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Abstract

The emerging software-defined networking (SDN) 
paradigm is a radical departure from the traditional net-

working architecture as it decouples the control plane and 
the data plane and also centralizes the control plane. While 
SDN has proven to provide an unprecedented opportunity 
for creating advanced control functions that are capable 
of optimizing global properties of a network, recent works 
including our own have shown that the implementation of 
such control functions is a software engineering challenge 
on its own due to the unique architecture of SDN. In our re-

cent work [7], we have taken the first step towards tackling 
this challenge by presenting a preliminary case study of im-

plementing the classic Media Access Control (MAC) learn-

ing algorithm for SDN. A major discovery we made is that, 
for a proper implementation of the algorithm, the algorithm 
itself must be modified to account for the architectural dif-

ferences of SDN. This paper builds upon and advances our 
prior work, by presenting a detailed description and anal-

ysis of the SDN version of the MAC learning algorithm, to 
justify the modifications as necessary for a correct and effi-

cient implementation. As such this paper sheds light on the 
interplay between the algorithm design and software imple-

mentation of control functions for SDN, which we believe is 
an important contribution to both the software engineering 
community and the networking community.

1 Introduction

Software-defined networking (SDN) is a new paradigm 
in the networking landscape that transforms the way net-

works are constructed and managed. A defining architec-

tural feature of SDN is the centralized control plane, which 
is a radical departure from the traditional networking archi-

tecture where the control plane is fully decentralized. The 
control plane serves as the brain of a network: it controls 
how packets are forwarded by producing the necessary for-
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Figure 1. The decoupling of the control and
the data planes in the SDN architecture

warding tables. The data plane, in contrast, handles the

packet streaming by looking up those tables.

In the traditional networking architecture, both the con-

trol and the data planes are implemented on every network-

ing device (e.g., routers and switches), and hence they are

fully decentralized and tightly coupled. In contrast, the

SDN control plane is implemented by a logically central-

ized software platform, called the network OS or the con-

troller, with all the application programs (called SDN apps)

running on top of it. The controller, together with all the

SDN apps, runs on a PC server that connects to the network-

ing devices (called SDN switches). The SDN data plane is

implemented by the packet forwarding hardware on all the

SDN switches. A communication protocol, called Open-

Flow [16], is used for the controller to communicate with

the SDN switches and vice versa. The SDN architecture is

illustrated in Figure 1.

The unique architecture of SDN provides an unprece-

dented opportunity for creating advanced control functions,

but at the same time poses a significant challenge to the im-

plementation of such functions as SDN apps. On the one

hand, the centralized control plane oversees the entire net-

work and offers a global view for creating control functions



capable of global optimization. On the other hand, the de-

coupling results in the control plane’s limited visibility into

the data plane. In particular, only a small subset of packets

being streamed in the data plane are copied to the controller,

so as not to overload the controller or the network. This

poses challenges to the implementation of SDN apps.

SDN research has largely focused on the algorithm de-

sign of control functions. However, relatively little attention

has been given to the software engineering aspect, which

we believe is an important research problem worth address-

ing on its own. As a first step, in our recent paper [7]

we presented a case study of implementing the classic Me-

dia Access Control (MAC) learning algorithm (an essential

link-layer forwarding algorithm implemented by every tra-

ditional Ethernet switch) in the SDN architecture. A ma-

jor discovery we made in [7] is that an efficient implemen-

tation requires modifications to the algorithm itself due to

the architectural differences of SDN. We presented in [7]

such an implementation following rigorous software speci-

fication and design methodologies. However, a detailed de-

scription of the modified algorithm itself or an analysis of

the algorithm to justify the modifications was not presented

in [7], due to the fact that the focus of that paper was on ap-

plying rigorous software specification and modular design

to derive an implementation through stepwise refinement.

Building upon and advancing our prior work, the pri-

mary contributions of this paper include a detailed descrip-

tion of the SDN version of the MAC learning algorithm,

and a detailed analysis that shows why the modifications are

necessary for the SDN architecture. We hope this paper will

shed light on the interplay between the algorithm design and

the software implementation of SDN control functions.

The rest of the paper is organized as follows. Section 2

presents a description of the classic MAC learning algo-

rithm. Section 3 explains why a direct and straightforward

migration of the classic algorithm to SDN is impractical,

presents the SDN version of the algorithm, and argues why

the modifications are necessary for achieving a correct and

efficient implementation. Section 4 discusses related work

and Section 5 offers concluding remarks.

2 The Classic MAC Learning Algorithm in

Traditional Networks

MAC learning is the classic link-layer algorithm that en-

ables an Ethernet switch to perform two essential functions:

(i) constructing and updating the switch table (a control

plane function), and (ii) using the table to forward pack-

ets toward their destinations (a data plane function) [8]. In

the traditional networking architecture, this algorithm runs

on every Ethernet switch.

The switch table produced by the algorithm is stored in

the switch memory. An entry in this table contains the MAC

Figure 2. The classic MAC learning algorithm

working in a traditional network

address of some device in the network, the switch port be-

lieved to lead toward that device, and a timer. The MAC

address is used as the key for indexing the table (MAC ad-

dresses are all unique), and the timer is used to remove the

entry in the future in case it becomes stale.

On each Ethernet switch, whenever a packet is received

on a port p, the algorithm performs the following two steps

(illustrated in Figure 2):

Step 1: the algorithm extracts the source MAC address s

from the packet header. If s is not in the switch table, it

creates a new table entry (s, p, t) where p is the incoming

port (which must lead toward s) and t is a timer set to

expire after some period of time. If such an entry already

exists, the timer will be reset. If there exists an entry

with the same MAC address s but with a different port,

the port will be updated to p and the timer be reset.

Step 2: the algorithm uses the destination MAC address

d in the packet header to look up the switch table. If an

entry with d exists, the packet will be sent out the asso-

ciated port. If such an entry does not exist, the algorithm

will flood the packet out all active ports except the in-

coming port p.

In addition, the algorithm will delete a table entry when

the associated timer expires. This is to get rid of any poten-

tially stale entry due to topology changes, e.g., hosts being

removed or relocated.

We note that the proper functioning of Step 1, specifi-

cally the resetting of timers, relies on the fact that the algo-

rithm sees every incoming packet. As we will explain next,

this is not the case in the SDN architecture.

3 The SDN Version of the MAC Learning Al-

gorithm and Correctness Arguments

We first describe the key difference of the SDN architec-

ture and explain why a direct and straightforward migration

of the MAC learning algorithm to SDN will not work. We



then describe several modifications to the algorithm and ar-

gue why those modifications are necessary for achieving a

correct and efficient implementation. Lastly we use an ex-

ample to illustrate the operation of the new algorithm.

3.1 A Direct Migration Is Inefficient

The control plane and the data plane are completely de-

coupled in the SDN architecture. The control plane is im-

plemented by the software controller running on a central-

ized server; and the data plane is implemented by all the

decentralized SDN switches. Implementation of the MAC

learning algorithm will involve the controller and all the

SDN switches, as Step 1 of the algorithm is a control plane

function and Step 2 a data plane function. The two parts of

the algorithm will need to interact via the OpenFlow com-

munication protocol [16]. A direct migration of the classic

MAC learning algorithm to SDN would work as follows.

On the controller: Step 1 of the algorithm would be im-

plemented as an SDN app running on the controller. The

app constructs and updates the switch table for every switch.

For each switch s, the app collects every incoming packet

together with the incoming port information. For each

packet the app either creates a new switch table entry or

updates an existing entry. It then sends the new or updated

table entry to s in an OpenFlow protocol message. (The

OpenFlow protocol messages are called “FlowMods.”)

On every SDN switch: Whenever a switch receives a new

packet, it sends the packet together with the incoming port

information to the controller. The switch then receives a

new or updated table entry from the controller and caches

it locally. The switch uses the destination MAC address in

the packet header to look up its locally cached table, and

either forwards the packet to the associated port if an entry

is found, or floods the packet on a table miss.

In addition, the SDN app is responsible for creating and

resetting all the timers. When a timer expires, the SDN app

deletes the associated table entry and informs the switch to

delete the same entry from its locally-cached table.

This direct and straightforward migration of the MAC

learning algorithm to SDN unfortunately will not work for

two reasons. First, requiring every switch to send every

packet to the controller creates substantial traffic overhead;

for every packet the controller will send a FlowMod mes-

sage back to the switch, further increasing the overhead.

Second, the controller will receive and process every packet;

the amount of link bandwidth and CPU power required to

implement such a controller is simply beyond practicality.

3.2 Necessary Algorithm Modifications

To address the above-mentioned efficiency issues, our

prior work [7] made several important modifications to the

MAC learning algorithm when implementing it for SDN.

First, the modified algorithm requires that, whenever an

SDN switch receives a packet, it should first look up its

locally-cached table1 using the source and destination MAC

addresses in the packet header and information regarding

the incoming port. Note that each entry of the locally-

cached table maps a three-tuple (source address, incoming

port, destination address) to a destination port. If a table

entry is found to match the three-tuple (source address, in-

coming port, destination address), the switch should for-

ward the packet out the associated port without sending the

packet to the controller. Only upon a table miss should the

switch send the packet and information regarding the in-

coming port to the controller.

Second, the MAC learning app running on top of the con-

troller will construct and update the forwarding tables for

all the switches. Whenever the app receives a packet and

incoming port information from a switch s, it either creates

a new entry in the table of s if the source MAC address of

the packet does not exist in the table, or updates the exist-

ing entry based on the new port information. It then uses

the destination MAC address of the packet to look up the

table of s. If an entry exists, it will send the entry to s in a

FlowMod message; otherwise, it will instruct s to flood the

packet, also in a FlowMod message.

While these changes dramatically reduce the number of

packets sent to the controller, they create two new problems

for the implementation, which we discuss below.

Implementation of the timers associated with table en-

tries: the controller no longer sees all the packets being

forwarded on all the switches, and thus it is unable to

properly reset the timers in the switch tables. This means

that the timers cannot be maintained by the controller.

Synchronization of table entries between the controller

and the switches: even after the controller deletes an en-

try (h, p) in the forwarding table of switch s as the en-

try may become stale (e.g., the host with MAC address

h may have relocated and no longer be reachable from

switch s through its port p), s may still have a locally-

cached table entry containing (h, p) as the destination

address and outgoing port; this will cause s to continue

to forward any packet destined to host h out of port p,

resulting in permanent loss of those packets.

To solve both problems, several additional modifications

to the MAC learning algorithm are necessary. First, when-

ever the controller sends a FlowMod message to a switch

that contains a table entry, it also creates and sends a re-

versed FlowMod message, in which it flips source address

with destination address, and flips incoming port with out-

going port. For instance, if a FlowMod message (to be sent

1The locally-cached switch table is also called the FlowMod table.



Figure 3. An illustrating case: Initial State

Figure 4. An illustrating case: Step 1

to switch s) with source address sh, incoming port sp, des-

tination address h, and outgoing port p is created, the con-

troller also creates a reversed FlowMod message (to be also

sent to switch s) with source address h, incoming port p,

destination address sh, and outgoing port sp. By the time

they are created, it must be the case that (h, p) and (sh, sp)
are both valid table entries, i.e., neither (h, p) nor (sh, sp)
is a stale host-port pair.

Second, switches maintain the timers for all the locally-

cached table entries, as switches see all the packets and can

thus properly reset the timers. The controller on the other

hand does not maintain any timer.

Third, whenever a locally-cached FlowMod table entry,

with (sh, sp) as (source address, incoming port) and (h, p)
as (destination address, outgoing port), gets deleted due to

timer expiring, the switch sends a FlowRemoved message

notifying the controller. The controller then deletes (sh, sp)
from the lookup table, and sends a FlowMod message in-

structing the switch to delete the reversed entry with (h, p)
as (source address, incoming port) and (sh, sp) as (destina-

tion address, outgoing port) from its locally-cached table.

Therefore, in case any host-port pair (h, p) goes stale, i.e.,

host h is no longer reachable from port p, for any locally-

cached table entry with (h, p) as (destination address, out-

going port), its reversed table entry, in which (h, p) is the

(source address, incoming port) pair will eventually expire

and get removed, leading to the former table entry with

a stale (destination address, outgoing port) pair being re-

moved as well.

Figure 5. An illustrating case: Step 2, without

reversed FlowMod messages

Figure 6. An illustrating case: Step 3, without

reversed FlowMod messages

3.3 Illustrating the Algorithm

We illustrate this subtlety of the SDN MAC learning al-

gorithm using an example. Assume there are two hosts in

the network with two SDN switches (Figure 3). Host H1 is

connected to switch S1 through port a. Host H2 is con-

nected to switch S2 through port d. S1 connects to S2

through port b on S1 and port c on S2. The SDN con-

troller maintains lookup tables for S1 and S2, which are

initially both empty. The two switches each maintain their

own FlowMod tables, which are also initially empty.

Assume H1 first sends a packet to H2 (Figure 4 sub-step

(1)). S1 consults the SDN controller for how to handle this

packet (sub-step (2)). The controller adds (H1, a) to S1’s

lookup table (sub-step (2)). The controller instructs S1 to

flood the packet (sub-step (3)). The flooded packet arrives

at S2 though port c (sub-step (4)). S2 consults the controller

resulting in (H1, c) being added to S2’s lookup table (sub-

step (5)). The controller instructs S2 to flood the packet

(sub-step (6)). The flooded packet gets to H2 (sub-step (7)).

Now assume H2 sends a packet back to H1 (Figure 5

sub-step (1)) and assume the migrated algorithm didn’t en-

force reversed FlowMod messages to handle the subtlety

introduced by stale (host, port) entries. (H2, d) is added

to S2’s lookup table as S2 consults the controller for how

to handle this packet (sub-step (2)). Since the destination



Figure 7. An illustrating case: Step 2, with re-
versed FlowMod messages

Figure 8. An illustrating case: Step 3, with re-
versed FlowMod messages

address H1 is already in S2’s lookup table, the controller

instructs S2 to forward this packet to port c (sub-step (3)).

S2 caches this instruction in its FlowMod table (sub-step

(3)). The forwarded packet gets to S1 through port b (sub-

step (4)). Now it’s S1’s turn to consult the controller, which

leads to another entry being added to S1’s lookup table (sub-

step (5)). The controller instructs forwarding, and the in-

struction is cached in S1’s FlowMod table (sub-step (6)).

Finally, the forwarded packet gets to H1 (sub-step (7)).

Next we assume H1 is disconnected from S1 and con-

nected to S2 through port f , while H2 continues sending

more packets to H1 (Figure 6). This topology change is

not observed by either switch, as packets are being received

through the same (source address, incoming port) pair, and

forwarded to the same destination using the cached Flow-

Mod table entries. Notice that all such packets from H2 to

H1 will be lost with neither the switches nor the SDN con-

troller being aware of the underlying topology change of the

network and the resulting permanent packet loss.

With the correct algorithm that enforces reversed Flow-

Mod messages, in Step 2 any forwarding instruction from

the controller to the switch enforces a FlowMod table entry,

together with its reversed FlowMod table entry, to be simul-

taneously cached on the switch (Figure 7 sub-steps (3) and

(6) and shaded FlowMod table entries). In Step 3 after H1

moves to the new location (Figure 8), although there will

Figure 9. An illustrating case: Step 4, with re-

versed FlowMod messages

Figure 10. An illustrating case: Step 5, with

reversed FlowMod messages

be a little packet loss at the beginning, soon this will be

fixed. This is because in Step 4 (Figure 9) the FlowMod ta-

ble entries on both switches for the reversed FlowMod mes-

sages (sent earlier by the controller) will expire (after H1

changes the switch it is connected to). This results in two

lookup table entries being deleted from the controller, and

instructions from the controller to both switches to delete

the remaining two FlowMod table entries. Finally in Step

5 (Figure 10) subsequent packets from H2 to H1 are con-

sulted with the controller and flooded, reaching H1 through

port f . The first packet from H1 through port f will be seen

by the controller, which will add an updated lookup table

entry for both switches with H1 as the source address. Fu-

ture packets from H2 to H1 will be forwarded correctly by

the controller using the updated lookup table entries.

4 Related Work

Since the inception of SDN around a decade ago [9], the

research in SDN has primarily focused on (i) creating novel

control functions, such as load balancing [6], power sav-

ing [1], anomaly detection [14], etc.; these works mostly

focused on designing the algorithms and protocols, and not

on the implementation; (ii) the orchestration of multiple

control functions running on the same software-defined net-

work [2, 3, 10, 15, 17], and (iii) improving the performance,



reliability, and security of both SDN switches [5, 11, 12]

and controllers [4, 13]. However, relatively little attention

has been given to the software engineering aspects of SDN

apps. Our recent work [7] took the first step in tackling

the software engineering challenges of implementing con-

trol functions as SDN apps, through implementing the clas-

sic MAC learning algorithm for the SDN architecture. In

contrast, this paper presents a detailed analysis of the SDN

version of the algorithm that looks deeper into the subtleties

in algorithm design required for a correct and practical im-

plementation. To the best of our knowledge, this is a first

work that explicitly studies the interplay between algorithm

design and software implementation of SDN apps.

5 Conclusion

This paper presents a detailed analysis of the MAC learn-

ing algorithm and its implementation in the context of SDN.

We show that a direct and straightforward migration of the

classic MAC learning algorithm to SDN will not work, due

to its substantial bandwidth overhead and the impractical

workload placed on the controller. We then present a modi-

fied version of the algorithm that takes into account the SDN

architecture. Through a detailed analysis we show that the

modifications are necessary for a correct, practical and ef-

ficient implementation without impacting network perfor-

mance. We believe this work will be of interest to both

the software engineering and the networking communities.

We plan on applying the new understanding developed in

this study to migrating more algorithms and protocols to

the SDN environment.
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