
DOI reference number: 10.18293/SEKE2021-194

A Case Study of Testing an Image Recognition

Application
Chuanqi Tao

①②
, Dongyu Cao

①
, Hongjing Guo

①
, Jerry Gao

③

① College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China

②Ministry Key Laboratory for Safety-Critical Software Development and Verification, Nanjing University of Aeronautics and

Astronautics, Nanjing, China

③Department of Computer Engineering, San Jose State University, USA

Correspondence to: taochuanqi@nuaa.edu.cn

Abstract—High-quality Artificial intelligence (AI) software in

different domains, like image recognition, has been widely

emerged in our lives. They are built on machine learning models

to implement intelligent features. However, the current research

on image recognition software rarely discusses test questions,

clear quality requirements, and verification methods. This paper

presents a case study of a realistic image recognition application

called Calorie Mama using manual and automation testing with a

3D decision table. The study results indicate the proposed method

is feasible and effective in quality evaluation.

Keywords-image recognition; testing AI software; AI software

quality validation

I. INTRODUCTION

With the rapid development of big data analysis and
artificial intelligence technology, AI software and applications
have been widely accepted in our daily life. At present, AI
software and applications are based on the most advanced
machine learning models, and various artificial intelligence
features are realized through large-scale data training.

The most important implementation of Artificial
Intelligence is the imitation of human interactions—vision.
Nowadays, there is an abundance of digital images captured by
high-quality equipment. Most images are captured with phones.
Artificial Intelligence is often used to process these images to
extract knowledge, categorization, and labeling along with other
advantages. Typical applications of image recognition include
object recognition, face recognition, text parsing.

Detecting bugs and errors in software can be very costly.
Sometimes bugs can be even deadly if it is a real-time
application of software, such as some software that is used to
help with surgeries in the hospital. Therefore, testing the
software is very important to verify that the product meets
requirements and specifications. Software testing ensures the
correctness, integrity, and high quality of the software by
checking errors or bugs and fixing them in the initial design.

This paper focused on testing an image recognition
application called Calorie Mama utilizing both manual testing
and automation testing. Calorie Mama is a smartphone app that
runs on Android and IOS devices. It uses deep learning to
recognize food from food images and track nutrition based on
the food in the image. It calculates the calorie based on that. We
evaluated the performance, correctness, and quality of the app
using both manual testing and automation testing.

This paper is written to provide our perspective views on
image recognition software testing and quality evaluation. The
paper is organized as follows. Section 2 discusses the review of

AI software testing and image recognition. The third part shows
a case study of testing Calorie Mama APP using manual testing
and automation testing. Section 5 gives the conclusion finally.

II. RELATED WORK

Traditional software is implemented by developers with
carefully designed specifications and programming logic. It is
tested with test cases that are designed based on specific
coverage criteria. However, the current practice of testing AI
applications lags far behind the maturity of testing traditional
software applications [1].

More and more work focused on testing AI-based software.
Gao et al. [2] explained the various testing methods of AI
software testing Various functional and non-functional quality
parameters such as correctness, reliability, and scalability are
discussed to better understand the concepts. Besides, the authors
discussed the issues and challenges of AI testing. The different
models of the AI system were discussed in [3]. The authors
discussed building testable AI systems, limiting the AI system
to propositional logic, and intervening variables in reducing
testing. King et al. [4] discussed issues and challenges in
software testing. They thought non-determinism is a huge issue.
The same input to the system can produce different outputs.
Testing has fuzzy oracles that determining the correctness can
be a challenging task. Ramanathan et al. [5] used symbolic
decision procedures coupled with statistical hypothesis testing
to validate machine learning algorithms for studying the
correctness of intelligent systems. They also used algorithms to
analyze the robustness of a human detection algorithm built
using the OpenCV open-source computer vision library.

In the field of image recognition, most of the researchers
focus on recognition algorithms. Girshick et al. [6] proposed the
R-CNN algorithm, which added selective search operations to
the CNN network to identify candidate regions. He K et al. [7]
proposed the SPP-Net algorithm, which reduced the process of
image normalization and solved the problem of image
information loss and storage. Girshick [8] proposed the Fast R-
CNN algorithm, which refers to the Region of Interest and the
multi-task loss function method, and replaces SVM
classification and linear regression with Softmax and
SmoothLoss to realize the unification of classification and
regression and reduce the disk space.

However, the evaluation of the image recognition system is
relatively less but important. In [9], the implementation of Yolo-
v2 image recognition and other test benches for a deep learning
accelerator was presented. Tao et al. [10] performed a case study

on a realistic facial age recognition provided by Alibaba
Company using metamorphic testing.

III. A CASE STUDY

A. Test Experiment

This paper took the test Calorie Mama APP as an example,
using manual testing and automated testing respectively. The
test data is a mix of various sources: images from Google,
images clicked in real-time using a smartphone camera. The
experiments were performed with a high-resolution and high-
quality camera.

(1) Manual Test

In this approach of manual testing, we selected conventional
decision tables to test. A decision table is a table with various
conditions and their corresponding actions. It is divided into
four parts, condition stub, action stub, condition entry, and
action entry.

1)Detection of non-food items: To test Calorie Mama,
different non-food items are input into the application. The
pictures of the non-food items were analyzed by the application
and the results were shown on the user interface. A summary of
the detection of the non-food items can be seen in the following
decision table. The condition stub is designed as two conditions,
including the state of the Internet and access to the Camera,
which is essential for the image recognition software.

As we can see, the application detected artificial pumpkin
and artificial cake as food items. In contrast, it could not
correctly identify the butter block. As a result, it failed in some
of the cases. Besides, when not turning on WIFI or Cellular, and
not allowing access to the Camera, image recognition will not
work.

TABLE I. DECISION TABLE OF THE NON-FOOD ITEMS

Test

Conditions
R1 R2 R3 R4 R5 R6 R7 R8 R9

Turn on

WIFI or

Cellular

T T T T T T T T F

Allow access

to Camera
T T T T T T T T F

Food item Pen Apple
Artificial

Pumpkin

Butter

Block

Banan

a

Chicken

Wings

Clarified

Butter

Artificial

Cake

Glass of

Water

Detected as

food
F T T F T T T T -

Not detected

as food
T F F T F F F F -

2)Detection of food items: We divided the generic term of
food items into four categories which are Indian cuisine, raw
fruits and vegetables, variety of apples and eggs, and food items
in different backgrounds. Take food items in different
backgrounds as an example, the background of food is a very
important aspect and we decided to test the application with
images of food items with different backgrounds.

As seen in table 2, the Calorie Mama application was able to
correctly recognize the food items when given inputs with red,
blue, and wooden backgrounds. However, the application
detected wrong when the egg is in a tray.

TABLE II. DECISION TABLE OF FOOD ITEMS IN DIFFERENT

BACKGROUNDS

Test

Conditions
R1 R2 R3 R4 R5 R6 R7 R8 R9

Turn on

WIFI or

Cellular

T T T T T T T T T

Allow access

to Camera
T T T T T T T T T

Food

item(Egg)

Blue

Back-

ground

Red

Back-

ground

Wooden

Background

Egg in

a bowl

Egg on

a plate

Egg on

a pan

Egg in

the glass

Egg in

a jar

Eggs in

a tray

correct

choices
T T T T T T T T F

wrong

choices
F F F F F F F F T

After conducting the manual testing, we experienced its
various drawbacks, and it is time-consuming. Also, load testing
and performance testing are not possible under manual testing.
Besides, regression test cases are very costly. Due to these
drawbacks, we decided to shift to automation testing.

(2) Data Modeling

The three-dimensional (3D) classification decision table is
influenced by the concept of conventional decision tables to
conduct classification-based test requirement analysis and
modeling for any given mobile apps powered with AI functions
using a 3D tabular view. The major testing focus for a 3D
classification table is the mappings among classified disjoint
context conditions, classified input selections, and classified AI
function outputs. These mappings are known as image
recognition function classification rules. Each of them
represents the conjunction among three different views. Test
case design and generation based on a 3D classification decision
table must cover these image recognition classification rules.
Adequate image recognition function testing coverage could be
assessed. Next, we introduce the construction of each one-
dimensional model in the 3D decision table.

1) Input Modeling

The input classification refers to the parameters and their
values that represent the different test case scenarios. Each
parameter has multiple possible values which when combined
with context values gives us the final set of test cases. The
following figure shows Calorie Mama's input classification tree,
which contains information about the type of food being clicked,
such as what the food is, and the physical appearance of the food,
such as quality, size, shape, consistency, etc.

Figure 1. Input Classification Tree

2) Context Modeling

The context classification tree contains information about
the image context. It is basic information about the image itself
and not specifically about the item in the image. For example,
the context classification tree contains information like if the
image is blurry or not well illuminated, what is the angle of the
camera while clicking the image, if the image is rotated or so,
etc. The following figure shows Calorie Mama's context
classification tree.

Figure 2. Context Classification Tree

3) Output Classifications

The output classification tree contains information about the
output. Various parameters regarding the output obtained from
the application will be considered. This can be modified based
on the requirements and results expected from the application.
The following figure shows Calorie Mama's output
classification tree.

Figure 3. Output Classification Tree

(3) Automation Test

After data modeling, we performed automation testing with
minimal human assistance on top of the model. Automation
testing can increase coverage for test data and come up with
more concluding test results for the selected mobile app. We
used Appium as an automation tool to perform automation on
the mobile app. Appium acts as a server that launches the app
into the simulator or a real device and can access the elements

for processing the actions triggered by the automation script
which we wrote in Java. Steps to perform the automation were:

1. Install Appium server.
2. Create the automation environment for Android.
3. Create the automation environment for iOS.
4. Launch simulator/ Connect a real device.
5. Install Eclipse.
6. Create a maven project in Eclipse to write and run the

automation script.

We provide the dependencies of Appium, Selenium,
TestNG in the Project Object Model and then start writing the
scripts. We use TestNG to run our automation tests. Soon after
the execution of tests, test results are visible in the Eclipse
console.

For the algorithm of the app automation, one image which is
selected from the gallery of the phone is fed as an input into the
target app, and the result of the execution is compared with the
expected output. If the output from the target app is as expected,
then the test case is displayed as passed or else failed. Also,
when the app produces the output, more options, as provided by
the app are taken into account. While showing the output to the
user, there is an option to see more options from the suggestions
coming from the app. The algorithm considers all those options
as the output from the app and then decides if the test case is
passed or failed.

B. Test Result

After applying manual testing and automation testing, we
compare the coverages for both manual and automation tests. In
manual testing, the coverage of the test case was limited due to
timing. It was difficult to cover a larger set of data without the
use of tools or scripts. On the other hand, automation testing has
higher coverage because the tools and script helped us to cover
more test cases. Figure 4 below shows that in automation testing
we were able to cover more test sets of data than the manual
testing over the same time. Approximately, in the automation
testing, we were able to cover twice of what we covered in the
manual testing.

Figure 4. Test Coverage for Manual and Automation Test

The app was able to detect objects, recognize them, and
classify them with its name. However, it does not tell the count
or sub-classification of the food item. Moreover, testing Calorie
Mama App, required a lot of time to do both manual testing and
automation testing. Manual testing needs to take more time to

generate all decision tables, analyze different test causes and test
manually. On the other hand, in automation testing, we spend
days to get the script working correctly and program it to do the
testing automatically.

The following figure shows the results of the manual testing
and automation testing of the Calorie Mama APP. In manual
testing, the total test food item across different cuisines was 400
items and each cuisine has 80 food items. The 132 of them were
wrongly detected they were bugs in the app. This gives us a 33
failed percentage and the passing percentage is 67. The diagram
below shows the failing and passing results.

Figure 5. Manual Testing

In Automation testing, we tested 400 different images in
different cuisines similarly. We found out that out of the 400
images, 175 failed and 225 passed. This gives us a failure
percentage of 43.75 and a passing percentage of 56.25 as shown
in figure 6.

Figure 6. Automation Testing

Comparing the manual testing with automation testing, we
can see that the errors that were found in the automation testing
are higher than the errors that were found by the manual testing
because the automation test allows us to test different inputs in
a short time. Also, in manual testing, it is more likely to make
human mistakes because doing repeated tasks over time
generates more errors by humans. However, doing a repeated
test using automation by writing a script and let the machine
discover the error is more efficient. Therefore, automation
testing discovers more errors than manual testing.

IV. CONCLUSION

To sum up, we mainly leverage two methods to test the
image recognition system, namely manual testing, and
automation testing. In manual testing, the test is conducted by
human testers inputting the use cases one by one, and observing
the results. Manual testing can be expensive and time-
consuming. Moreover, it is subject to human error; therefore, it
is not one hundred percent accurate. On the other hand, in
automation testing, the testers use tools and scripts to help them
conduct the test among the image recognition software, which
can save labor and time cost, thus improving testing efficiency.
It helps them find errors without the need of performing
redundant tasks. However, it needs talented and experienced
people to do that, which is expensive. Besides, it is difficult to
automate all kinds of testing where not everything can be
redundant and reusable.

ACKNOWLEDGMENT

This work is supported by the Foundation of Graduate
Innovation Center in Nanjing University of Aeronautics and
Astronautics (kfjj20201603).

REFERENCES

[1] H. Zhu, D. Liu, I. Bayley, R. Harrison, and F. Cuzzolin: Datamorphic
Testing: A Method for Testing Intelligent Applications. In: IEEE
International Conference On Artificial Intelligence Testing (AITest), pp.
149-156. Newark, CA, USA (2019).

[2] Gao, J., Tao, C., Dou, J., Lu, S., 2019, “Invited paper: What is AI software
testing? and why,” 13th IEEE International Conference on Service-
Oriented System Engineering, SOSE 2019, San Francisco, CA, USA,
April 4-9, 2019, pp 27-36.

[3] G. Liu, Q. Liu and W. Zhang, “Model-based testing and validation on
artificial intelligence systems,” Second International Multi-Symposiums
on Computer and Computational Sciences (IMSCCS 2007), Iowa City,
IA, 2007, pp. 445-449.

[4] T. M. King, J. Arbon, D. Santiago, D. Adamo, W. Chin and R.
Shanmugam, “AI for Testing Today and Tomorrow: Industry
Perspectives,” 2019 IEEE International Conference On Artificial
Intelligence Testing (AITest), Newark, CA, USA, 2019, pp. 81-88.

[5] A. Ramanathan, L. L. Pullum, F. Hussain, D. Chakrabarty and S. K. Jha,
“Integrating symbolic and statistical methods for testing intelligent
systems: Applications to machine learning and computer vision,” 2016
Design, Automation & Test in Europe Conference & Exhibition (DATE),
Dresden, 2016, pp. 786-791.

[6] R. Girshick, J. Donahue, T. Darrell and J. Malik, “Rich Feature
Hierarchies for Accurate Object Detection and Semantic Segmentation,”
2014 IEEE Conference on Computer Vision and Pattern Recognition,
Columbus, OH, 2014, pp. 580-587.

[7] K. He, X. Zhang, S. Ren and J. Sun, "Spatial Pyramid Pooling in Deep
Convolutional Networks for Visual Recognition," in IEEE Transactions
on Pattern Analysis and Machine Intelligence,2015,37(9):1904-1916.

[8] R. Girshick, "Fast R-CNN," 2015 IEEE International Conference on
Computer Vision (ICCV), Santiago, Chile, 2015, pp. 1440-1448.

[9] C. Kim et al., "Implementation of Yolo-v2 Image Recognition and Other
Testbenches for a CNN Accelerator," 2019 IEEE 9th International
Conference on Consumer Electronics (ICCE-Berlin), Berlin, Germany,
2019, pp. 242-247.

[10] C. Tao, J. Gao and T. Wang: Testing and Quality Validation for AI
Software–Perspectives, Issues, and Practices. IEEE Access 7, 120164-
120175 (2019).

