
AutoCom: Automatic Comment Generation for C Code
Zhikang Tian

Shenzhen Foreign Language School
China

Yuekang Li
Nanyang Technological University

Singapore

ABSTRACT
Code comments improve program comprehension and program
maintenance. However, the lack of comments is a common problem
in industry. It is time- and manpower-consuming to add comments
for large code bases. Thus, it is desirable to develop techniques
for automatic comment generation. Previous works for automatic
comment generation use deep learning or machine learning tech-
niques. These techniques require a large amount of training data
which is often unavailable or hard to acquire. This paper proposes
a light-weight approach called AutoCom for automatic comment
generation. In AutoCom, we first analyze the source code to extract
key information. Then, we use the extracted information to search
and filter for appropriate text from a large programming Question
and Answer (Q&A) site. Lastly, we use NLP techniques to convert
the search result into code comments. In addition to the generated
code comment, we also add predefined comments for library func-
tion usage in the source code. With AutoCom as the back-end, we
built a web service which allows the user to upload source code
and get it commented.

KEYWORDS
automated comment generation; documentation; program compre-
hension

1 INTRODUCTION
Comments play a very important role in code comprehension in
program development and maintenance, especially after codes are
created by programmers. As it is common for developers to shift
between projects or departments, codes without comments would
be hard to modify by programmers who take over. In the meantime,
regularly commenting the codes would be distracting for program-
mers, as writing comments will break the train of thought of writing
codes. Thus, the efficiency of the programmers might be brought
down, and the codes written not fluent or even not functioning
well. If the comments can be written automatically, it will save the
programmers from writing comments and also help the successors
in understanding previous codes. This thought leads to the birth
of AutoCom, which is a program that can automatically match the
codes with useful comments.

Existing automatic comment generation methods are not flaw-
less: Most of them mainly focus on deep learning and machine
learning. These techniques require a large amount of training data
to fully function, but the data are hard to acquire. Thus, human la-
bor is still not fully emancipated from the onerous process, because
the large number of training data must be written by programmers
based on their experience. Besides it also requires large amount
of time to get these data. Secondly, those training data are com-
plex, and it is hard to guarantee that no error has been made when

DOI reference number: 10.18293/SEKE2021-202

writing. If any errors exist in the data, the result of commented
codes will be wrong and useless. Thirdly, the large amount of new
training data are continuously increasing, and they need to have a
large database to save them, which requires money and space.

To address these issues, we proposed a new approach — Auto-
Com, a light-weight and full functioning tool in automatic C code
comment generation. In AutoCom, we take down all the source
code apart and extract out the key information of the source code.
Then, we use the extracted key information to form the appropri-
ate key words or filters and further establish a search on a large
Question and Answer (Q&A) Site StackOverflow, which contains
large number of source code and code description written by pro-
grammers. These Q&A work as the source to extract comments.
After this, we analyze these sentences using Natural Language Pro-
cessing (NLP) techniques, giving each sentence a weighting. We
also convert the search results into useful comments. Lastly, we
insert the comments into the source code. Additionally, we also add
predefined comments for C Standard Library function usages in
the source code, which requires fewer source code to be searched
on StackOverflow. This novel design can save a lot of time when
generating codes.

We implemented AutoCom as a Python-based commandline
tool and wrapped it with a web-server to provide service: http:
//tianzhikang.pythonanywhere.com/. We also prepared an intro-
duction video for AutoCom at: https://youtu.be/jxP389kFb7U.

2 METHODOLOGY & IMPLEMENTATION
In this section, we introduce details about the design of AutoCom.
Figure 1 shows an overview of AutoCom’s workflow. The input
is C program source code and the output is the source code with
comments added. The workflow of AutoCom has four steps:
❶ We need to extract key information from the source code. To
do so, we first convert the convert the source code into abstract
syntax tree (AST) to identify the different components. Then we
extract function names and constant strings as individual pieces of
key information from the AST.
❷ We conduct a fuzzy search on the Q&A site for each piece of
extracted information. After searching, we merge all the searching
results (questions on the website) and rank them according to the
sum of vote up/down scores and number of answers. More up votes
and answers lead to a higher rank, and then the searching results
with ranks higher than a threshold (the threshold can be specified by
the user) will be kept and used to generate comments. Algorithm 1
shows the how the search results are filtered and retained. Note
that here we discard the results of the keywords with more than 30
search results. The rationale is that if a keyword produces too many
search results, it means the keyword is too general to represent the
features of the code. For example, the function name "main" is a
bad keyword for searching with. Here, we set 30 as the threshold
after some experiments.

http://tianzhikang.pythonanywhere.com/
http://tianzhikang.pythonanywhere.com/
https://youtu.be/jxP389kFb7U

Extract Information from source code

Generate AST of the
Source Code

Extract function
names/constant strings

Search Q&A site for results

Search & Results parsing

Rank and retain the most
suitable result

Generate comment with search result

Summarize the question
text

Insert the comments

Insert predefined library
function comments

Insert the generated
comments

Figure 1: Overview of the workflow of AutoCom

❸ After the most suitable search results have been recognized and
retained, we then apply text summary techniques to generate the
summaries of the searched text. In AutoCom, we allow the users
to choose either Latent Semantic Analysis (LSA) summarizer [8]
or Edmundson Heuristic Method (EHM) summarizer [9]. For LSA,
users only need to input the original text as well as a list of stop
words to get the summary. For EHM, users need to provide two
additional lists of bonus words and stigma words. In EHM, the
additional words (cue phrases, keywords, title words) will increase
the weight of a sentence while the stigma words shall decrease
it. As for the additional words, we reuse the keywords to search
the results. This means that sentence containing the keywords for
searching are more likely to be included into the summary. As for
the stigma words, we provide a list of words which are commonly
used in the Q&A context of the website, such as what, why, error,
warn, etc. This ensures that the commonly used sentences related
to the question asking/answers or descriptions of the errors are
excluded from the summary.
❹ Last but not least, the generated summaries are inserted back into
the code as comments. The summarywill serve as a comment for the
entire code. During this process, we also add predefinedcomments
for standard C library function calls. This is achieved bymaintaining
a dictionary of standard library functions and their descriptions and
by adding the corresponding descriptions as comments for each
occurrence of the library function call in the code.

The key logic of AutoCom is implemented with around 400
lines of Python code. We use Py-StackExchange [6] to query the
StackOverflow API. We use Beautiful Soup [3] for parsing the Q&A
webpage and extracting the text content. We use pycparser [7] to
parse the C code and produce the abstract syntax tree of the input
code. Lastly, we use nltk [5] and sumy [2] to summarize the text.

Algorithm 1: Algorithm for Retaining Search Results
input :A set of keywords K , Top n search results to keep
output :A list of search results for comment generation L

1 L ← ∅;
2 foreach k ∈ K do
3 R ← search(k);
4 if |R | > 30 then
5 continue;

6 R .sort();
7 L.insert(R[0 : n]);

8 return L;

Moreover, we wrap the key logic of AutoCom with a webserver
based on Django [4]. In other words, we make AutoCom a web-
service so that everyone can try and use it. AutoCom is currently
hosted on PythonAnywhere [1]:http://tianzhikang.pythonanywhere.
com/.

3 FUTUREWORK
In the future, we have three directions to improve the performance
of AutoCom. First, we can improve the quality of information ex-
traction from the source code. Currently we are using syntactic
information like function names or constant strings as the key-
words for searching. First, we plan to take a further step to extract
some basic semantic understanding about the code. Second, we
plan to apply finegrained analysis for the search result. Currently
we are extracting only the text of the question. We can also ex-
tract the code fragments from the question if the question contains
some. Then we can analyze the semantic of the extracted code
fragment to see if it matches our original source code. If the code
fragment matches our original source code, it means the question
is suitable to generate comments. Third, we can use more advanced
NLP techniques to generate comments. Currently, we are using
traditional text summarization methods like LSA or EHM. In the
future, we are planning to adopt more advanced text summarization
techniques [10–12] in AutoCom.

REFERENCES
[1] Automatic comment addition, 2020.
[2] Automatic text summarization, 2020.
[3] Beautiful soup, 2020.
[4] django: the webframeworks for perfectionists with deadlines, 2020.
[5] Natural language toolkit, 2020.
[6] Py-stackexchange: An api wrapper for python, 2020.
[7] pycparser, 2020.
[8] Scott Deerwester, Susan T. Dumais, George W. Furnas, Thomas K. Landauer, and

Richard Harshman. Indexing by latent semantic analysis. Journal of the American
Society for Information Science, 41(6):391–407, 1990.

[9] H. P. Edmundson. New methods in automatic extracting. J. ACM, 16(2):264–285,
April 1969.

[10] Yaser Keneshloo, Naren Ramakrishnan, and Chandan K. Reddy. Deep transfer
reinforcement learning for text summarization. CoRR, abs/1810.06667, 2018.

[11] Abdullah Al Munzir, Md. Lutfor Rahman, Sheikh Abujar, Ohidujjaman, and
Syed Akhter Hossain. Text analysis for bengali text summarization using deep
learning. In 10th International Conference on Computing, Communication and
Networking Technologies, ICCCNT 2019, Kanpur, India, July 6-8, 2019, pages 1–6.
IEEE, 2019.

[12] Shengli Song, Haitao Huang, and Tongxiao Ruan. Abstractive text summarization
using LSTM-CNN based deep learning. Multim. Tools Appl., 78(1):857–875, 2019.

2

http://tianzhikang.pythonanywhere.com/
http://tianzhikang.pythonanywhere.com/

	Abstract
	1 Introduction
	2 Methodology & Implementation
	3 Future Work
	References

