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Abstract—High-quality Artificial intelligence (AI) software in 

different domains, like image recognition, has been widely 

emerged in our lives. They are built on machine learning models 

to implement intelligent features. However, the current research 

on image recognition software rarely discusses test questions, 

clear quality requirements, and verification methods. This paper 

presents a case study of a realistic image recognition application 

called Calorie Mama using manual and automation testing with a 

3D decision table. The study results indicate the proposed method 

is feasible and effective in quality evaluation.  
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I.  INTRODUCTION  

With the rapid development of big data analysis and 
artificial intelligence technology, AI software and applications 
have been widely accepted in our daily life. At present, AI 
software and applications are based on the most advanced 
machine learning models, and various artificial intelligence 
features are realized through large-scale data training. 

The most important implementation of Artificial 
Intelligence is the imitation of human interactions—vision. 
Nowadays, there is an abundance of digital images captured by 
high-quality equipment. Most images are captured with phones. 
Artificial Intelligence is often used to process these images to 
extract knowledge, categorization, and labeling along with other 
advantages. Typical applications of image recognition include 
object recognition, face recognition, text parsing. 

Detecting bugs and errors in software can be very costly. 
Sometimes bugs can be even deadly if it is a real-time 
application of software, such as some software that is used to 
help with surgeries in the hospital. Therefore, testing the 
software is very important to verify that the product meets 
requirements and specifications. Software testing ensures the 
correctness, integrity, and high quality of the software by 
checking errors or bugs and fixing them in the initial design. 

This paper focused on testing an image recognition 
application called Calorie Mama utilizing both manual testing 
and automation testing. Calorie Mama is a smartphone app that 
runs on Android and IOS devices. It uses deep learning to 
recognize food from food images and track nutrition based on 
the food in the image. It calculates the calorie based on that. We 
evaluated the performance, correctness, and quality of the app 
using both manual testing and automation testing. 

This paper is written to provide our perspective views on 
image recognition software testing and quality evaluation. The 
paper is organized as follows. Section 2 discusses the review of 

AI software testing and image recognition. The third part shows 
a case study of testing Calorie Mama APP using manual testing 
and automation testing. Section 5 gives the conclusion finally. 

II. RELATED WORK 

Traditional software is implemented by developers with 
carefully designed specifications and programming logic. It is 
tested with test cases that are designed based on specific 
coverage criteria. However, the current practice of testing AI 
applications lags far behind the maturity of testing traditional 
software applications [1].  

More and more work focused on testing AI-based software. 
Gao et al. [2] explained the various testing methods of AI 
software testing Various functional and non-functional quality 
parameters such as correctness, reliability, and scalability are 
discussed to better understand the concepts. Besides, the authors 
discussed the issues and challenges of AI testing. The different 
models of the AI system were discussed in [3]. The authors 
discussed building testable AI systems, limiting the AI system 
to propositional logic, and intervening variables in reducing 
testing. King et al. [4] discussed issues and challenges in 
software testing. They thought non-determinism is a huge issue. 
The same input to the system can produce different outputs. 
Testing has fuzzy oracles that determining the correctness can 
be a challenging task. Ramanathan et al. [5] used symbolic 
decision procedures coupled with statistical hypothesis testing 
to validate machine learning algorithms for studying the 
correctness of intelligent systems. They also used algorithms to 
analyze the robustness of a human detection algorithm built 
using the OpenCV open-source computer vision library. 

In the field of image recognition, most of the researchers 
focus on recognition algorithms. Girshick et al. [6] proposed the 
R-CNN algorithm, which added selective search operations to 
the CNN network to identify candidate regions. He K et al. [7] 
proposed the SPP-Net algorithm, which reduced the process of 
image normalization and solved the problem of image 
information loss and storage. Girshick [8] proposed the Fast R-
CNN algorithm, which refers to the Region of Interest and the 
multi-task loss function method, and replaces SVM 
classification and linear regression with Softmax and 
SmoothLoss to realize the unification of classification and 
regression and reduce the disk space.  

However, the evaluation of the image recognition system is 
relatively less but important. In [9], the implementation of Yolo-
v2 image recognition and other test benches for a deep learning 
accelerator was presented. Tao et al. [10] performed a case study 



on a realistic facial age recognition provided by Alibaba 
Company using metamorphic testing. 

III. A CASE STUDY 

A. Test Experiment 

This paper took the test Calorie Mama APP as an example, 
using manual testing and automated testing respectively. The 
test data is a mix of various sources: images from Google, 
images clicked in real-time using a smartphone camera. The 
experiments were performed with a high-resolution and high-
quality camera. 

(1) Manual Test  

In this approach of manual testing, we selected conventional 
decision tables to test. A decision table is a table with various 
conditions and their corresponding actions. It is divided into 
four parts, condition stub, action stub, condition entry, and 
action entry. 

1)Detection of non-food items: To test Calorie Mama, 
different non-food items are input into the application. The 
pictures of the non-food items were analyzed by the application 
and the results were shown on the user interface. A summary of 
the detection of the non-food items can be seen in the following 
decision table. The condition stub is designed as two conditions, 
including the state of the Internet and access to the Camera, 
which is essential for the image recognition software. 

As we can see, the application detected artificial pumpkin 
and artificial cake as food items. In contrast, it could not 
correctly identify the butter block. As a result, it failed in some 
of the cases. Besides, when not turning on WIFI or Cellular, and 
not allowing access to the Camera, image recognition will not 
work. 

TABLE I.  DECISION TABLE OF THE NON-FOOD ITEMS 

Test 

Conditions 
R1 R2 R3 R4 R5 R6 R7 R8 R9 

Turn on 

WIFI or 

Cellular 

T T T T T T T T F 

Allow access 

to Camera 
T T T T T T T T F 

Food item Pen Apple 
Artificial 

Pumpkin 

Butter 

Block 

Banan

a 

Chicken 

Wings 

Clarified 

Butter 

Artificial 

Cake 

Glass of 

Water 

Detected as 

food 
F T T F T T T T - 

Not detected 

as food 
T F F T F F F F - 

2)Detection of food items: We divided the generic term of 
food items into four categories which are Indian cuisine, raw 
fruits and vegetables, variety of apples and eggs, and food items 
in different backgrounds. Take food items in different 
backgrounds as an example, the background of food is a very 
important aspect and we decided to test the application with 
images of food items with different backgrounds.  

As seen in table 2, the Calorie Mama application was able to 
correctly recognize the food items when given inputs with red, 
blue, and wooden backgrounds. However, the application 
detected wrong when the egg is in a tray.  

 
TABLE II.  DECISION TABLE OF FOOD ITEMS IN DIFFERENT 

BACKGROUNDS 

Test 

Conditions 
R1 R2 R3 R4 R5 R6 R7 R8 R9 

Turn on 

WIFI or 

Cellular 

T T T T T T T T T 

Allow access 

to Camera 
T T T T T T T T T 

Food 

item(Egg) 

Blue 

Back-

ground 

Red 

Back-

ground 

Wooden 

Background 

Egg in 

a bowl 

Egg on 

a plate 

Egg on 

a pan 

Egg in 

the glass 

Egg in 

a jar 

Eggs in 

a tray 

correct 

choices 
T T T T T T T T F 

wrong 

choices 
F F F F F F F F T 

After conducting the manual testing, we experienced its 
various drawbacks, and it is time-consuming. Also, load testing 
and performance testing are not possible under manual testing. 
Besides, regression test cases are very costly. Due to these 
drawbacks, we decided to shift to automation testing. 

(2) Data Modeling 

The three-dimensional (3D) classification decision table is 
influenced by the concept of conventional decision tables to 
conduct classification-based test requirement analysis and 
modeling for any given mobile apps powered with AI functions 
using a 3D tabular view. The major testing focus for a 3D 
classification table is the mappings among classified disjoint 
context conditions, classified input selections, and classified AI 
function outputs. These mappings are known as image 
recognition function classification rules. Each of them 
represents the conjunction among three different views. Test 
case design and generation based on a 3D classification decision 
table must cover these image recognition classification rules. 
Adequate image recognition function testing coverage could be 
assessed. Next, we introduce the construction of each one-
dimensional model in the 3D decision table. 

1) Input Modeling 

The input classification refers to the parameters and their 
values that represent the different test case scenarios. Each 
parameter has multiple possible values which when combined 
with context values gives us the final set of test cases. The 
following figure shows Calorie Mama's input classification tree, 
which contains information about the type of food being clicked, 
such as what the food is, and the physical appearance of the food, 
such as quality, size, shape, consistency, etc.  

 
Figure 1.  Input Classification Tree 



2) Context Modeling 

The context classification tree contains information about 
the image context. It is basic information about the image itself 
and not specifically about the item in the image. For example, 
the context classification tree contains information like if the 
image is blurry or not well illuminated, what is the angle of the 
camera while clicking the image, if the image is rotated or so, 
etc. The following figure shows Calorie Mama's context 
classification tree. 

 

Figure 2.  Context Classification Tree 

3) Output Classifications 

The output classification tree contains information about the 
output. Various parameters regarding the output obtained from 
the application will be considered. This can be modified based 
on the requirements and results expected from the application. 
The following figure shows Calorie Mama's output 
classification tree. 

 

Figure 3.  Output Classification Tree 

(3) Automation Test 

After data modeling, we performed automation testing with 
minimal human assistance on top of the model. Automation 
testing can increase coverage for test data and come up with 
more concluding test results for the selected mobile app. We 
used Appium as an automation tool to perform automation on 
the mobile app. Appium acts as a server that launches the app 
into the simulator or a real device and can access the elements 

for processing the actions triggered by the automation script 
which we wrote in Java. Steps to perform the automation were: 

1. Install Appium server. 
2. Create the automation environment for Android. 
3. Create the automation environment for iOS. 
4. Launch simulator/ Connect a real device. 
5. Install Eclipse. 
6. Create a maven project in Eclipse to write and run the 

automation script. 

We provide the dependencies of Appium, Selenium, 
TestNG in the Project Object Model and then start writing the 
scripts. We use TestNG to run our automation tests. Soon after 
the execution of tests, test results are visible in the Eclipse 
console.  

For the algorithm of the app automation, one image which is 
selected from the gallery of the phone is fed as an input into the 
target app, and the result of the execution is compared with the 
expected output. If the output from the target app is as expected, 
then the test case is displayed as passed or else failed. Also, 
when the app produces the output, more options, as provided by 
the app are taken into account. While showing the output to the 
user, there is an option to see more options from the suggestions 
coming from the app. The algorithm considers all those options 
as the output from the app and then decides if the test case is 
passed or failed. 

B. Test Result 

After applying manual testing and automation testing, we 
compare the coverages for both manual and automation tests. In 
manual testing, the coverage of the test case was limited due to 
timing. It was difficult to cover a larger set of data without the 
use of tools or scripts. On the other hand, automation testing has 
higher coverage because the tools and script helped us to cover 
more test cases. Figure 4 below shows that in automation testing 
we were able to cover more test sets of data than the manual 
testing over the same time. Approximately, in the automation 
testing, we were able to cover twice of what we covered in the 
manual testing. 

 

Figure 4.  Test Coverage for Manual and Automation Test 

The app was able to detect objects, recognize them, and 
classify them with its name. However, it does not tell the count 
or sub-classification of the food item. Moreover, testing Calorie 
Mama App, required a lot of time to do both manual testing and 
automation testing. Manual testing needs to take more time to 



generate all decision tables, analyze different test causes and test 
manually. On the other hand, in automation testing, we spend 
days to get the script working correctly and program it to do the 
testing automatically.  

The following figure shows the results of the manual testing 
and automation testing of the Calorie Mama APP. In manual 
testing, the total test food item across different cuisines was 400 
items and each cuisine has 80 food items. The 132 of them were 
wrongly detected they were bugs in the app. This gives us a 33 
failed percentage and the passing percentage is 67. The diagram 
below shows the failing and passing results. 

 

Figure 5.  Manual Testing 

In Automation testing, we tested 400 different images in 
different cuisines similarly. We found out that out of the 400 
images, 175 failed and 225 passed. This gives us a failure 
percentage of 43.75 and a passing percentage of 56.25 as shown 
in figure 6. 

 

Figure 6.  Automation Testing 

Comparing the manual testing with automation testing, we 
can see that the errors that were found in the automation testing 
are higher than the errors that were found by the manual testing 
because the automation test allows us to test different inputs in 
a short time. Also, in manual testing, it is more likely to make 
human mistakes because doing repeated tasks over time 
generates more errors by humans. However, doing a repeated 
test using automation by writing a script and let the machine 
discover the error is more efficient. Therefore, automation 
testing discovers more errors than manual testing. 

IV. CONCLUSION  

To sum up, we mainly leverage two methods to test the 
image recognition system, namely manual testing, and 
automation testing. In manual testing, the test is conducted by 
human testers inputting the use cases one by one, and observing 
the results. Manual testing can be expensive and time-
consuming. Moreover, it is subject to human error; therefore, it 
is not one hundred percent accurate. On the other hand, in 
automation testing, the testers use tools and scripts to help them 
conduct the test among the image recognition software, which 
can save labor and time cost, thus improving testing efficiency. 
It helps them find errors without the need of performing 
redundant tasks. However, it needs talented and experienced 
people to do that, which is expensive. Besides, it is difficult to 
automate all kinds of testing where not everything can be 
redundant and reusable. 
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