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Abstract—With the rapid development of deep learning, more 

researchers have attempted to apply nonlinear learning methods 

such as recurrent neural networks (RNNs) and attention 

mechanisms to capture the complex patterns hidden in stock 

market trends. Most existing approaches to this task employ an 

attention mechanism that primarily relies on the information 

extracted from input features but fails to consider the other 

important factors (e.g., trading volume and position), which can 

potentially enhance these attention-based approaches. Motivated 

by the observation, we extend the attention mechanism with 

features needed for stock performance prediction in this article. 

Specifically, we propose a volume-aware positional attention-

based recurrent neural network (VPA-RNN) for this task. First, 

we propose a generic method of adding position awareness to the 

attention mechanism. Next, the trading volume is incorporated 

into the original attention distribution to form a revised 

distribution. To evaluate the effectiveness of VPA-RNN, we 

collected real stock market data for stock indexes S&P 500 and 

DJIA, and the experimental results show that the proposed VPA-

RNN can significantly outperform several existing highly compe-
titive methods. 

Keywords-stock index prediction; recurrent neural network; 

attention mechanism; volume-aware attention; positional attention 

I.  INTRODUCTION  

Stock performance prediction has received much attention 
due to its decisive role in stock investment, which aims to predict 
the future price or trend of stocks in order to achieve the 
maximum profit from stock investment. Various methods have 
been proposed to predict stock performance by many economic 
analysts and stock traders. 

Li et al. [1] applied a quantile AR model to analyze the 
dynamics of stock index returns in China. In addition, the hidden 
Markov model (HMM) has been used to make nonlinear 
predictions of stock trends. Zhang et al. [2] presented an 
approach to predict stock market price trends based on a high-
order HMM for the purpose of considering both short and long-
term time dependence. However, such traditional solutions have 
apparent drawbacks, as they lack the capability of modeling the 
nonstationary and nonlinear nature of stock prices. To address 
this issue, many methods based on deep learning have been 
proposed to forecast stock prices in recent years. More 
researchers have attempted to apply deep learning methods such 
as multilayer perceptions (MLPs) [3] and recurrent neural 

networks (RNNs) [4]–[6] to capture the complex patterns hidden 
in market trends. Although the traditional RNN is capable of 
processing nonlinear data, it is not sufficient to model long-term 
dependence on a time series. This motivates the use of gated 
memory cells; thus, the famous long short-term memory (LSTM) 
network was proposed to better model long-term dependency on 
a time series and mitigate the vanishing gradient problem [7]. 
Accordingly, many studies employ the LSTM neural network in 
financial prediction [8]–[10]. 

However, if the time series is very long, LSTM also suffers 
from the problem of vanishing gradients which results in 
decreasing performance [11]. To overcome this problem, 
researchers have proposed the attention mechanism that 
achieved great success in various fields, including neural 
machine translation [12], speech recognition [13], and image 
processing [14]. Therefore, several recent works introduced an 
attention mechanism to stock-related applications [15]-[22]. Li 
et al. [16] proposed a multi-input LSTM (MI-LSTM) model, 
which can extract valuable information from low correlation 
factors and discard their harmful noise by employing additional 
input gates controlled by the convincing factors called 
mainstream. Furthermore, Qin et al. [17] proposed the dual-stage 
attention-based RNN (DA-RNN), drawing inspiration from the 
encoder-decoder structure used in machine translation. The DA-
RNN model predicts the stock index of the next day using the 
previous values of stock indexes and constituent stock prices as 
input. This model consists of an encoder and a decoder. The 
encoder is composed of LSTM and an input attention 
mechanism that is used to adaptively extract the relevant features 
at each time step by referring to the previous encoder hidden 
state. The output of the encoder serves as the input of the decoder. 
The decoder is composed of LSTM and a temporal attention 
mechanism that is used to select the relevant encoder hidden 
states across all time steps. In this way, the DA-RNN model can 
not only adaptively select the most relevant input features but 
also capture the long-term temporal dependencies of a time 
series appropriately.  

In the abovementioned attention-based stock price prediction 
model, the temporal attention mechanism primarily relies on the 
information extracted from input features but fails to consider 
the other important factors (e.g., trading volume and position), 
which can potentially enhance these attention-based approaches. 
Motivated by the observation, we extend the temporal attention 
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mechanism with features needed for stock performance 
prediction in this article. On the one hand, the position of the 
time step is a key factor in the stock performance prediction task. 
It is natural that the time steps closer to the predicted time step 
are more important. However, the abovementioned attention 
methods take no account of the effects of positions of different 
time steps, i.e., identical or very similar time steps are scored 
equally regardless of their positions in the sequence. Therefore, 
we introduce the positional attention mechanism to the task of 
stock performance prediction, which has achieved success in 
various fields, including natural language processing (NLP) 
[23,24] and speech recognition (SR) [25]. On the other hand, 
trading volume is also an important feature that provides 
valuable information, as past trading volume predicts both the 
magnitude and the persistence of future price momentum [26], 
i.e., the time step with higher trading volume is generally more 
important, and the attention mechanism should pay more 
attention to such time steps. Thus, inspired by several task-
oriented attention mechanisms [27,28], we take advantage of 
this feature of stock performance prediction and propose 
volume-aware attention to incorporate the trading volume into 
the original attention distribution to achieve attention 
recalibration.  

Combining these two gives a volume-aware positional 
attention-based recurrent neural network (VPA-RNN) with 
markedly better stock index prediction performance. To justify 
the effectiveness of the VPA-RNN, we compare it with the state-
of-the-art approach using the S&P 500 dataset and the DJIA 
dataset. Our proposed VPA-RNN achieves the RMSE that is 
6.80% and 47.83% lower than that of the best previous model 
DA-RNN [17], respectively. 

II. RELATED THEORY AND TECHNOLOGY 

In this section, we introduce the LSTM and the attention 
mechanism, which are the foundations of both the proposed 
model and the comparative models in this article. 

A. Long short-term memory neural networks (LSTM) 

Due to its memory blocks, the LSTM network [7] has a 
strong capability of capturing the long-term memory of 
sequential data with high prediction capability on chaotic time 
series. Hence, many related works adopt LSTM to learn long-
term temporal dependencies from stock data time series [16,17]. 
For a similar reason, we also use LSTM in this paper. LSTM is 
a variant of RNNs that uses a gating mechanism to control the 
flow of information into or out of memory. For convenience, in 
this study, we use the function LSTM(·,·,·) as shorthand for the 
LSTM model in (1): 

(ℎ𝑡 , 𝑐𝑡) = LSTM(𝑥𝑡 , ℎ𝑡−1, 𝑐𝑡−1, 𝑊, 𝑏) , (1) 

where W and b include all of the weight matrices and bias vectors, 
which are determined in the training process. 

B. Attention mechanism 

Based on recurrent neural networks, sequence-to-sequence 
models (S2S) have become popular due to their success in 
machine translation [29]-[31], which is composed of encoder 
and decoder. The encoder is used to convert the input sentences 
into a fixed-length vector and then used by the decoder to 
produce output sequences. However, encoder-decoder networks 

encounter the long-term dependency problem that their 
performance will deteriorate rapidly as the length of the input 
sequence increases. To resolve this issue, the attention 
mechanism is employed to select parts of hidden states across all 
the time steps by allocating adequate attention to key 
information [12]. The general attention mechanism is often 
implemented by scoring each encoder hidden states ℎ𝑗  in H =
(ℎ1, ℎ2, ⋯ , ℎ𝑛) separately based on the previous decoder hidden 

state 𝑠𝑖−1 and normalizing the scores 𝑒𝑖,𝑗  by a softmax function 

to generate the attention weight α𝑖,𝑗: 

𝑒𝑖,𝑗 = Score(𝑠𝑖−1, ℎ𝑗), (2) 

α𝑖,𝑗 =
exp(𝑒𝑖,𝑗)

∑  𝑛
𝑖=1 exp(𝑒𝑖,𝑗)

. (3) 

Then, the decoder input 𝑐𝑖 at 𝑖 is the weighted sum of ℎ𝑗  and 

calculated as follows: 

𝑐𝑖 = ∑  

𝑛

𝑖=1

𝛼𝑖,𝑗ℎ𝑗 . (4) 

Under the attention mechanism, the dependencies between 
the source and target sequences are not restricted by the 
intermediate distance. Consequently, it is helpful for over-
coming the long-term dependency problem, and it was soon 
extended into various fields, including stock-related applications 
[15]-[22]. 

III. VOLUME-AWARE POSITIONAL ATTENTION-BASED RNN 

In this section, we first introduce the notation used in this 
article and the problem we aim to study. Then, the motivation 
and details of the proposed VPA-RNN model for stock index 
prediction are presented. 

A. Notation and Problem Statement 

The goal of this work is to predict the closing price of the 
next day. Given the previous values of the target as 
𝑌 = (𝑦1, 𝑦2, … , 𝑦𝑇)⊤ ∈ ℝ𝑇  where 𝑇  represents the size of the 
time window and 𝑦𝑡 is the target at time 𝑡. Similarly, the time 
series of all features would be denoted as 𝑋 =
(𝑋1, 𝑋2, … , 𝑋𝑇)⊤ ∈ ℝ𝑇×𝑁  where 𝑁  specifies the number of 
features. Hence, 𝑋𝑡 = (𝑥𝑡

1 , 𝑥𝑡
2, ⋯ , 𝑥𝑡

𝑛) ∈ ℝ𝑁 is a vector of all the 
𝑁 features at time 𝑡 and 𝑋𝑛 = (𝑥1

𝑛 , 𝑥2
𝑛 , ⋯ , 𝑥𝑇

𝑛) ∈ ℝ𝑇  is the time 
series of the n-th feature in time window 𝑇. Thus the VPA-RNN 
model aims to learn a nonlinear mapping function 𝐹(·)  as 
follows: 

�̂�𝑇+1 = 𝐹(𝑦1, 𝑦2, … , 𝑦𝑇 , 𝑋1, 𝑋2, … , 𝑋𝑇). (5) 

The features used in this paper include open, close, high, low, 
adj_close, and volume in the granularity of the trading day. 
Adj_close is an abbreviation of the adjusted closing price, which 
amends a stock’s closing price to accurately reflect that stock’s 
value after adjustments for splits and dividend distributions. 
Deemed as the true price of stocks, it is often used when 
examining historical returns or performing a detailed analysis of 
historical returns. Therefore, this study uses adj_close of the 
next day as the target 𝑌.  

Among all the features, only the feature volume does not 
belong to the type of stock price, which refers to the number of 



transactions in a trading day. Specifically, we represent the 
historical series of volume as 𝑉 = (𝑣1, 𝑣2, … , 𝑣𝑇)⊤ ∈ ℝ𝑇, and it 
is used to achieve attention recalibration in the next subsection. 

B. Proposed Model 

The overall structure of our proposed VPA-RNN model is 
shown in Fig. 1. Inspired by existing work, we employ a dual-
stage attention-based encoder-decoder neural network. In the 
encoder, we introduce an input attention mechanism proposed 
by [17], which is used to select the relevant features adaptively. 
In the decoder, our proposed volume-aware positional attention 
is used to automatically select relevant encoder hidden states 
across all time steps. With the help of the proposed attention 
mechanism, the decoder can take account of the effects of 
volumes and positions of different time steps in order to assign 
weight more appropriately.  

Figure 1.  Graphical illustration of the volume-aware positional attention-
based recurrent neural network. 

1) Encoder with input attention 
In this paper, the encoder is essentially an LSTM used to 

encode the input sequences into a hidden feature representation. 
As described above, given the time series of all features 
𝑋 = (𝑋1, 𝑋2, … , 𝑋𝑇)⊤ ∈ ℝ𝑇×𝑁 where 𝑁 specifies the number of 
features, the encoder learns a mapping from 𝑋𝑡 to ℎ𝑡: 

ℎ𝑡 = LSTM1(ℎ𝑡−1, 𝑋𝑡), (6) 

where ℎ𝑡 ∈ ℝ𝑚 denotes the hidden state of the encoder at time 
𝑡, 𝑚 is the size of the hidden state. In order to select relevant 
features in the early stages, an input attention mechanism is 
employed, the time series of the n-th feature in time window 𝑇 
are denoted as 𝑋𝑛 = (𝑥1

𝑛 , 𝑥2
𝑛 , ⋯ , 𝑥𝑇

𝑛) ∈ ℝ𝑇 , the input attention 
mechanism is implemented by a multilayer perceptron referring 
to the previous hidden state ℎ𝑡−1 and the cell state 𝑐𝑡−1 in the 
encoder LSTM unit: 

𝑒𝑡
𝑛 = 𝑣𝑒

⊤ tanh(𝑊𝑒[ℎ𝑡−1; 𝑐𝑡−1] + 𝑈𝑒𝑋𝑛), (7) 

where 𝑣𝑒 ∈ ℝ𝑇, 𝑊𝑒 ∈ ℝ𝑇×2𝑚, and 𝑈𝑒 ∈ ℝ𝑇×𝑇 are parameters to 
learn, and the bias terms are omitted for succinctness. Then, a 
softmax function is applied to the alignment score 𝑒𝑡

𝑛 to ensure 
all the attention weights sum to 1: 

α𝑡
𝑛 =

exp(𝑒𝑡
𝑛)

∑  𝑁
𝑖=1 exp(𝑒𝑡

𝑖)
, (8) 

where α𝑡
𝑛  is the attention weight measuring the importance of 

the 𝑛 -th input feature. Finally, we can adaptively select the 
features as follows: 

�̃�𝑡 = (𝛼𝑡
1𝑥𝑡

1, 𝛼𝑡
2𝑥𝑡

2, ⋯ , 𝛼𝑡
𝑛𝑥𝑡

𝑛)⊤. (9) 

Thus, (6) can be updated as: 

ℎ𝑡 = LSTM1(ℎ𝑡−1, �̃�𝑡), (10) 

where 𝑋𝑡  is replaced by �̃�𝑡  that considers the weights of 
different features. Therefore, the encoder can adaptively select 
certain features rather than pay attention to all the features 
equally. 

2) Decoder with volume-aware positional attention 
In the decoder, we use another LSTM to decode the encoded 

input information. In order to adaptively select relevant encoder 
hidden states across all time steps, we employ a temporal 

attention mechanism. Specifically, the attention weight 𝑙𝑡
𝑖  of 

each encoder hidden state is calculated based upon the previous 
decoder hidden state 𝑑𝑡−1 ∈ ℝ𝑝 and cell state 𝑐𝑡−1

′ ∈ ℝ𝑝: 

𝑙𝑡
𝑖 = 𝑣𝑑

⊤ tanh(𝑊𝑑[𝑑𝑡−1; 𝑐𝑡−1
′ ] + 𝑈𝑑ℎ𝑖) , 1 ≤ 𝑖 ≤ 𝑇, (11) 

where [𝑑𝑡−1; 𝑐𝑡−1
′ ] ∈ ℝ2𝑝 is a concatenation of the hidden state 

and cell state of the previous LSTM unit. 𝑣𝑑 ∈ ℝ𝑚 , 𝑊𝑑 ∈
ℝ𝑚×2𝑝, and 𝑈𝑑 ∈ ℝ𝑚×𝑚 are parameters to be learned. We omit 

the bias terms here for clarity. The attention weight β𝑡
𝑖  that 

represents the importance of the 𝑖-th encoder hidden state ℎ𝑖 is 
calculated by the formula: 

β𝑡
𝑖 =

exp(𝑙𝑡
𝑖 )

∑  𝑇
𝑗=1 exp(𝑙𝑡

𝑗)
. (12) 

However, such temporal attention mechanism suffers from 
two problems: (1) identical or very similar time steps are scored 
equally regardless of their positions in the sequence. But the 
position of each time step is a key factor in the task of stock 
performance prediction. (2) It does not explicitly model the 
effect of volume of each time step in the input sequences, which 
is another important feature that provides valuable information. 
Therefore, we propose a new volume-aware positional attention 
mechanism to tackle these challenges, as shown in Fig. 2, which 
can evaluate the relative contribution of each time step not only 
on the information of encoder hidden states but also on the 
global position and volume of each time step.  

First, inspired by the position encoding vectors used in [23], 
we define a position vector 𝑝𝑖  for each time step in the time 
window 𝑇 as follows: 

𝑝𝑖 = (
𝑖

𝑇
,

𝑖

𝑇
, ⋯ ,

𝑖

𝑇
) ∈ ℝ𝑚 , 1 ≤ 𝑖 ≤ 𝑇, (13) 

where 𝑚 is the dimension of position encoding vectors, that is 
the same as the size of the decoder hidden state in order to 
facilitate calculation, then we add the position encoding vector 

to the calculation formula of 𝑙𝑡
𝑖 , and (11) is updated as follows: 

𝑙𝑡
𝑖 = 𝑣𝑑

⊤ tanh(𝑊𝑑[𝑑𝑡−1; 𝑐𝑡−1
′ ] + 𝑈𝑑ℎ𝑖 + 𝐸𝑑𝑝𝑖), 1 ≤ 𝑖 ≤ 𝑇, (14) 

 



Figure 2.  Our proposed volume-aware positional attention mechanism. 

where 𝐸𝑑 ∈ ℝ𝑚×𝑚  is a learnable parameter. In this way, the 
position encoding vector 𝑝𝑖  can provide the important spatial 
information of each time step. 

Second, inspired by the study of trading volume in [26], we 
argue that the volume of a time step to some extent reflects the 
importance of this time step. Hence, during the learning process 
of the attention mechanism, the effect of volume should be 

considered explicitly, we change (14) by multiplying 𝑙𝑡
𝑖  by the 

volume of this time step 𝑣𝑡 ∈ ℝ, and the updated formula is as 
follows: 

𝑙𝑡
𝑖 = 𝑣𝑑

⊤ tanh(𝑊𝑑[𝑑𝑡−1; 𝑐𝑡−1
′ ] + 𝑈𝑑ℎ𝑖 + 𝐸𝑑𝑝𝑖)𝑣𝑡

1 ≤ 𝑖 ≤ 𝑇
, (15) 

then, when the trained model is used to test on the test sequences, 
𝑣𝑡 will be replaced by the volume of the corresponding time step 
in the test sequences. In this way, the model can learn the 
attention weights under the condition that the effect of volume is 
considered explicitly, and the original learned attention 
distribution without being multiplied by the volume 𝑣𝑡  can 
exclude the effect of the trading volume. Then, it can be 
multiplied by the volumes of the corresponding time steps in the 
test sequences to achieve attention recalibration when testing. 

The context vector 𝐶𝑡 is a weighted sum of all the encoder 
hidden states ℎ𝑖, and it is distinct at each time step in the decoder. 

𝐶𝑡 = ∑  

𝑇

𝑖=1

𝛽𝑡
𝑖ℎ𝑖 . (16) 

Then, the given target series 𝑌 = (𝑦1, 𝑦2, … , 𝑦𝑇)⊤ ∈ ℝ𝑇 can 
be combined with the context vectors: 

�̃�𝑡 = �̃�⊤[𝑦𝑡; 𝐶𝑡] + �̃�, (17) 

where �̃� ∈ ℝ𝑚+1 and �̃� ∈ ℝ are used to map the concatenation 
[𝑦𝑡; 𝐶𝑡] ∈ ℝ𝑚+1  to the size of the decoder input. The newly 
calculated �̃�𝑡 is used to update the decoder hidden state: 

𝑑𝑡 = LSTM2(𝑑𝑡−1, �̃�𝑡). (18) 

Finally, the final prediction result can be obtained by a linear 
function: 

�̂�𝑇+1 = 𝑣𝑦
⊤(𝑊𝑦[𝑑𝑇; 𝐶𝑇] + 𝑏𝑤) + 𝑏𝑣 , (19) 

where [𝑑𝑇; 𝐶𝑇] ∈ ℝ𝑝+𝑚 is a concatenation of the last decoder 
hidden state and context vector, and 𝑝 is the size of the decoder 

hidden states. 𝑊𝑦 ∈ ℝ𝑝×(𝑝+𝑚) and 𝑏𝑤 ∈ ℝ𝑝 are the parameters 

used to map the concatenation to the size of the decoder hidden 

states. The linear function with weights 𝑣𝑦 ∈ ℝ𝑝 and bias 𝑏𝑣 ∈
ℝ produces the final prediction result. 

C. Training procedure 

The minibatch stochastic gradient descent (MGD) and 

Adam optimizer are used for the model training with mean 

squared error (MSE) as the loss function: 

loss =
1

𝑁
∑  

𝑁

𝑖=1

(�̂�𝑇+1
𝑖 − 𝑦𝑇+1

𝑖 )
2

. (20) 

IV. EXPERIMENTS 

In this section, we first describe the two datasets used for 
empirical studies. Then, we present the experimental setup, 
including parameter settings and evaluation metrics. Finally, we 
conduct extensive experiments to evaluate the performance of 
the proposed VPA-RNN by comparing it to different baselines. 

A. Datasets and Setup 

We collected real-world historical data of two stock indexes 
from the Yahoo! Finance website: the S&P 500 Index (S&P 500) 
and the Dow Jones Industrial Average Index (DJIA), traded 
from Jan 3rd, 2000, to Dec 30th, 2020, at a daily frequency, for 
a total of 21 years, to test the effectiveness of the proposed VPA-
RNN model. For a fixed time window of size T+1 and a stride 
of 1, each sample incorporated input sequences of T time steps 
and a target index value for model training and evaluation. All 
data from both datasets were normalized to between 0 and 1 
using min-max scaling. Then, we divided each dataset into 
7:1.5:1.5 ratios in the time dimension as the training set, 
validation set, and test set. The basic process of evaluation was 
to use the training set to train the model and obtain a classifier 
every epoch. Then, the best classifier was selected based on the 
validation set and was finally evaluated on the test set. 

B. Parameter Settings and Evaluation Metrics 

In the experiments of the previous study [17] for DA-RNN, 
the length of time window 10 yielded the best results. Hence, in 
this study, all the compared models use the same length of time 
window as 10 for comparison. In addition, other parameter 
settings for the baseline models are selected based on optimal 
experimental results. Other parameter settings of our VPA-RNN 
model are shown in Table I. 

To measure the effectiveness of various methods for stock 
index prediction, we consider three different evaluation metrics: 
root mean square error (RMSE), mean absolute error (MAE), 
and coefficient of determination (R2). Specifically, the smaller 
the RMSE and MAE, the closer the predicted value to the true 
value; the closer the coefficient R2 to 1, the better the fit of the 
model. 

 



TABLE I.  PARAMETER SETTINGS 

 

MAE =
1

𝑁
∑  

𝑁

𝑖=1

|�̂�𝑖 − 𝑦𝑖|, (21) 

RMSE = √
1

𝑁
∑  

𝑁

𝑖=1

(�̂�𝑖 − 𝑦𝑖)
2, (22) 

𝑅2 = 1 −
∑  𝑛

𝑖=1 (𝑦𝑖 − �̂�𝑖)
2

∑  𝑛
𝑖=1 (𝑦𝑖 − �̅�)2

, (23) 

where 𝑦𝑖 is the true value, �̅� is the mean value of all true values, 
and �̂�𝑖 is the predicted value. 

C. Results 

To evaluate the effectiveness of the proposed VPA-RNN, we 
conduct experiments to compare our results with those of the 
compared models, including a standard long short-term me-
mory neural network (LSTM), the encoder-decoder network 
(Encoder-Decoder) proposed in [32], we change it to perform 
stock index prediction as Qin et al. did in [17], and the dual-stage 
attention-based recurrent neural network (DA-RNN) proposed 
in [17]. Furthermore, we compare our proposed VPA-RNN 
model against the setting that only employs its positional 
attention mechanism without the volume-aware attention 
mechanism (PA-RNN) and the setting that only employs its 
volume-aware attention mechanism without the positional 
attention mechanism (VA-RNN). All models take the same input 
for a fair comparison. For all the compared methods, we train 
them ten times and report their average performance. The 
comparison results of all the models over the two datasets are 
shown in Table II. 

As illustrated in Table II, the DA-RNN model outperforms 
Encoder-Decoder, which has no attention layer, indicating the 
effectiveness of the dual-stage attention mechanism since it is 
capable to adaptively extract relevant features and select relevant 
hidden states across all time steps. In addition, our proposed PA-
RNN, VA-RNN, and VPA-RNN all show better performance 
than Encoder-Decoder and DA-RNN. This suggests that taking 
the position of each time step into account and extending the 
attention mechanism to be volume-aware can both provide more 
reliable attention weights to make more accurate predictions. 
With the integration of the positional attention as well as the 
volume-aware attention, our proposed VPA-RNN achieves the 
best MAE, RMSE, and R2, that increase of 11.76%, 6.80%, and 
0.41% and 56.81%, 47.83%, and 15.82% for the S&P 500 and 
DJIA datasets, respectively, compared to the DA-RNN model, 
indicating the effectiveness of our overall model structure. 

TABLE II.  STOCK INDEX PREDICTION RESULTS OVER THE S&P 500 

DATASET AND DJIA DATASET (BEST PERFORMANCE DISPLAYED IN BOLDFACE) 

Models 
S&P 500 Dataset DJIA Dataset 

MAE 
(×𝟏𝟎−𝟐%) 

RMSE 
(×𝟏𝟎−𝟐%) 

𝑹𝟐 
(×𝟏𝟎−𝟏%) 

MAE 
(×𝟏𝟎−𝟐%) 

RMSE 
(×𝟏𝟎−𝟐%) 

𝑹𝟐 
(×𝟏𝟎−𝟏%) 

LSTM 0.96 1.41 9.77 1.81 2.19 9.18 

Encoder-

Decoder 1.28 1.75 9.65 2.92 3.34 8.09 

DA-

RNN 
1.02 1.47 9.75 2.57 3.22 8.22 

PA-

RNN 
0.98 1.42 9.77 1.98 2.75 8.70 

VA-

RNN 
0.94 1.38 9.78 1.49 2.05 9.28 

VPA-

RNN 
0.90 1.37 9.79 1.11 1.68 9.52 

 

For visual comparison, we show the prediction results of 
Encoder-Decoder, DA-RNN, and VPA-RNN over the DJIA 
dataset in Fig. 3. We can see that our proposed VPA-RNN 
generally fits the ground truth much better than Encoder-
Decoder and DA-RNN, which shows the proposed volume-
aware positional attention mechanism is indeed effective in the 
problem of stock index prediction. 

 

Figure 3.  DJIA Index vs. Time. Encoder-Decoder (top) and DA-RNN 

(middle) are compared with VPA-RNN (bottom). 

V. CONCLUSION 

In this paper, we note two important factors (e.g., trading 
volume and position), which can potentially enhance the 

Parameter Parameter Description Value 

lr Learning rate 0.001 

epoch Number of epochs 1000 

batch_size Batch size 128 

encoder_lstm_unit Neuron number in encoder LSTM 64 

decoder_lstm_unit Neuron number in decoder LSTM 64 

activation Activation function Tanh 



attention mechanism for stock index prediction. Motivated by 
the observation, this study proposes a novel volume-aware 
positional attention recurrent neural network (VPA-RNN). 
Specifically, we add a position vector for each time step in the 
input sequences into the calculation formula of attention score to 
take the important spatial information into account. Then, we 
incorporate the trading volume into the original attention 
distribution to achieve attention recalibration. Based upon these 
two improvements, the VPA-RNN can take advantage of the 
features of stock index prediction and thus provide more reliable 
attention weights to make more accurate predictions. Extensive 
experiments on the S&P 500 dataset and the DJIA dataset 
demonstrated the superior performance of the proposed VPA-
RNN relative to the original LSTM, Encoder-Decoder, and DA-
RNN, indicating the VPA-RNN model has broad application 
prospects and is highly competitive. In summary, this work 
provides new insight into attention-based stock index prediction 
research and can help to develop better predicting models. 

In the future, we will investigate whether feeding more 
technical indicators and basic information or adding predictions 
based on stock-related news can result in more accurate 
predictions. Furthermore, it is also promising to apply the 
proposed model to more granular trading data, such as hourly or 
per-minute transaction data. 
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