
Water-Wheel: Real-Time Storage with High
Throughput and Scalability for Big Data Streams

Yanqi Lv, Ruicheng Liu, Peiquan Jin
1School of Computer Science and Technology, University of Science and Technology of China, Hefei, China

2Key Lab. of Electromagnetic Space Information, Chinese Academy of Sciences, Hefei, China
jpq@ustc.edu.com

Abstract—In this demonstration, we present a real-time stor-
age system called Water-Wheel for big data streams. Big data
streams involve rapid and continuous data flows, which will
overwhelm the bandwidth capacity of conventional disk storage
systems. The new Water-Wheel system proposes a new storage
model that employs multiple nodes (servers) to accept data flows
using a rotation way, like a traditional water wheel. When a node
becomes full, it is transformed into a data-dumpling state that
will flush the data in the node to durable storage, after which
the node will become empty again to accept new data flows. We
demonstrate that the Water-Wheel system can offer higher and
more scalable storage bandwidth than existing big data storage
systems that use a master-slave architecture to handle big data
streams. After an introduction to the architecture and key designs
of Water-Wheel, we present a case study to demonstrate Water-
Wheel.

Keywords—Big data, Real-time storage, Throughput, Scalabity

I. INTRODUCTION

The rapid development of the Internet of Things (IoT) [1]
leads to big data streams in many applications. For example,
there will be over 100 millions data inputs every second in
a smart-grid monitoring application. Such highly-arriving big
data makes it difficult to persist data in the data center using
existing approaches [2], [3].

In this paper, inspired by the ancient water wheel in China,
which can transport water from one spot to another through
some rotating buckets, we propose a new real-time storage
system called Water-Wheel for big data streams. We devise a
rotation storage model [4] that can distribute data flows among
multiple data nodes. This approach can make full use of each
node in the data center and maximize the write throughput
of the data center. Briefly, the Water-Wheel system has the
following unique features:

(1) High Throughput. It employs a rotation storage model
to deal with the conflict between highly-arriving data stream
and low write throughput of the underlying storage. According
to the rotation storage model, we set the memory of each node
as a data bucket and all data buckets are rotated from the state
of idle waiting to data filling, write waiting, and data dumping.
With this mechanism, we can use a few data buckets to meet
the high-throughput need required by big data streams.

(2) High Scalability. Water-Wheel is implemented based
on the share-nothing architecture. New data nodes can be

DOI reference number: 10.18293/SEKE2021-204

easily appended to the system and its storage capacity will be
automatically added to the system. In case of increasing data
flows, Water-Wheel offers high scalability by adding nodes
seamlessly.

II. ARCHITECTURE OF WATER-WHEEL

The key design of Water-Wheel is a rotation storage
model [4], which consists of a set of data buckets. A data
bucket corresponds to a buffer in a data node in a cluster. All
data nodes form a huge storage space that can be regarded
as a ring because each data node is used with a round-robin
manner.

All the buckets work according to the process indicated by
arrows in Fig. 1. We can see that the Water-Wheel works in
memory and the underlying storage nodes provide persistent
storage service. When a bucket is filled in memory, it will
be persisted to some storage node. We manage the states of
all buckets and develop a state-transition scheme to make each
bucket work at a right manner. As shown in Fig. 1, each bucket
has one specific state at every moment. There are four states
designed for buckets:

• State 1: Idle Waiting.
• State 2: Data Filling.
• State 3: Write Waiting.
• State 4: Data Dumpling.
Note that each bucket changes its state according to the

given sequence, i.e., from State 1, 2, 3, and 4. Then, it will
repeat the state transition from State 1 to 4. With such a
mechanism, if one bucket becomes full, it will be changed into
the state of Data Dumpling. And after we write the bucket to
persistent storage, we can reuse the bucket, meaning that we
can put the bucket into the waiting queue and let it wait to
accept new data insertions. This is done by setting the bucket’
state to Idle Waiting.

Water-Wheel is deployed as a middle layer between the data
stream and the underlying storage node. Combined with the
state transition of data buckets, we give the general workflow
of Water-Wheel in Fig. 2:

(1) When the data stream arrives, Water Wheel will first
save the data in the data buckets in the state of data filling.
Note that the number of the data buckets in the state of data
filling can be configured in advance. Generally, more data-
filling buckets can accept a bigger data stream. However, it
will also incur higher pressure when dumping the data from



Fig. 1. The state transition of a data bucket

Storage Node

Storage Node

Storage Node

back to wait

dispatch

fillingfilling

data stream

full bucket

empty bucket

Fig. 2. The working process of Water-Wheel

memory to persistent storage. We set the number of data-filling
bucket to one by default.

(2) The a data-filling bucket becomes full, we change its
state from data filling to write waiting to let the bucket not
accept newly-arriving data streams.

(3) all the buckets in the state of write waiting will be
dispatched to some storage nodes, which will be responsible
for moving the data from memory to persistent storage.

(4) When a storage node gets a bucket in the state of
write waiting, it will change the state of the bucket into data
dumpling. Then, the storage node starts to move the data in the
write-waiting bucket to files in persistent storage, e.g., SSDs
or HDDs.

(5) After a storage node has completed the data dumpling of
a bucket, which means that all the data in the bucket has been
persisted, it will change the bucket’s state from data dumpling
into idle waiting. And all idle-waiting buckets are organized
into a queue. When newly-arriving data streams come to the
system, we will select one ore more idle-waiting buckets from
the queue to accept data streams. Meanwhile, those selected
buckets will be marked as the state of data filling.

The above process will be executed repeatedly when the
data stream comes to the system continuously. As all data
buckets are reused to accept newly-inserted data, we can infer
that the system can deliver a high write throughput. Even when
the data stream becomes extremely fast, e.g., more than 10GB
data written in one second, we can configure more data-filling
buckets and let each bucket be equipped with large memory
(e.g., using persistent memory [5], [6]), so that the system can
absorb more than 10GB data in one second.

III. DEMONSTRATION

We implemented Water-Wheel on top of MongoDB [3]. We
designed a graphical user interface for Water-Wheel, as shown
in Fig. 3. User can monitor the real-time write throughput of
the system. Users can also monitor the state of each node,
such as the CPU utilization and write throughput. Water Wheel
provides high scalability, meaning that we can easily add a
new node into the system. Figure 4 shows the interface of
adding a new node to the system. In the future, we will deploy
our system to a cloud storage platform, so that it can support
experiments running on hundreds of nodes.

Fig. 3. The main interface of Water-Wheel

Fig. 4. Adding a new node to the system

ACKNOWLEDGEMENTS

This work was supported by the National Science Founda-
tion of China (62072419). Peiquan Jin is the corresponding
author.

REFERENCES

[1] D. Jung and et al., “Vibration analysis for iot enabled predictive mainte-
nance,” in ICDE, 2017, pp. 1271–1282.

[2] X. Hao and et al., “Efficient storage of multi-sensor object-tracking data,”
IEEE Transactions on Parallel and Distributed Systems, vol. 27, no. 10,
pp. 2881–2894, 2016.

[3] MongoDB, 2021. [Online]. Available: https://www.mongodb.com/
[4] Y. Lv and P. Jin, “Rotaryds: Fast storage for massive data streams via a

rotation storage model,” in CIKM, 2020, pp. 3305–3308.
[5] Z. Wu, P. Jin, C. Yang, and L. Yue, “APP-LRU: A new page replacement

method for pcm/dram-based hybrid memory systems,” in Proc. of NPC,
2014, pp. 84–95.

[6] K. Chen, P. Jin, and L. Yue, “A novel page replacement algorithm for
the hybrid memory architecture involving PCM and DRAM,” in Proc. of
NPC, 2014.

https://www.mongodb.com/

	Introduction
	Architecture of Water-Wheel
	Demonstration
	References

