
Requirements Formality Levels Analysis and
Transformation of Formal Notations into

Semi-formal and Informal Notations
Aya Zaki-Ismail∗, Mohamed Osama∗, Mohamed Abdelrazek∗, John Grundy†, and Amani Ibrahim∗

Information Technology
∗Deakin University , †Monash University

Melbourne, Australia
∗{amohamedzakiism, mdarweish, mohamed.abdelrazek, amani.ibrahim}@deakin.edu.au , †<john.grundy@monash.edu>

Abstract—It is pivotal to have well-specified requirements to
eliminate errors at an early stage of the system development
life cycle. Some quality standards recommend the use of formal
methods – mandate requirements to be expressed in formal
notations – to detect errors. However, formal notations are
not suitable for non-experts and may not be understood by
all the stakeholder. To fix this, bidirectional transformations
among requirement representation levels are required to main-
tain traceability and facilitate the communication of requirements
among all the involved parties. This paper reflects on the
different formality levels of requirements specifications including:
informal, semi-formal, and formal notations. In addition, an
automated multi-layer transformation approach is proposed to
enable bi-directional transformation among requirements levels.

Index Terms—Requirements engineering, Informal notation,
Semi-formal notation, Formal notations, Transformation

I. INTRODUCTION

The complexity of modern systems is rapidly increasing as
a result of the incorporation of cutting edge technology in var-
ious fields (e.g., automotive, robotics, and Internet-of-Things).
These systems have special characteristics over classical sys-
tems (e.g., integrating multiple subsystems, scalability, re-
usability, and stringent requirements measures for: reliability,
safety and security, etc.) [1], [2]. In addition, depending on the
scope of application, development errors in such systems (e.g.,
inconsistency, incompleteness, and incorrectness) can lead
to catastrophic consequences, severe losses, and hazardous
operational failures. The earlier the detection and resolution
of such errors, the better quality and control through the
development life cycle [3].

Requirements Engineering (RE) is the first phase within
the development life cycle [4] and thus contributes greatly
to the overall quality of the developed system and achieving
a successful and efficient development. The core artefact for
this process is the requirements specifications document. There
are three levels for representing requirements specifications:
informal, semi-formal and formal notations. Each represen-
tation level has its own strengths and weaknesses. Informal
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(natural language) offers the easiest form of communicating
requirements but is inherently ambiguous, incomplete, and
imprecise. Formal notations are precise and unambiguous but
require mathematical background and expertise. And semi-
formal notations offer an intermediate trade-off between the
two, but is not suitable for all scenarios or domains. Thus, the
transformation between these levels of formality is required to
maintain fast and efficient communication at different stages
of the development between all the contributors in the RE
team (e.g,, non technical users, formal methods experts, etc)
[5]–[7].

In the last three decades, several approaches were proposed
for automating the transformation processes. The majority of
such approaches focus on transforming requirements from the
informal and semi-formal levels to the formal level. This is
done to allow formal methods to detect quality issues within
the requirements [8], [9]. Yet the problem of transforming
requirements from a more formal level of representation to
a less formal one is still an open problem. In addition, to
the best of our knowledge, very few work has provided a
comparison between the different formality levels or discussed
their features and the possible transformations between them
(e.g., [5], [10]) . To address these gaps, in this paper we
provide:

- An analysis of the formality levels for requirements
representation and the current state of transformations
among them for a better understanding of the problem.

- A multi-layer automated transformation approach from
formal notation to semi-formal, then to informal notation.

II. REQUIREMENTS REPRESENTATION
FORMALITY LEVELS

Formality levels notations are defined based on the concepts
of syntax and semantics visualised in Fig.1. In [11], these
concepts are defined from the linguistic perspective and the
field of formal language as indicated below:

. Syntax: The syntax of a language is the set of rules that
define structured sentences or fragments of the language
[12] (e.g., grammatical phrases or sentence structure in
natural languages).
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Fig. 1. Formality Levels from syntax and semantic perspectives

. Completely defined syntax: The syntax of a language
L is completely defined if and only if, for any fragment
S, it can be verified whether or not S belongs to L [13].

. Semantic: The semantic of a language is the possible
interpretations or meanings of a fragment.

. Completely defined semantics: The semantic of a
language is completely defined if and only if, for any
given fragment S that belongs to L, there is only one
interpretation. This can be confirmed by transforming
the language notation into a mathematical system where
proofs can be performed [11].

A. Informal Notations

Quality standards [14] define informal notations as a tech-
nique with incomplete defined syntax, that is used to specify
requirements. Having incomplete syntax also means that the
semantics aspect is also incomplete.

From the industry perspective, informal notations have a
similar definition where it is defined as free-textual or free-
styled requirements [5], [15], [16]. However, there are two
fundamental constraints on the use of informal notations:
(1) auto-completeness – each individual requirement should
be fully understandable, and (2) implied references should
be avoided as recommended in [16]. The absence of rules
controlling the writing style, makes requirements specification
easier but affects the uniformity as it depends on the sys-
tem engineer’s writing, background and expressiveness skills.
Lacking uniformity makes the requirements vulnerable to
ambiguities and inconsistencies [17].

The most commonly used informal notation today is Natural
Language (NL) (i.e., usually English) [14]. The principle
advantage of NL is that it is well known. Thus, it is a
good communication method among non-technical users (e.g.,
customers, stakeholders, etc.), and technical users (e.g., devel-
opers, experts, etc.). In addition, there is no need for training
to use NL in specifying requirements. This minimises the
time needed to create the first project artifact. More details
about what are the sections of the specification document, how
each section is structured and what are the main elements that
should be contained are available here [15].

Despite the advantages, writing requirements in NL has
many drawbacks. First, the expressiveness power of informal
notation allows requirements documents to contain all kinds

of freedom (e.g., ambiguity, contradiction, inconsistency [18]).
As NL is inherently ambiguous, different persons may have
different interpretations of the same requirement. This may
lead to implementing unintended functions or implementing
more functions than the intended ones. Having unnecessary
functions increases the complexity of the system and con-
sequently the number of errors [19]. In addition, missing a
system function would drive the system into incorrect states.
Secondly, NL is hard to maintain as the proper grouping of
related requirements can not be ensured. Thirdly, due to the
free-style of writing, it is hard to verify requirements and make
sure that each process has correct input and output.

Current research witnesses a lot of progress towards improv-
ing the quality of informal/textual requirements. The existing
approaches can be classified into two categories: (1) detecting
quality issues (e.g., ambiguity, inconsistency, incompleteness,
etc.) in informal requirements –helping engineers refine writ-
ten requirements– (e.g., [20], [21]), (2) providing defined
formats (templates, patterns, boiler-plates, constrained NL) for
engineers to utilise while (re-)writing requirements (e.g., [22]).

B. Semi-formal Notations

Semi-formal notations provide an intermediate layer be-
tween informal and formal notations. It is a technique for
describing requirements with a completely defined syntax and
may have incomplete semantics, as defined in most quality
standards [14]. From the industry perspective, semi-formal
notations are usually either a form of a graphical representation
of the system [5], [10], [15] or Constrained Natural Language
”CNL” [10], [23] that is developed to minimise ambiguities
and improve the readability of the requirements. In fact, there
is no contradiction between these definitions because both
graphical representations and CNL have completely defined
syntax and poorly defined semantics [5], [15].

Graphical representations utilise graphical structures to rep-
resent the system [10]. Although not all the requirements
issues are eliminated, the effectiveness of graphical represen-
tations can be very high. Such representations are popular
as they can improve the quality of the requirements with a
slight learning curve and give an insight about the system
from different points of view (e.g., UML [24], Sysml [25],
URN [26], ER-diagrams [27], etc). A graphical representation
may be accompanied with some logical languages to raise
expressiveness (e.g., OCL is attached to UML in [10]).

CNL is a textual writing with constraints on styling, syntax,
vocabulary or mix of them [28]. This limits the engineers
to only using the predefined writing style to improve the
quality of the written requirements. Commonly, this manifests
as boilerplates [29] or Structured English [30] following the
defined rule(s). This constrains how the requirements are
textually represented by layout and vocabulary (CNL might
be impractical if too restrictive [31]).

Semi-formal notations have several advantages: (1) Elimi-
nate, in most cases, issues with the requirements represented in
informal notations as the complete syntax limits the expressed
variations of a requirement [5]. (2) More comprehensible



than informal notations (detailed descriptions in NL may be
confusing when describing complex systems). (3) Graphical
representations can give an abstract view of the system provid-
ing a better understanding of the system [10]. Visualising the
entire system helps find otherwise unnoticed gaps. However,
the major drawback is -due to the lack of complete semantics-
everyone may have their own interpretation [5], [14].

C. Formal Notations

Formal notations are mainly used by formal methods for re-
quirements model verification. They have a completely defined
syntax and semantics as defined by the quality standards [14].
Similarly, formal notations are used in the industry as precise
notations based on the concept of mathematics to ensure
the verification applicability on requirements specifications
[15], [32], [33]. Formal notations require strong expertise in
mathematics set theory and predicate logic to have the ability
to state or understand the formalised requirements of a system
[15]. Thus, many (except those with the right expertise) can
not easily or clearly understand most of these notations. The
most widely used formal notations include (Temporal Logic
[34], Z [35], SAL [36], etc.).

A major advantage of formal notations is reducing the
development cost and time by discovering errors in the early
stages of the software development life cycle. Due to the
absence of ambiguity in formal notations, it is reliable to
verify whether the system conforms to the specifications or
not. Another advantage is improving the quality of the system
as the requirements are stated in a precise and consistent
manner [32]. Moreover, formal notations may help generate
full/partial code [5]. In contrast, non-technical users require
extensive time consuming in training to understand formal
notations. Large numbers of non-technical users find formal
notations very complex [18].

III. FORMALITY LEVELS TRANSFORMATIONS

From the previous section, it is clear that the level of
formality of the requirements affects the quality of the rep-
resented requirements and the understand-ability among the
people involved in the development life cycle (technical and
non technical). Thus, maintaining the requirements consistency
and traceability is pivotal [5] and can be controlled through
transformations. Inspired by the need –in both research and
industry– of having viable transformations among the levels
of formality [5]–[7], we outline the existing formality levels
transformations as follows:-

Informal notations to Semi-formal notations: the popular
direction is to transform informal notations into graphical
representations. This can be accomplished by applying a set
of linguistic parsing rules on free-text [37], [38]. In [39]
and [40], NLP-based extraction approaches are proposed for
transforming NL-requirements into extracting goal-use-cases
and requirements key elements proposed in [41] respectively.
Alternatively, in [42], [43], use case models are extracted from
NL-requirements through matching the input requirements
against a simple set of regular expressions.

Informal notations to Formal notations: type of trans-
formation related to generating a formal notation given free-
textual requirements. Linguistic analysis is a viable technique
coping with this type of transformation as illustrated in [23],
[44]. These approaches are restricted to and reliant on the
accepted subset of NL and the corresponding set of hand-
crafted rules, that are domain-specific and can only work
for limited scenarios [9]. Alternatively, the combined work
proposed in [41] and [40] together can be considered as a more
flexible and domain-independent approach that transforms
clause-based free-textual requirements into formal language.

Semi-formal notations to Formal notations: this type
focuses on transforming either graphical representations or
textual-based semi-formal notations to formal notations. It is
considered a critical transformation due to the value of formal
verification on the derived formal models.

- Textual-based to formal notations:- most of the existing
approaches adopt NLP techniques to parse the defined
meta-model of the used textual format to generate the
corresponding formal notation (e.g., [45]–[48]). Much
progress has been witnessed within this type of trans-
formation. Many different textual-based notations (along
with specific parsing techniques) have been proposed to
serve a specific domain or a specific type of requirements.

- Graphical representations to formal notations: similarly
to the textual-based type of transformation, existing tech-
niques in this category provide a homomorphic mapping
between the meta-models of the graphical representations
and the target languages (e.g., [32], [49], [50]). In [41],
requirement capturing model (RCM) is proposed to en-
able automatic transformation into various temporal logic
based notations, where it is mapped to metric temporal
logic and computational tree logic.

Semi-formal notations to Semi-formal notations: In this
class, conceptual mapping between the intended notations
is formulated to enable transformation [51], [52]. In [53],
system requirements capturing model (SRCM) is constructed
by aggregating RCMs presented in [41](i.e., each representing
one single requirement), to enable compact and integrated
system views and quality issues detection in the semi-formal
level.

Formal notations to Semi-formal notations: this type
of transformation produces a semi-formal notation given the
formal one. The most targeted semi-formal notations are
graphical based [54]. In this transformation, homomorphic
mapping and construction algorithms support the generation
of semi-formal diagrams from formal models to visualise
complex models [54].

IV. APPROACH
In our previous work [41], we analysed the existing require-

ments representation models and proposed RCM as a com-
prehensive semi-formal model supporting behavioural require-
ments. RCM defines the key requirements elements required
for the automatic generation of the corresponding formal
notations. We also formulated the mapping rules between the



RCM’s key elements and the metric temporal logic ”MTL”
formal notation. In addition, we developed a fully automated
approach for generating MTL formulas for requirements ex-
pressed in RCM. In [40], we extended the work by proposing
an automatic NLP-based approach for extracting RCMs from
NL-requirements. In this paper we provide requirements trans-
formation in the reverse direction (i.e., MTL to RCM, then
RCM to NL-requirements) to maintain consistency among the
different levels of formality. Our approach takes a text file
containing MTL formulas and a definition file (for interpreting
formal symbols) as input, and provides XML and text files
for the corresponding generated RCMs and NL-requirements
respectively. Figure 2 shows the two transformation layers.
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Fig. 2. Multi-Layer Transformations Flow

A. MTL to RCM Transformation

We utilise the same mapping rules proposed in [41]. We rep-
resent such rules as regular expressions to facilitate matching
the underlying formal grammar of the rules. Table I shows the
crafted regular expressions mapped to the RCM-MTL mapping
formulas. However, regex rules 1, 2, 3, and 7 are crafted
according to the formalisation approach proposed in [41]. We

TABLE I
MAPPING REGEX RULES

RCM-Role MTL-
Id

Re-
Id

Regex

Predicate Structure1 - 1 (\(\w+(= | > | < | >= | <=)\w+\))
Predicate Structure2 - 2 (\(\w + \((\w+, ) ∗ \w + \)\))
Predicate Structure3 - 3 (\(\w + (= | > | < | >= | <=)\w +

\((\w+, ) ∗ \w + \)\))
Pre-Time Element 10:14 4 F{t(= | > | < | >= | <=)\d}\([A −

Z]\)
Valid-Time Element 15:19 5 G{t(= | > | < | >= | <=)\d}\([A −

Z]\)
In-Time Element 20:24 6 G\(F{t(= | > | < | >= | <=

)\d}\([A− Z]\)\)
Coordinated Elements - 7 (\(([0− 9]||AND|OR|(?R)) ∗ \))
Scope StartUP 5 8 G\([A− Z] ==> F\([A− Z]\)\)
Scope EndUP 6-7 9 F [A − Z] ==> \(F\([A − Z]\|\|[A −

Z])U [A− Z]\)\)
Scope both 8-9 10 G\(\([A−Z]\[A−Z]\F [A−Z]\) ==>

\(F\([A−Z]\|\|[A−Z])U [A−Z]\)\)
Single PreCond 2-3 11 G\([A− Z] ==> [A− Z]\)
Composite PreCond 4 12 G\(\([A−Z]\[A−Z]\) ==> [A−Z]\)
Action 1 13 G\([A− Z]\)

apply a bottom-up abstraction approach on the input formula
to construct an intermediate table (IT) containing the required
details for RCM. The approach consists of five steps shown in
Algorithm IV-A, each designed to match a specific set of rules
against the input formulas to extract specific information.

AlgorithmIV-A: MTL-to-RCM Transformation
States:
R: MTL-to-RCM indexed Regex Rules
Formula: input string representing one formula
Tbl: Table contians extracted information
procedure

Step 1: Identify predicate elements
Formula ← abstractMatchedRegx(R{1:3},Formula)
updateTable(Tbl)

Step 2: Identify attached time elements and their types
Formula ← abstractMatchedRegx(R{4:6},Formula)
updateTable(Tbl)

Step 3: Identify predicate elements with same type
Formula ← abstractMatchedRegx(R{7},Formula)
updateTable(Tbl)

Step 4: Identify Scope elements attached to main elements
Formula ← abstractMatchedRegx(R{8:10},Formula)
updateTable(Tbl)

Step 5: Identify main elements types
Formula ← abstractMatchedRegx(R{11:13},Formula)
updateTable(Tbl)

end procedure

In Step 1, each predicate element is identified and repre-
sented with one alphabet. Each matched group is replaced
with a Unique alphabet, where the letter and the corresponding
matched group are stored in the IT. Step 2 matches regular
expression rules R{4:6} against the MTL formula in an
iterative manner to identify time elements. Each identified time
element and its type are attached to the corresponding alphabet
representing the predicate element in the IT (to keep their
composition relation). In addition, the matched elements are
replaced with their related predicate alphabets. Step 3 groups
the coordinated elements (same type). Step 4 identifies the
scope of the main elements. In Step 5, the main elements are
identified. The IT is then parsed into RCM. Figure 3 shows
a step by step annotation of the transformation algorithm on
an example MTL formula along with the constructed IT. The
generated RCM is shown in the first column in Figure 4.

G(((ignition key = in-Lock) AND (Gt=2(the rain sensor = active))) ==> F((the wipers = active) U (the windshield = dry)))

G( (P AND Gt=2(Q)) ==> F(R U S))

G( (P AND Q) ==> F(R U S))

G( C ==> F(R U S))

G( C ==> R)

Step1

Step2

Step3

Step4

Intermediate Table

P ignition key = in-Lock | condition

Q the rain sensor = active | V-time, t=2 |condition

R the wipers = active | Action

S the windshield = dry | End-Scope |Action-Scope

C P AND Q
Cond          Act

End-Scope

V-time

Fig. 3. Tracing example for MTL transformation

B. RCM to NL-Requirements Transformation

This layer consists of two tasks: realisation and sentence
structuring. The generated sentences are governed by the
following grammar:



<S e n t e n c e> : : = <S u b o r d i n a t i n g C l a u s e>* .<MainClauses>
.<S u b o r d i n a t i n g C l a u s e>*

<S u b o r d i n a t i n g C l a u s e> : : = S u b o r d i n a t o r .<MainClauses>
<MainClauses> : : = <Cl au se> .<C o o r d i n a t i n g C l a u s e>*
<C o o r d i n a t i n g C l a u s e> : : = C o o r d i n a t i n g R e l .<Cl a u s e>
C o o r d i n a t i n g R e l : : = ” and ” | ” o r ”
<Cl au se> : : = [<Subj> ] . [<R e l a t i v e C l a u s e> ] .<VerbPhrase> .<Time>*
<R e l a t i v e C l a u s e> : : = RelHead . [ P r o p e r t y ] .<VerbPh>
<Subj> : : = NounPh
<VerbPh> : : = [ M o d a l i t y ] .<MainVerb> .<Complement>+
<MainVerb> : : = Verb | ( be ) . Verb . ( ed )
<Complement> : : = P r e p o s i t i o n . ( NounPh | Adj )
M o d a l i t y : : = ” s h a l l ”
S u b o r d i n a t o r : : = Tr igge rHead | C o n s t r a i n t H e a d | ScopeHead
C o n s t r a i n t H e a d : : = ” i f ”
Tr igge rHead : : = ”when ”
ScopeHead : : = ” a f t e r ” | ” b e f o r e ” | ” u n t i l ” | ” w h i l e ”
RelHead : : = ” whose ” | ” t h a t ”
<Time> : : = TimeHead . [ Q u a n t i f y i n g R e l ] . Value . Un i t
TimeHead : : = ValidTimeHead | PreElapsedTimeHead | InTimeHead
ValidTimeHead : : = ” f o r ”
PreElapsedTimeHead : : = ” w i t h i n ”
InTimeHead : : = ” e v e r y ”
Q u a n t i f y i n g R e l : : = ” a t l e a s t ” | ” l e s s t h a n ” | ” a t most ” | ” more t h a n ”

Where, ”*” means zero or more items, ”+” indicates the
presence of one or more, ”.” specifies composition of different
items, ”<>” refers to non-terminal, and ”[ ]” refers to an
optional item. NounPh, Adj, Value, Verb, QuantifyingRel
and Unit are terminals. The first three exist in the extracted
elements, while the rest are selected from the input definition
file. A requirement sentence in the proposed grammar consists
of at least one clause. A clause is built up from at least a verb
phrase expressing the core meaning of the clause. Optionally,
a subordinator can be attached (setting the grammatical role
to a subordinating clause).

Realisation task is responsible for: (1) replacing formal
symbols in elements with English words and (2) assigning
correct grammatical syntax to these elements. To replace the
formal symbols, we feed our approach with an extensible
definition file mapping the formal-symbols to English frames.
To adjust the grammar, we utilise SimplingNLG. All the
elements are assigned a present tense except for the action –

Generated RCM Realised RCM
Action
ØCompText = Nail
vPredicate
Ø Relation = Nail
Ø Op1 
ü Text = the wipers

Ø Op2 
ü Text = active

Ø neg_flag = false
Ø Formal Semantic

ü LHS è the wipers 
ü RHS è active
ü Operator è “=“

Action-Scope
ØPhase= EndUP-Phase
ØCompText = Nail
vPredicate
Ø Relation = Nail
Ø Op1 
ü Text = the windshield

Ø Op2 
ü Text = dry

Ø neg_flag = false
Ø Formal Semantic

ü LHS è the windshield 
ü RHS è dry
ü Operator è “=“

Action
ØCompText = ”the wipers 
shall be active”
vPredicate
Ø Relation = Shall be
Ø Op1 
ü Text = the wipers

Ø Op2 
ü Text = active

Ø neg_flag = false
Ø Formal Semantic

ü LHS è the wipers 
ü RHS è active
ü Operator è “=“

Action-Scope
ØPhase= EndUP-Phase
ØCompText = ”until the 
windshield is dry”
vPredicate
Ø Relation = is
Ø Op1 
ü Text = the windshield

Ø Op2 
ü Text = dry

Ø neg_flag = false
Ø Formal Semantic

ü LHS è the windshield 
ü RHS è dry
ü Operator è “=“

Conditions

Condition_1
CompText = Nail
v Predicate

ØRelation = Nail
ØOp1 
ü Text = the ignition key 

ØOp2 
ü Text = ”in-lock”

Øneg_flag = false
ØFormal semantic
ü LHS è the gnition key 
ü RHS è in-loc
ü Operator è “=“

Condition_2
CompText = “if the rain 
sensor  is active
v Predicate

ØRelation = is
ØOp1 
ü Text = the rain sensor 

ØOp2 
ü Text = in-lock

Øneg_flag = false
ØFormal semantic
ü LHS è the rain sensor 
ü RHS è active
ü Operator è “=“

v Valid-time 
ØValue= 2
ØUnit= second
ØQR = equal
ØFormal Semantic
ü Operator è “=“
ü Value è 2

And

Condition_2
CompText = Nail
v Predicate

ØRelation = Nail
ØOp1 
ü Text = the rain sensor

ØOp2 
ü Text = ”active”

Øneg_flag = false
ØFormal semantic
ü LHS è the rain sensor
ü RHS è active
ü Operator è “=“

v Valid-time 
ØValue= 2
ØUnit= Nail
ØQR = Nail
ØFormal Semantic
ü Operator è “=“
ü Value è 2

Condition_1
CompText = “if the ignition 
key is in-lock
v Predicate

ØRelation = is
ØOp1 
ü Text = the ignition key  

ØOp2 
ü Text = in-lock

Øneg_flag = false
ØFormal semantic
ü LHS è the ignition key 
ü RHS è in-lock
ü Operator è “=“

And

Fig. 4. Generated and realised RCM of the MTL formula in Fig.3

assigned a future tense. The second column in Figure 4 shows
the changes in RCM after applying the realisation task.

Sentence Structuring task orders the existing elements
in a given RCM to construct a sentence. First, we assign
priority indices to all RCM elements as shown in the third
row in Table II. The numbers indicate the elements occurrence
order in the sentence. The last four rows show the order of
the sub-components within each component (e.g., the action
component exists in the sixth place with its sub-components
ordered as: pre-time, core-segment, valid-time, and in-time).
Empty cells mean a specific sub-component is not eligible
to the corresponding component. These indices are used to
structure the sentence of a given RCM based on the existing
elements.

TABLE II
COMPONENTS AND SUB-COMPONENTS PRIORITY INDICES

PreCond-Scope Action-Scope Condition Trigger Action
StartUp EndUP StartUP EndUP

Components 1 4 5 7 3 2 6

Su
bC

om
p Core-segment 1.1 4.1 5.1 7.1 3.2 2.1 6.2

Valid-time 1.2 4.2 5.2 7.2 3.3 2.2 6.3
Pre-time 3.1 6.1
In-time 2.3 6.4

Figure 5 shows the sentence structure of the realised RCM
in Figure 4 in compliance with the elements priority listed in
Table II.

If the ignition key is in-lock and the rain sensor is active for 2 seconds, the wipers shall be active until the 
windshield is dry.

Realised RCM

Conditions Action
v Predicate = ”the 

wipers shall be 
active”

Action-Scope
ØPhase= EndUP-Phase
v Predicate = ”until the 

windshield is dry”Condition_2
v Predicate = “if the rain 

sensor  is active
v Valid-time = “for 2 seconds”

Condition_1
v Predicate = “if the 

ignition key is in-
lock

And

Generated NL-Requirements

Fig. 5. Structured sentence of the realised RCM in compliance with Table II

V. CONCLUSION
In this paper, we provided an insight about the different

levels of formality for representing requirements while high-
lighting the (dis)advantages of each level. We also presented
the current state of research for the transformation among
these levels. Finally, we proposed a multi-layer transforma-
tion approach to bridge the gap of maintaining traceability
between formality level and enabling (non-)technical people
to understand system requirements.
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