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Abstract—Graph embedding models, also known as network 

representation models, have been tried to be applied to community 

detection tasks. However, most existing graph embedding models 

are not specially designed for community detection tasks and thus 

may be incapable of revealing the community structures in 

networks well. To fill this gap, this paper proposes two novel graph 

embedding models, GEMod and GEMap, which are specially 

designed for community detection. The proposed methods try to 

optimize the modified modularity and two-level coding length 

while learning the nodes embedding, so that the learned nodes 

embedding can be better applied to detect community structures 

in networks. Experimental results show that the algorithms 

proposed are superior or comparable to other community 

detection algorithms based on graph embedding models. Besides, 

the nodes embedding generated by GEMod and GEMap are 

generally more compact and separable, which means that they are 

more suitable for clustering tasks. 
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I.  INTRODUCTION 

Many complex systems exist in the form of networks or can 
be modeled as networks, such as social networks, scientists 
collaboration networks, epidemic spreading networks and 
protein interaction networks. Community detection is an 
important task in the field of network analysis, which aims to 
reveal the community structures in networks. A community is 
generally defined as a group of nodes which are closely 
connected internally, while the connections between different 
community nodes are sparse. 

The graph embedding task attempts to represent network 
nodes with low-dimensional continuous vectors and 
simultaneously capture the structural information of the network. 
Graph embedding can provide effective input for downstream 
machine learning tasks, such as node classification [1], link 
prediction [2] and graph visualization [3]. With the gradual 
maturity of graph embedding, some scholars try to apply it to 
community detection tasks [4][5]. However, most existing graph 
embedding models are not designed for community detection, so 
they may not be able to effectively detect the community 
structures in networks.  

Inspired by [6] and [7], we modify the definition of 
modularity and two-level coding length by using the nodes 
embedding, and propose the GEMod and GEMap graph 
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embedding models. Same as DeepWalk [8] model, GEMod and 
GEMap are both based on random walk, but they take the 
community structure into consideration while learning the nodes 
embedding, so that the learned nodes embedding can be better 
applied to detect the communities in networks. Specifically, the 
GEMod model will try to optimize the modified modularity, and 
the GEMap model will try to optimize the modified coding 
length.  Experimental results show that our methods can 
generally generate more compact and separable nodes 
embedding as shown in Fig. 1. 

 

Figure 1.  Node embeddings of Karate Club network. Different colors 

represent different community nodes. 

The contributions of this paper are summarized as follows: 

• Based on nodes embedding, a modified definition of 
modularity and two-level coding length are proposed. 

• The modified community structure metrics are 
explicitly introduced into the graph embedding models, 
so that the learned nodes embedding can be better 
applied to the community detection tasks. 

• The methods proposed can achieve more compact and 
divisible clustering results. 

II. RELATED WORK 

A. Community Detection 

Newman et al. first introduced the definition of modularity 
[6] and used it as the evaluation metric of community partition. 
Specifically, the modularity is defined as follows: 
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𝑄 =
1

2𝑚
∑ [𝑨𝑖,𝑗 −

𝑑𝑖𝑑𝑗

2𝑚
] 𝛿(𝑪𝑖 , 𝑪𝑗)

𝑖,𝑗

 (1) 

where 𝑚 denotes the number of edges of the network and 𝑨𝑖,𝑗 

denotes the number of edges between node 𝑖 and node 𝑗. 𝑑𝑖 and 
𝑪𝑖 respectively denote the degree of node 𝑖 and the community 

that node 𝑖 is located in. 𝛿(𝑪𝑖 , 𝑪𝑗) is the Kronecker delta, which 

equals to 1 if 𝑪𝑖 is equal to 𝑪𝑗, otherwise 0. Many subsequent 

community detection algorithms based on modularity 
optimization have also been proposed, such as [9][10]. 

Besides the optimization method based on modularity, 
community detection based on information theory is also a 
widely studied direction. [7][11] Among them, the Infomap 
algorithm regards community detection in networks as a 
problem of map creating, and holds that a good map needs to be 
well compressed, so that the length of each path in the map 
should be short as possible. The algorithm uses information 
entropy to represent the average path length, and proposes the 
idea of two-level coding to measure the average coding length 
of random walking in the network. Specifically, the coding 
length is defined as: 

𝐿(𝑀) = 𝑞𝐻(𝑄) + ∑ 𝑝𝑖𝐻(𝑃𝑖)

𝑚

𝑖=1

(2) 

where 𝑀  represent the partition scheme, 𝐻(𝑄)  represents the 

average coding length between communities, and 𝐻(𝑃𝑖) 
represents the average coding length of community 𝑖 , 𝑞 
represents the probability of jumping between different 

communities, and 𝑝𝑖 represents the probability of staying inside 
community 𝑖. 

B. Graph Embedding 

Bryan et al. proposed the DeepWalk algorithm [8] based on 
natural language model. The basic idea is to apply the process of 
random walk for each node in the network to obtain node 
sequences, then regard each node as a word and node sequences 
as sentences. After that, based on the SkipGram [12] language 
model, the low-dimensional vector representation of each node 
is learned. [13][14][15] 

In recent years, network representation algorithms based on 
graph neural networks have also been proposed, such as 
[16][17][18].  However, most of them are supervised learning 
models or semi-supervised learning models, while community 
detection is an unsupervised learning task. Consequently, these 
graph neural networks can not be directly applied to community 
detection in networks. 

C. Graph Embedding and Community Detection 

An intuitive way of community detection based on network 
representation is to obtain the nodes embedding of the network 
by applying some kind of graph embedding model, and then 
cluster the embeddings by a clustering algorithm [4][5], so as to 
achieve the goal of community detection. However, in such 
approach, the network representation process is independent of 
the node clustering process, and the network representation 
model cannot get feedback from the nodes clustering model.  

In order to alleviate the above problem, the ComE [19] 
model combines node embedding, community embedding and 
community detection into a single process, so as to complement 
each other. However, it assumes that the community embedding 
obeys a multivariate Gaussian distribution. GEMSEC [20] 
model introduces a self-clustering process into the nodes 
embedding process, thus improving the clustering quality of 
nodes representation, but it does not explicitly introduce 
community structure metrics. 

III. THE METHODS 

A. Problem Definition 

The methods mainly focus on detecting non-overlapping 
communities by using graph embedding methods, given an 
undirected and unweighted network 𝐺 = (𝑉, 𝐸). 

Definition 1 Non-overlapping Community Detection 

Given a network 𝐺 = (𝑉, 𝐸), non-overlapping community 
detection aims to divide 𝑉 into 𝐾 disjoint node subsets {𝑃𝑖|𝑃𝑖 ⊂
𝑉, 𝑃𝑖 ∩ 𝑃𝑗 = ∅, 𝑖 ≠ 𝑗, 𝑖 = 1, . . . , 𝐾} , and ⋃𝑃𝑖 = 𝑉 , so that the 

nodes in each node subset share some kind of similarity, while 
different node subsets have great dissimilarity. 

Definition 2 Graph Embedding 

Given a network 𝐺 = (𝑉, 𝐸), graph embedding models aim 

to find a mapping function 𝑓: 𝑉 → ℝ𝑑, so that the learned nodes 
embedding can effectively express the structural information of 
the network. 𝑑 is the dimension of the embedding space. That is, 
the nodes are projected from discrete space to a continuous 
vector space. 

B. Node Similarity 

Given nodes 𝑢, 𝑣 ∈ 𝑉  and mapping function 𝑓 , let 𝒉𝑢 =
𝑓(𝑢) and 𝒉𝑣 = 𝑓(𝑣), 𝒉𝑢 , 𝒉𝑣 ∈ ℝ𝑑 . Graph embedding models 
often use the softmax or sigmoid function to measure the 
similarity or adjacency probability of 𝑢  and 𝑣 . Nevertheless, 
nodes embedding will generally serve as the input of some kind 
of clustering model, and many clustering models usually uses 
Euclidean distance to measure the dissimilarity between 
different samples. The dissimilarity between node 𝑢 and node 𝑣 
is defined as: 

𝑑𝑖𝑠𝑠𝑖𝑚(𝑢, 𝑣) = ‖𝒉𝑢 − 𝒉𝑣‖2 (3) 

The opposite number of the dissimilarity is defined as the 
similarity measure between nodes: 

𝑠𝑖𝑚(𝑢, 𝑣) = −𝑑𝑖𝑠𝑠𝑖𝑚(𝑢, 𝑣) (4) 

C. GEMod Algorithm 

The GEMod model includes two stages: embedding 
initialization and modified modularity optimization. Specifically, 
the algorithm firstly takes each node as the starting point to do 
multiple truncated random walks. The process of random walk 
can be regarded as the process of message propagation. Since the 
small world effect [21] generally exists in networks, the length 
of each walk is set to a value less than 6. After that, the nodes in 
the same walk sequence are regarded as the friend nodes, and let 
the friend nodes of node 𝑢 be 𝐹(𝑢). It is assumed that the a node 



and its friend nodes should have great similarity for they share 
some kind of characteristic. Similar to the SkipGram model, 
GEMod also performs negative sampling to obtain another set 
of node sequences, and takes the nodes in the sequence as 
stranger nodes of the source node, and let the stranger nodes of 
node 𝑢 be 𝑆(𝑢). The negative sampling process of GEMod is 
the same as that of SkipGram model. 

GEMod expects to maximize the similarity between node 𝑢 
and its friend nodes, and simultaneously maximize the 
dissimilarity between node 𝑢  and its stranger nodes. 
Consequently, the loss function corresponding to the first stage 
is: 

𝐿1 = − [∑  

𝑢∈𝑉

∑ 𝑠𝑖𝑚(𝑢, 𝑣)

𝑣∈𝐹(𝑢)

+ ∑  

𝑢∈𝑉

∑ 𝑑𝑖𝑠𝑠𝑖𝑚(𝑢, 𝑣′)

𝑣′∈𝑆(𝑢)

] (5) 

In order to make the node embeddings better reflect the 
community structures, and make the connections within 
community closer, while the connections between communities 
more sparse, a modified definition of modularity is proposed: 

𝑀 = ∑ 𝑠𝑖𝑚(𝑢, 𝑣)𝛿(𝐂𝑢, 𝐂𝑣)

𝑢,𝑣∈𝑉

+ ∑  

𝐾

𝑖=1

∑ 𝑑𝑖𝑠𝑠𝑖𝑚(𝐶𝑖,0𝐶𝑗,0)

𝐾

𝑗=𝑖+1

(6) 

ℎ𝑖,0 =
1

|𝐶𝑖|
∑ ℎ𝑢

𝑢∈𝐶𝑖

(7) 

where 𝐂𝑢  represents the community to which the node 𝑢 

belongs, 𝐶𝑖  represents the 𝑖 -th community, 𝐶𝑖,0  represents the 

center of community 𝑖 , ℎ𝑖,0  is embedding of 𝐶𝑖,0 , 𝐾  is the 
number of communities, and 𝛿(𝐂𝑢 , 𝐂𝑣) = 1  if 𝐂𝑢 = 𝐂𝑣 , 
otherwise, 𝛿(𝐂𝑢, 𝐂𝑣) = 0. Herein, we use k-means to cluster the 
nodes embedding to obtain the community partition of the 
network, and then calculate the modified modularity. It should 
be pointed out that other clustering methods are also feasible. 
The meaning of maximizing the above equation is to maximize 
the similarity of nodes within the same community and the 
dissimilarity between different community centers. Thus, the 
connections within communities are tight while the communities 
are far away from each other. As a result, the nodes embedding 
generated by GEMod model can get more compact and 
separable clusters.  The loss function of the second stage is, 

𝐿2
𝑚𝑜𝑑 = 𝐿1 − 𝛼𝑀 (8) 

where 𝛼 is a hyper-parameter used to balance the influence of 𝑀 
on the result.  

In order to accelerate the convergence of the algorithm, 
GEMod will be trained for a certain number of rounds in the first 
stage, and then enter the second stage. 

D. GEMap Algorithm 

The GEMap algorithm is similar to the GEMod algorithm, 
but the second stage of GEMap tries to optimize the modified 
coding length instead of the modified modularity. The modified 
coding length also uses the idea of two-level coding, including 
coding within communities and coding between communities. 
However, unlike the Infomap algorithm, GEMap expects to 

minimize the coding length within communities and maximize 
the coding length between communities.  

Suppose that there is a signal source in the center of each 
community, which is called a local signal source, and the nodes 
closer to the signal source have more opportunities to receive the 
message sent by the signal source. Therefore, the probability that 
a node receives a message by the distance between the node and 
the signal source can be measured. Specifically, for the 

community 𝐶𝑖 , the distances between each node in the 

community and the community center 𝐶𝑖,0 are first calculated, 
then divided by the sum of all distances, and finally sorted in 

descending order to get the probability distribution 𝑝𝑖 . 𝑝𝑖,1 
represents the receiving probability of the nearest node from the 

community center, 𝑝𝑖,2  represents the receiving probability of 
the next nearest node from the community center, and so on. 
Actually, the average coding length of each community has 

nothing to do with the order of 𝑝𝑖, so the sorting process can be 
omitted.  

Similarly, suppose that there is also a signal source in the 
center of the network composed of all community centers, which 
is called the global signal source, and then calculate the 
probability that each community center receives the message 
sent by the global signal source as described above, the average 
coding length between communities can be calculated. 

Since we only focus on non-overlapping community 
detection in networks, we make an assumption that each signal 
source only produces messages belong to a specific topic, and 
each community is only interested in a specific topic, while 
different communities do not share the same interest. Thus, we 
expect to minimize the average coding length within 
communities and maximize the average coding length between 
communities. In summary, the average intra-community coding 
length of each community is defined as follows: 

𝐸𝑖𝑛𝑡𝑟𝑎 = − ∑  

𝐾

𝑖=1

∑ 𝑝𝑖,𝑢 log 𝑝𝑖,𝑢

𝑢∈𝐶𝑖

(9) 

𝑝𝑖,𝑢 =
𝑠𝑖𝑚(𝐶𝑖,𝑢, 𝐶𝑖,0)

∑ 𝑠𝑖𝑚(𝐶𝑖,𝑢𝐶𝑖,0)𝑢∈𝐶𝑖

(10) 

where 𝐶𝑖,𝑢  represents the node 𝑢  in community 𝑖 . And the 
average inter-community coding length is defined as follows: 

𝐸𝑖𝑛𝑡𝑒𝑟 = − ∑ 𝑞𝑖 log 𝑞𝑖

𝐾

𝑖=1

(11) 

𝑞𝑖 =
𝑠𝑖𝑚(𝐶𝑖,0, 𝐶0)

∑ 𝑠𝑖𝑚(𝐶𝑖,0, 𝐶0)𝐾
𝑖

(12) 

ℎ0 =
1

𝐾
∑ ℎ𝑖,0

𝐾

𝑖

(13) 

where 𝐶𝑖,0 is the center of community 𝑖, 𝐶0 is the centroid of 

community centers, ℎ𝑖,0  is the embedding of 𝐶𝑖,0 , ℎ0  is the 
embedding of 𝐶0  and 𝐾  is the number of communities in the 
network. And the overall coding length is, 

𝐸 = 𝐸𝑖𝑛𝑡𝑟𝑎 + 𝐸𝑖𝑛𝑡𝑒𝑟 (14) 



In summary, the loss function of the second stage of GEMap 
algorithm is, 

𝐿2
𝑚𝑎𝑝

= 𝐿1 + 𝛽𝐸 (15) 

where 𝛽 is a hyperparameter used to balance the influence of 𝐸 
on the result. 

E. Models Optimization 

Both GEMod and GEMap models need to optimize the 
parameter set of 𝐇 = {ℎ𝑢|𝑢 ∈ 𝑉} , and its size is 𝑂(𝑑|𝑉|) . 
Herein, we use the back-propagation algorithm to calculate the 
derivative of the loss function, and choose the Adam [22] 
optimizer to optimize the model parameters. 

IV. EXPERIMENTAL RESULTS AND ANALYSIS 

A. Data-sets 

In this paper, the effectiveness of the algorithms is verified 
on four real-world data-sets [23][24][25] and four LFR [26] 
synthetic data-sets. The specific network structure information 
of each data-set is shown in Table I. In which n represents the 
number of nodes, 𝑚  represents the number of edges, 𝑘 
represents the number of ground-truth communities, 𝑑 
represents the average degree of nodes, and 𝜇  represents the 
mixing parameter for synthetic networks. 

TABLE I.  MAIN PROPERTIES OF THE DATA-SETS 

Data-set 𝒏 𝒎 𝒌 𝒅 𝝁 

Karate 34 78 2 4.6 - 

Dolphin 62 162 2 5.1 - 

Polbooks 105 441 3 10.7 - 

Football 115 613 12 8.4 - 

L1 1,000 15,304 49 15 0.3 

L2 1,000 30,708 29 30 0.3 

L3 1,000 15,206 49 15 0.5 

L4 1,000 30,156 31 30 0.5 

B. Comparison Algorithms 

Here six graph embedding models are selected to compare 
with GEMod and GEMap algorithms, including DeepWalk [8], 
Node2vec [13], WALKLETS [14], LINE [15], ComE [19] and 
GEMSEC [20]. Specifically, the embeddings learned by these 
models are clustered using k-means, to obtain the community 
partition for a network. 

 

C. Evaluation Metric 

Because the data-sets have ground-truth community partition, 
normalized mutual information (NMI) [27] is used to measure 
the similarity between the partition output by algorithm and the 
ground-truth partition, which is defined as follows: 

𝑁𝑀𝐼 =
−2 ∑  

𝐶𝐴
𝑖=1 ∑  

𝐶𝐵
𝑗=1 𝐶𝑖𝑗 𝑙𝑜𝑔2(𝐶𝑖𝑗𝑁/𝐶𝑖.𝐶.𝑗)

∑  
𝐶𝐴
𝑖=1 𝐶𝑖. 𝑙𝑜𝑔2(𝐶𝑖./𝑁) + ∑  

𝐶𝐵
𝑗=1 𝐶.𝑗 𝑙𝑜𝑔2(𝐶.𝑗/𝑁)

(16) 

where 𝐶𝐴  and 𝐶𝐵  respectively represents the community 
partition obtained by the algorithm and the ground-truth 
community partition, and 𝐶𝐴 and 𝐶𝐵 respectively represents the 
number of communities in partition 𝐶𝐴 and partition 𝐵. 𝐶 is the 
confusion matrix, and 𝐶𝑖𝑗 represents the number of nodes in the 

community 𝑖 divided by 𝐶𝐴 and also in the community 𝑗 divided 
by 𝐵. 𝐶𝑖. represents the sum of elements in the 𝑖 -th row of the 
confusion matrix, 𝐶.𝑗 represents the sum of elements in the 𝑗 -th 

column of the confusion matrix, and 𝑁 is the total number of 
nodes in the network. The value range of NMI is [0,1]. The 
larger the NMI value, the closer the partition result obtained by 
the algorithm is to the ground-truth community partition. 

 

D. Experimental Results 

Each algorithm runs five times on each data-set, and finally 
take the average of the results. The comparison results of the 
algorithms are shown in Table II and Table III. The error of the 
experimental results is indicated in parentheses, which is 
measured by the standard deviation of the results. 

TABLE II.  AVERAGE NMI OF EACH ALGORITHM ON REAL-WORLD NETWORKS 

Data-set Karate Dolphins Polbooks Football 

DeepWalk 0.663 (±0.038) 0.817 (±0.048) 0.562 (±0.003) 0.925 (±0.001) 

Node2vec 0.946 (±0.120) 0.874 (±0.033) 0.561 (±0.024) 0.927 (±0.002) 

WALKLETS 0.869 (±0.073) 0.889 (±0.000) 0.557 (±0.012) 0.927 (±0.000) 

LINE 0.473 (±0.103) 0.322 (±0.131) 0.409 (±0.045) 0.852 (±0.020) 

ComE 0.604 (±0.049) 0.453 (±0.019) 0.465 (±0.035) 0.691 (±0.117) 

GEMSEC 0.226 (±0.000) 0.293 (±0.000) 0.103 (±0.000) 0.930 (±0.000) 

GEMod 1.000 (±0.000) 0.889 (±0.000) 0.568 (±0.007) 0.927 (±0.001) 

GEMap 1.000 (±0.000) 0.889 (±0.000) 0.573 (±0.009) 0.926 (±0.004) 

 



TABLE III.  AVERAGE NMI OF EACH ALGORITHM ON SYNTHETIC NETWORKS 

Data-set L1 L2 L3 L4 

DeepWalk 0.977 (±0.007) 0.996 (±0.049) 0.959 (±0.010) 0.994 (±0.006) 

Node2vec 0.974 (±0.007) 0.994 (±0.006) 0.939 (±0.009) 0.994 (±0.005) 

WALKLETS 0.984 (±0.007) 0.992 (±0.005) 0.957 (±0.012) 0.994 (±0.006) 

LINE 0.541 (±0.014) 0.772 (±0.024) 0.335 (±0.008) 0.241 (±0.013) 

ComE 0.504 (±0.023) 0.599 (±0.037) 0.435 (±0.009) 0.559 (±0.034) 

GEMSEC 0.884 (±0.000) 1.000 (±0.000) 0.832 (±0.000) 0.996 (±0.000) 

GEMod 0.995 (±0.001) 1.000 (±0.000) 0.959 (±0.005) 0.998 (±0.002) 

GEMap 0.994 (±0.003) 1.000 (±0.000) 0.960 (±0.004) 1.000 (±0.000) 

 

The results show that in the real-world data-sets, except for 
Football data-set, GEMod and GEMap algorithms outperform 
other benchmark algorithms. On Football data-set, GEMod and 
GEMap algorithms are only 0.3% and 0.4% inferior to the best 
results respectively. In addition, both GEMod and GEMap 
algorithms have very small experimental errors, which shows 
the stability of the algorithms. 

E. Parameters Analysis 

In order to test the impact of hyper-parameters on the 
clustering effect, GEMod and GEMap are run with different 
hyper-parameters on Football data-set. The experimental results 
are shown in Fig. 2. 

 

Figure 2.  Influence of cluster quality to parameters changes measured by 

NMI 

The random-walk length is set from 1 to 10 in consideration 
of the small-world effect [26]. The results show that when the 
random-walk length is between 2 and 4, the clustering performs 
best. Because the length of each random walk is short, in order 
to increase the data-set to get better fitting result, we increase the 
number of random-walk iterations made by each node here. 
Experimental results show that when the number of random 
walks is between 50 and 100, the clustering effect is better. In 
addition, in order to get a stable and better clustering effect, the 
dimension of nodes embedding should be between 48 and 128. 
Finally, when 𝛼 is between 0.5 and 0.8, GEMod can generally 
get better clustering results, and when 𝛽 is between 0.7 and 0.8, 
GEMap can achieve better clustering quality, besides 𝛽  has 
unstable influence on the clustering results. 

V. CONCLUSION 

In this paper, two novel graph embedding models, GEMod 
and GEMap is proposed, which are customized for community 
detection tasks. The former uses the modified modularity, while 
the latter uses the modified coding length to optimize the 
community structure in the process of nodes embedding. 
Experimental results show that GEMod and GEMap are both 
superior to most community detection algorithms based on 
graph embedding models, and the nodes embedding generated 
by these models are generally more compact and separable. 
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