

networks well. To fill this gap, this paper proposes two novel graph

embedding models, GEMod and GEMap, which are specially

designed for community detection. The proposed methods try to

optimize the modified modularity and two-level coding length

while learning the nodes embedding, so that the learned nodes

embedding can be better applied to detect community structures

in networks. Experimental results show that the algorithms

proposed are superior or comparable to other community

detection algorithms based on graph embedding models. Besides,

the nodes embedding generated by GEMod and GEMap are

generally more compact and separable, which means that they are

more suitable for clustering tasks.

Keywords—community detection, graph embedding, clustering

I. INTRODUCTION

Many complex systems exist in the form of networks or can
be modeled as networks, such as social networks, scientists
collaboration networks, epidemic spreading networks and
protein interaction networks. Community detection is an
important task in the field of network analysis, which aims to
reveal the community structures in networks. A community is
generally defined as a group of nodes which are closely
connected internally, while the connections between different
community nodes are sparse.

The graph embedding task attempts to represent network
nodes with low-dimensional continuous vectors and
simultaneously capture the structural information of the network.
Graph embedding can provide effective input for downstream
machine learning tasks, such as node classification [1], link
prediction [2] and graph visualization [3]. With the gradual
maturity of graph embedding, some scholars try to apply it to
community detection tasks [4][5]. However, most existing graph
embedding models are not designed for community detection, so
they may not be able to effectively detect the community
structures in networks.

Inspired by [6] and [7], we modify the definition of
modularity and two-level coding length by using the nodes
embedding, and propose the GEMod and GEMap graph

 These authors have contributed equally to this work.
+ Corresponding Author. E-mail: cslidong@scut.edu.cn

DOI reference number: 10.18293/SEKE2022-005

embedding models. Same as DeepWalk [8] model, GEMod and
GEMap are both based on random walk, but they take the
community structure into consideration while learning the nodes
embedding, so that the learned nodes embedding can be better
applied to detect the communities in networks. Specifically, the
GEMod model will try to optimize the modified modularity, and
the GEMap model will try to optimize the modified coding
length. Experimental results show that our methods can
generally generate more compact and separable nodes
embedding as shown in Fig. 1.

Figure 1. Node embeddings of Karate Club network. Different colors

represent different community nodes.

The contributions of this paper are summarized as follows:

• Based on nodes embedding, a modified definition of
modularity and two-level coding length are proposed.

• The modified community structure metrics are
explicitly introduced into the graph embedding models,
so that the learned nodes embedding can be better
applied to the community detection tasks.

• The methods proposed can achieve more compact and
divisible clustering results.

II. RELATED WORK

A. Community Detection

Newman et al. first introduced the definition of modularity
[6] and used it as the evaluation metric of community partition.
Specifically, the modularity is defined as follows:

mailto:cslidong@scut.edu.cn

𝑄 =
1

2𝑚
∑ [𝑨𝑖,𝑗 −

𝑑𝑖𝑑𝑗

2𝑚
] 𝛿(𝑪𝑖 , 𝑪𝑗)

𝑖,𝑗

 (1)

where 𝑚 denotes the number of edges of the network and 𝑨𝑖,𝑗

denotes the number of edges between node 𝑖 and node 𝑗. 𝑑𝑖 and
𝑪𝑖 respectively denote the degree of node 𝑖 and the community

that node 𝑖 is located in. 𝛿(𝑪𝑖 , 𝑪𝑗) is the Kronecker delta, which

equals to 1 if 𝑪𝑖 is equal to 𝑪𝑗, otherwise 0. Many subsequent

community detection algorithms based on modularity
optimization have also been proposed, such as [9][10].

Besides the optimization method based on modularity,
community detection based on information theory is also a
widely studied direction. [7][11] Among them, the Infomap
algorithm regards community detection in networks as a
problem of map creating, and holds that a good map needs to be
well compressed, so that the length of each path in the map
should be short as possible. The algorithm uses information
entropy to represent the average path length, and proposes the
idea of two-level coding to measure the average coding length
of random walking in the network. Specifically, the coding
length is defined as:

𝐿(𝑀) = 𝑞𝐻(𝑄) + ∑ 𝑝𝑖𝐻(𝑃𝑖)

𝑚

𝑖=1

(2)

where 𝑀 represent the partition scheme, 𝐻(𝑄) represents the

average coding length between communities, and 𝐻(𝑃𝑖)
represents the average coding length of community 𝑖 , 𝑞
represents the probability of jumping between different

communities, and 𝑝𝑖 represents the probability of staying inside
community 𝑖.

B. Graph Embedding

Bryan et al. proposed the DeepWalk algorithm [8] based on
natural language model. The basic idea is to apply the process of
random walk for each node in the network to obtain node
sequences, then regard each node as a word and node sequences
as sentences. After that, based on the SkipGram [12] language
model, the low-dimensional vector representation of each node
is learned. [13][14][15]

In recent years, network representation algorithms based on
graph neural networks have also been proposed, such as
[16][17][18]. However, most of them are supervised learning
models or semi-supervised learning models, while community
detection is an unsupervised learning task. Consequently, these
graph neural networks can not be directly applied to community
detection in networks.

C. Graph Embedding and Community Detection

An intuitive way of community detection based on network
representation is to obtain the nodes embedding of the network
by applying some kind of graph embedding model, and then
cluster the embeddings by a clustering algorithm [4][5], so as to
achieve the goal of community detection. However, in such
approach, the network representation process is independent of
the node clustering process, and the network representation
model cannot get feedback from the nodes clustering model.

In order to alleviate the above problem, the ComE [19]
model combines node embedding, community embedding and
community detection into a single process, so as to complement
each other. However, it assumes that the community embedding
obeys a multivariate Gaussian distribution. GEMSEC [20]
model introduces a self-clustering process into the nodes
embedding process, thus improving the clustering quality of
nodes representation, but it does not explicitly introduce
community structure metrics.

III. THE METHODS

A. Problem Definition

The methods mainly focus on detecting non-overlapping
communities by using graph embedding methods, given an
undirected and unweighted network 𝐺 = (𝑉, 𝐸).

Definition 1 Non-overlapping Community Detection

Given a network 𝐺 = (𝑉, 𝐸), non-overlapping community
detection aims to divide 𝑉 into 𝐾 disjoint node subsets {𝑃𝑖|𝑃𝑖 ⊂
𝑉, 𝑃𝑖 ∩ 𝑃𝑗 = ∅, 𝑖 ≠ 𝑗, 𝑖 = 1, . . . , 𝐾} , and ⋃𝑃𝑖 = 𝑉 , so that the

nodes in each node subset share some kind of similarity, while
different node subsets have great dissimilarity.

Definition 2 Graph Embedding

Given a network 𝐺 = (𝑉, 𝐸), graph embedding models aim

to find a mapping function 𝑓: 𝑉 → ℝ𝑑, so that the learned nodes
embedding can effectively express the structural information of
the network. 𝑑 is the dimension of the embedding space. That is,
the nodes are projected from discrete space to a continuous
vector space.

B. Node Similarity

Given nodes 𝑢, 𝑣 ∈ 𝑉 and mapping function 𝑓 , let 𝒉𝑢 =
𝑓(𝑢) and 𝒉𝑣 = 𝑓(𝑣), 𝒉𝑢 , 𝒉𝑣 ∈ ℝ𝑑 . Graph embedding models
often use the softmax or sigmoid function to measure the
similarity or adjacency probability of 𝑢 and 𝑣 . Nevertheless,
nodes embedding will generally serve as the input of some kind
of clustering model, and many clustering models usually uses
Euclidean distance to measure the dissimilarity between
different samples. The dissimilarity between node 𝑢 and node 𝑣
is defined as:

𝑑𝑖𝑠𝑠𝑖𝑚(𝑢, 𝑣) = ‖𝒉𝑢 − 𝒉𝑣‖2 (3)

The opposite number of the dissimilarity is defined as the
similarity measure between nodes:

𝑠𝑖𝑚(𝑢, 𝑣) = −𝑑𝑖𝑠𝑠𝑖𝑚(𝑢, 𝑣) (4)

C. GEMod Algorithm

The GEMod model includes two stages: embedding
initialization and modified modularity optimization. Specifically,
the algorithm firstly takes each node as the starting point to do
multiple truncated random walks. The process of random walk
can be regarded as the process of message propagation. Since the
small world effect [21] generally exists in networks, the length
of each walk is set to a value less than 6. After that, the nodes in
the same walk sequence are regarded as the friend nodes, and let
the friend nodes of node 𝑢 be 𝐹(𝑢). It is assumed that the a node

and its friend nodes should have great similarity for they share
some kind of characteristic. Similar to the SkipGram model,
GEMod also performs negative sampling to obtain another set
of node sequences, and takes the nodes in the sequence as
stranger nodes of the source node, and let the stranger nodes of
node 𝑢 be 𝑆(𝑢). The negative sampling process of GEMod is
the same as that of SkipGram model.

GEMod expects to maximize the similarity between node 𝑢
and its friend nodes, and simultaneously maximize the
dissimilarity between node 𝑢 and its stranger nodes.
Consequently, the loss function corresponding to the first stage
is:

𝐿1 = − [∑

𝑢∈𝑉

∑ 𝑠𝑖𝑚(𝑢, 𝑣)

𝑣∈𝐹(𝑢)

+ ∑

𝑢∈𝑉

∑ 𝑑𝑖𝑠𝑠𝑖𝑚(𝑢, 𝑣′)

𝑣′∈𝑆(𝑢)

] (5)

In order to make the node embeddings better reflect the
community structures, and make the connections within
community closer, while the connections between communities
more sparse, a modified definition of modularity is proposed:

𝑀 = ∑ 𝑠𝑖𝑚(𝑢, 𝑣)𝛿(𝐂𝑢, 𝐂𝑣)

𝑢,𝑣∈𝑉

+ ∑

𝐾

𝑖=1

∑ 𝑑𝑖𝑠𝑠𝑖𝑚(𝐶𝑖,0𝐶𝑗,0)

𝐾

𝑗=𝑖+1

(6)

ℎ𝑖,0 =
1

|𝐶𝑖|
∑ ℎ𝑢

𝑢∈𝐶𝑖

(7)

where 𝐂𝑢 represents the community to which the node 𝑢

belongs, 𝐶𝑖 represents the 𝑖 -th community, 𝐶𝑖,0 represents the

center of community 𝑖 , ℎ𝑖,0 is embedding of 𝐶𝑖,0 , 𝐾 is the
number of communities, and 𝛿(𝐂𝑢 , 𝐂𝑣) = 1 if 𝐂𝑢 = 𝐂𝑣 ,
otherwise, 𝛿(𝐂𝑢, 𝐂𝑣) = 0. Herein, we use k-means to cluster the
nodes embedding to obtain the community partition of the
network, and then calculate the modified modularity. It should
be pointed out that other clustering methods are also feasible.
The meaning of maximizing the above equation is to maximize
the similarity of nodes within the same community and the
dissimilarity between different community centers. Thus, the
connections within communities are tight while the communities
are far away from each other. As a result, the nodes embedding
generated by GEMod model can get more compact and
separable clusters. The loss function of the second stage is,

𝐿2
𝑚𝑜𝑑 = 𝐿1 − 𝛼𝑀 (8)

where 𝛼 is a hyper-parameter used to balance the influence of 𝑀
on the result.

In order to accelerate the convergence of the algorithm,
GEMod will be trained for a certain number of rounds in the first
stage, and then enter the second stage.

D. GEMap Algorithm

The GEMap algorithm is similar to the GEMod algorithm,
but the second stage of GEMap tries to optimize the modified
coding length instead of the modified modularity. The modified
coding length also uses the idea of two-level coding, including
coding within communities and coding between communities.
However, unlike the Infomap algorithm, GEMap expects to

minimize the coding length within communities and maximize
the coding length between communities.

Suppose that there is a signal source in the center of each
community, which is called a local signal source, and the nodes
closer to the signal source have more opportunities to receive the
message sent by the signal source. Therefore, the probability that
a node receives a message by the distance between the node and
the signal source can be measured. Specifically, for the

community 𝐶𝑖 , the distances between each node in the

community and the community center 𝐶𝑖,0 are first calculated,
then divided by the sum of all distances, and finally sorted in

descending order to get the probability distribution 𝑝𝑖 . 𝑝𝑖,1
represents the receiving probability of the nearest node from the

community center, 𝑝𝑖,2 represents the receiving probability of
the next nearest node from the community center, and so on.
Actually, the average coding length of each community has

nothing to do with the order of 𝑝𝑖, so the sorting process can be
omitted.

Similarly, suppose that there is also a signal source in the
center of the network composed of all community centers, which
is called the global signal source, and then calculate the
probability that each community center receives the message
sent by the global signal source as described above, the average
coding length between communities can be calculated.

Since we only focus on non-overlapping community
detection in networks, we make an assumption that each signal
source only produces messages belong to a specific topic, and
each community is only interested in a specific topic, while
different communities do not share the same interest. Thus, we
expect to minimize the average coding length within
communities and maximize the average coding length between
communities. In summary, the average intra-community coding
length of each community is defined as follows:

𝐸𝑖𝑛𝑡𝑟𝑎 = − ∑

𝐾

𝑖=1

∑ 𝑝𝑖,𝑢 log 𝑝𝑖,𝑢

𝑢∈𝐶𝑖

(9)

𝑝𝑖,𝑢 =
𝑠𝑖𝑚(𝐶𝑖,𝑢, 𝐶𝑖,0)

∑ 𝑠𝑖𝑚(𝐶𝑖,𝑢𝐶𝑖,0)𝑢∈𝐶𝑖

(10)

where 𝐶𝑖,𝑢 represents the node 𝑢 in community 𝑖 . And the
average inter-community coding length is defined as follows:

𝐸𝑖𝑛𝑡𝑒𝑟 = − ∑ 𝑞𝑖 log 𝑞𝑖

𝐾

𝑖=1

(11)

𝑞𝑖 =
𝑠𝑖𝑚(𝐶𝑖,0, 𝐶0)

∑ 𝑠𝑖𝑚(𝐶𝑖,0, 𝐶0)𝐾
𝑖

(12)

ℎ0 =
1

𝐾
∑ ℎ𝑖,0

𝐾

𝑖

(13)

where 𝐶𝑖,0 is the center of community 𝑖, 𝐶0 is the centroid of

community centers, ℎ𝑖,0 is the embedding of 𝐶𝑖,0 , ℎ0 is the
embedding of 𝐶0 and 𝐾 is the number of communities in the
network. And the overall coding length is,

𝐸 = 𝐸𝑖𝑛𝑡𝑟𝑎 + 𝐸𝑖𝑛𝑡𝑒𝑟 (14)

In summary, the loss function of the second stage of GEMap
algorithm is,

𝐿2
𝑚𝑎𝑝

= 𝐿1 + 𝛽𝐸 (15)

where 𝛽 is a hyperparameter used to balance the influence of 𝐸
on the result.

E. Models Optimization

Both GEMod and GEMap models need to optimize the
parameter set of 𝐇 = {ℎ𝑢|𝑢 ∈ 𝑉} , and its size is 𝑂(𝑑|𝑉|) .
Herein, we use the back-propagation algorithm to calculate the
derivative of the loss function, and choose the Adam [22]
optimizer to optimize the model parameters.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Data-sets

In this paper, the effectiveness of the algorithms is verified
on four real-world data-sets [23][24][25] and four LFR [26]
synthetic data-sets. The specific network structure information
of each data-set is shown in Table I. In which n represents the
number of nodes, 𝑚 represents the number of edges, 𝑘
represents the number of ground-truth communities, 𝑑
represents the average degree of nodes, and 𝜇 represents the
mixing parameter for synthetic networks.

TABLE I. MAIN PROPERTIES OF THE DATA-SETS

Data-set 𝒏 𝒎 𝒌 𝒅 𝝁

Karate 34 78 2 4.6 -

Dolphin 62 162 2 5.1 -

Polbooks 105 441 3 10.7 -

Football 115 613 12 8.4 -

L1 1,000 15,304 49 15 0.3

L2 1,000 30,708 29 30 0.3

L3 1,000 15,206 49 15 0.5

L4 1,000 30,156 31 30 0.5

B. Comparison Algorithms

Here six graph embedding models are selected to compare
with GEMod and GEMap algorithms, including DeepWalk [8],
Node2vec [13], WALKLETS [14], LINE [15], ComE [19] and
GEMSEC [20]. Specifically, the embeddings learned by these
models are clustered using k-means, to obtain the community
partition for a network.

C. Evaluation Metric

Because the data-sets have ground-truth community partition,
normalized mutual information (NMI) [27] is used to measure
the similarity between the partition output by algorithm and the
ground-truth partition, which is defined as follows:

𝑁𝑀𝐼 =
−2 ∑

𝐶𝐴
𝑖=1 ∑

𝐶𝐵
𝑗=1 𝐶𝑖𝑗 𝑙𝑜𝑔2(𝐶𝑖𝑗𝑁/𝐶𝑖.𝐶.𝑗)

∑
𝐶𝐴
𝑖=1 𝐶𝑖. 𝑙𝑜𝑔2(𝐶𝑖./𝑁) + ∑

𝐶𝐵
𝑗=1 𝐶.𝑗 𝑙𝑜𝑔2(𝐶.𝑗/𝑁)

(16)

where 𝐶𝐴 and 𝐶𝐵 respectively represents the community
partition obtained by the algorithm and the ground-truth
community partition, and 𝐶𝐴 and 𝐶𝐵 respectively represents the
number of communities in partition 𝐶𝐴 and partition 𝐵. 𝐶 is the
confusion matrix, and 𝐶𝑖𝑗 represents the number of nodes in the

community 𝑖 divided by 𝐶𝐴 and also in the community 𝑗 divided
by 𝐵. 𝐶𝑖. represents the sum of elements in the 𝑖 -th row of the
confusion matrix, 𝐶.𝑗 represents the sum of elements in the 𝑗 -th

column of the confusion matrix, and 𝑁 is the total number of
nodes in the network. The value range of NMI is [0,1]. The
larger the NMI value, the closer the partition result obtained by
the algorithm is to the ground-truth community partition.

D. Experimental Results

Each algorithm runs five times on each data-set, and finally
take the average of the results. The comparison results of the
algorithms are shown in Table II and Table III. The error of the
experimental results is indicated in parentheses, which is
measured by the standard deviation of the results.

TABLE II. AVERAGE NMI OF EACH ALGORITHM ON REAL-WORLD NETWORKS

Data-set Karate Dolphins Polbooks Football

DeepWalk 0.663 (±0.038) 0.817 (±0.048) 0.562 (±0.003) 0.925 (±0.001)

Node2vec 0.946 (±0.120) 0.874 (±0.033) 0.561 (±0.024) 0.927 (±0.002)

WALKLETS 0.869 (±0.073) 0.889 (±0.000) 0.557 (±0.012) 0.927 (±0.000)

LINE 0.473 (±0.103) 0.322 (±0.131) 0.409 (±0.045) 0.852 (±0.020)

ComE 0.604 (±0.049) 0.453 (±0.019) 0.465 (±0.035) 0.691 (±0.117)

GEMSEC 0.226 (±0.000) 0.293 (±0.000) 0.103 (±0.000) 0.930 (±0.000)

GEMod 1.000 (±0.000) 0.889 (±0.000) 0.568 (±0.007) 0.927 (±0.001)

GEMap 1.000 (±0.000) 0.889 (±0.000) 0.573 (±0.009) 0.926 (±0.004)

TABLE III. AVERAGE NMI OF EACH ALGORITHM ON SYNTHETIC NETWORKS

Data-set L1 L2 L3 L4

DeepWalk 0.977 (±0.007) 0.996 (±0.049) 0.959 (±0.010) 0.994 (±0.006)

Node2vec 0.974 (±0.007) 0.994 (±0.006) 0.939 (±0.009) 0.994 (±0.005)

WALKLETS 0.984 (±0.007) 0.992 (±0.005) 0.957 (±0.012) 0.994 (±0.006)

LINE 0.541 (±0.014) 0.772 (±0.024) 0.335 (±0.008) 0.241 (±0.013)

ComE 0.504 (±0.023) 0.599 (±0.037) 0.435 (±0.009) 0.559 (±0.034)

GEMSEC 0.884 (±0.000) 1.000 (±0.000) 0.832 (±0.000) 0.996 (±0.000)

GEMod 0.995 (±0.001) 1.000 (±0.000) 0.959 (±0.005) 0.998 (±0.002)

GEMap 0.994 (±0.003) 1.000 (±0.000) 0.960 (±0.004) 1.000 (±0.000)

The results show that in the real-world data-sets, except for
Football data-set, GEMod and GEMap algorithms outperform
other benchmark algorithms. On Football data-set, GEMod and
GEMap algorithms are only 0.3% and 0.4% inferior to the best
results respectively. In addition, both GEMod and GEMap
algorithms have very small experimental errors, which shows
the stability of the algorithms.

E. Parameters Analysis

In order to test the impact of hyper-parameters on the
clustering effect, GEMod and GEMap are run with different
hyper-parameters on Football data-set. The experimental results
are shown in Fig. 2.

Figure 2. Influence of cluster quality to parameters changes measured by

NMI

The random-walk length is set from 1 to 10 in consideration
of the small-world effect [26]. The results show that when the
random-walk length is between 2 and 4, the clustering performs
best. Because the length of each random walk is short, in order
to increase the data-set to get better fitting result, we increase the
number of random-walk iterations made by each node here.
Experimental results show that when the number of random
walks is between 50 and 100, the clustering effect is better. In
addition, in order to get a stable and better clustering effect, the
dimension of nodes embedding should be between 48 and 128.
Finally, when 𝛼 is between 0.5 and 0.8, GEMod can generally
get better clustering results, and when 𝛽 is between 0.7 and 0.8,
GEMap can achieve better clustering quality, besides 𝛽 has
unstable influence on the clustering results.

V. CONCLUSION

In this paper, two novel graph embedding models, GEMod
and GEMap is proposed, which are customized for community
detection tasks. The former uses the modified modularity, while
the latter uses the modified coding length to optimize the
community structure in the process of nodes embedding.
Experimental results show that GEMod and GEMap are both
superior to most community detection algorithms based on
graph embedding models, and the nodes embedding generated
by these models are generally more compact and separable.

REFERENCES

[1] Bhagat S, Cormode G, Muthukrishnan S. Node classification in social
networks. In Social network data analytics. Springer, Boston, MA, 2011:
115-148.

[2] Liben‐Nowell D, Kleinberg J. The link‐prediction problem for social
networks. Journal of the American society for information science and
technology, 2007, 58(7): 1019-1031.

[3] Van der Maaten L, Hinton G. Visualizing data using t-SNE. Journal of
machine learning research, 2008, 9(11)..

[4] Chen Y, Wang L, Qi D, W Zhang. Community detection based on
deepwalk in large scale networks. International Conference on Big Data
and Security. Springer, Singapore, 2019: 568-583.

[5] Hu F, Liu J, Li L, J Liang. Community detection in complex networks
using Node2vec with spectral clustering. Physica A: Statistical Mechanics
and its Applications, 2020, 545: 123633..

[6] Newman M E J. Modularity and community structure in networks.
Proceedings of the national academy of sciences, 2006, 103(23): 8577-
8582.

[7] Rosvall M, Bergstrom C T. Maps of random walks on complex networks
reveal community structure. Proceedings of the national academy of
sciences, 2008, 105(4): 1118-1123.

[8] Perozzi B, Al-Rfou R, Skiena S. Deepwalk: Online learning of social
representations. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. 2014: 701-710..

[9] Blondel V D, Guillaume J L, Lambiotte R, et al. Fast unfolding of
communities in large networks. Journal of statistical mechanics: theory
and experiment, 2008, 2008(10): P10008.

[10] Zhuang D, Chang J M, Li M. DynaMo: Dynamic community detection by
incrementally maximizing modularity. IEEE Transactions on Knowledge
and Data Engineering, 2019, 33(5): 1934-1945.

[11] Shen H, Cheng X Q, Chen H Q, Liu Y. Information bottleneck based
community detection in network. Chinese Journal of Computers (Chinese
Edition), 2008, 31(4): 677.

[12] Mikolov T, Sutskever I, Chen K, Corrado G S, Dean J. Distributed
representations of words and phrases and their compositionality.
Advances in neural information processing systems, 2013, 26.

[13] Grover A, Leskovec J. node2vec: Scalable feature learning for networks.
In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining. 2016: 855-864..

[14] Perozzi B, Kulkarni V, Chen H, Skiena S. Don't Walk, Skip! Online
learning of multi-scale network embeddings. In Proceedings of the 2017
IEEE/ACM International Conference on Advances in Social Networks
Analysis and Mining. 2017: 258-265.

[15] Tang J, Qu M, Wang M, Zhang M, Yan J, Mei Q. Line: Large-scale
information network embedding. In Proceedings of the 24th international
conference on world wide web. 2015: 1067-1077.

[16] Kipf T N, Welling M. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907, 2016.

[17] Kipf T N, Welling M. Variational graph auto-encoders. arXiv preprint
arXiv:1611.07308, 2016.

[18] Xu D, Ruan C, Korpeoglu E, Kumar S, Achan K. Inductive representation
learning on temporal graphs. arXiv preprint arXiv:2002.07962, 2020..

[19] Cavallari S, Zheng V W, Cai H, Chang K C, Cambria E. Learning
community embedding with community detection and node embedding
on graphs. In Proceedings of the 2017 ACM on Conference on
Information and Knowledge Management. 2017: 377-386..

[20] Rozemberczki B, Davies R, Sarkar R, Sutton C. Gemsec: Graph
embedding with self clustering. In Proceedings of the 2019 IEEE/ACM
international conference on advances in social networks analysis and
mining. 2019: 65-72.

[21] Watts D J, Strogatz S H. Collective dynamics of ‘small-world’ networks.
Nature, 1998, 393(6684): 440-442.

[22] Kingma D P, Ba J. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[23] Zachary W W. An information flow model for conflict and fission in small
groups. Journal of anthropological research, 1977, 33(4): 452-473.

[24] Lusseau D, Schneider K, Boisseau O J, Haase P, Slooten E, Dawson S M.
The bottlenose dolphin community of Doubtful Sound features a large
proportion of long-lasting associations. Behavioral Ecology and
Sociobiology, 2003, 54(4): 396-405.

[25] Girvan M, Newman M E J. Community structure in social and biological
networks. Proceedings of the national academy of sciences, 2002, 99(12):
7821-7826..

[26] Lancichinetti A, Fortunato S. Benchmarks for testing community
detection algorithms on directed and weighted graphs with overlapping
communities. Physical Review E, 2009, 80(1): 016118..

[27] Danon L, Diaz-Guilera A, Duch J, Arenas A. Comparing community
structure identification. Journal of statistical mechanics: Theory and
experiment, 2005, 2005(09): P09008..

