
 Software Design Pattern Analysis for Micro-services
Architecture using Queuing Networks

Hanzhong Zheng, Justin Kramer, Shi-Kuo Chang
Department of Computer Science, University of Pittsburgh, Pittsburgh, PA, USA

{victorzhz@cs.pitt.edu, jpk91@pitt.edu, schang@pitt.edu}

Abstract—Software design patterns are used to identify
simple ways of realizing relationships among software
entities or components for solving a commonly occurring
problem. Design patterns allow the final software system
to support different realized, non-functional requirements.
In this paper, we are interested in three popular design
patterns in Micro-services architecture: Fan (distributed),
Chain, and Balanced, and study the influence of different
system parameters to system performance. The
simulation mimics system behaviors under specified
design requirements for assisting software developers to
select appropriate design pattern in software development
life cycle (SDLC). In order to enable multi-pattern code
generation, we extended our previous research on an
automated modularity enforcement framework [1] from
design pattern analysis to pattern evaluation.

Keywords – Micro-services, Design Pattern Analysis, Software
Architecture Evaluation, Queuing Network Modelling

I. INTRODUCTION

Architectural patterns and design patterns are usually
employed in the software development life cycle (SDLC).
Software design patterns are “general and reusable
solutions to a commonly occurring problem in software
design within the context of software system design”. It
helps the developers to communicate software
architectural knowledge, bypass traps and pitfalls during
the development process [2]. Usually, design pattern can
only provide the templates or descriptions to the
developers about how to solve problems in the process of
designing an application or system, but cannot be directly
transformed into code. To ensure the continuous delivery
of trustworthy and high-quality software systems while
reducing the burdens on programmers, design patterns
become critical in the software development process. The
current approach on employing design patterns has been
focusing on object-oriented software design with
emphasis on the relationship and interactions between
classes or objects [2] [3] [4]. There have been a lack of
emphasis on the design pattern for service-oriented
architecture, especially for Micro-services. Micro-services

DOI Reference Number: 10.18293/SEKE2021-180

consider an application to be a collection of loosely
coupled, interconnected modular services, where
individual services communication through REST APIs,
and lightweight messages.

In this paper, we put focus on three popular design
patterns in micro-service architecture. A software system
is usually divided into several modules during the design
phrase. To explicitly enforce the modularity in design
patterns becomes very important in software system
design. We extend previous work (automated modularity
enforcement framework) for those design patterns in
Micro-service architecture. The formal definitions of three
top design patterns are [6]:

Chain: A “pipeline” layout of all components in the
execution process. Clients establish one-to-one
relationship with servers.

Fan (Distributed): All clients establish many-to-one
relationship with a central database server. All the
information will be stored into the central server.

Balanced: also known as Shared Data Pattern. Each
client establishes one-to-one relationship with its database
server. Multiple servers share their data.

We have conducted a comprehensive simulations using
Queueing Network Modelling based tool, named Java
Modelling Tool (JMT). The simulation results indicate
that each design pattern has its own advantages for
building appropriate software system products for
satisfying proposed design requirements. The
contributions of this paper are as followings:

1. We developed the automated design pattern
analysis in Micro-service architecture from system
pattern design to pattern evaluation.

2. We build a mathematical estimation model
through parameterizing the expected cost for
software system development

3. We conducted comprehensive simulation
experiments and analysis for better understanding
of each design pattern’s properties.

II. RELATED WORK

Micro-services Architecture. Micro-service architecture
is a type of service-oriented architectural type, in which
an application is constructed as a set of loosely coupled
small services. The current practice of micro-service
architecture mostly concentrates on the business
enterprises such as Netflix, Amazon, e-commerce, etc.
The next generation of micro-services requires ad-hoc
tools for the creation of design patterns [5]. Sahiti
Kappagantula introduces the several design patterns in
Microservices architecture for providing reusable
solutions to overcome common problems and improve
application performance [6]. However, it is lack of the
instructive and qualitative analysis among different
patterns. In our work, we aimed to provide
comprehensive analysis for different design patterns
based on the performance quality attributes under a
specific application scenario.

Queueing Network Modelling. Software architecture
evaluation ensures an appropriate architecture is chosen
for building complex software-intensive systems to any
organization. Hence, architecture evaluation helps
developers to ensure all stakeholders’ requirements have
been satisfied. Commonly, software architecture
evaluation can be classified into experience-based,
simulation-based, mathematical modeling, and scenario-
based [7]. The simulation-based evaluation approach
usually is combined with mathematical modeling for
estimating a more accurate system performance. However,
it is not easy for evaluating system performance during
the design process. Queueing Network Modelling
represents the computer system as a network of queues,
and analytically evaluates the system performance [8]. It
can simulate a group of service centers, which can make
use of our three different patterns. Macro Bertoli et al.
presented Java Modelling Tools (JMT) suite for
evaluating system performance using queueing models
[8]. JTM integrates a graphic user interface and other
methodologies such as discrete event simulation,
bottleneck identification in multiclass environment, etc.
We simulated the performance results of our three
different design patterns using JMT with the same initial
parameters setting.

III. MATHEMATICAL MODELLING OPTIMIZATION

The software cost estimation not only can minimize
the total cost of software development cost, but it also
ensures the final product can satisfy the requirements,
which generally refer to the quality attributes such as
performance, functionalities, etc. Many estimation

models have been developed and widely used. In general,
there are two major categories of existing models:
algorithmic and non-algorithmic.

Algorithmic cost modelling uses mathematical
expressions to predict the development costs based on the
estimations of system size, complexity, and other process
and product factors. Finding the most appropriate
expression can estimate software development costs,
which are important for analyzing the performance of our
three different structural patterns with keeping a relatively
low development cost. The general form of an algorithmic
cost estimation can be expressed as:

 (1)

where A is constant factor that depends on the type of final
software product, S is the code size of the software or
functionalities of certain components, B is the exponential
factor that usually lies in range of [1, 1.5], indicating the
fact that costs do not linearly increase with project size,
and M is a constant multiplier for combing process such
as dependability requirements. Our automatic code
generation tool is built based on Micro-service
applications. The service reliability is critical for service-
oriented system. We added a reliability modeling term to
the cost estimation expression as following:

 (2)

where the term is the simplified probability model

of estimating service reliability from, is the number of
services executions without exceptions occurrence; is
the total number of service invocations. is the
anticipated cost of executing service. During the
simulation, we assume that the probability of software
system failure as a stochastic process. In most
logarithmic cost models, the code size (S) is usually
difficult to estimate when the specifications are not
available. Since factors B and M are usually subjective,
we are mainly interested in their relations to the cost
estimate model during the optimization process. To study
the relation between M and we take the partial
derivative with respect to M:

 (3)

Similarly, we take the partial derivative with respect to B:

 (4)

E [e f for t] = A * SB * M

E [e f for t] = A * SB * M +
n

∑
i=1

(1 − fi
ti

) * ci + ϵ

1 − fi
ti

fi
ti

ci

E [e f for t]

∂E [e f for t]
∂M

= A * SB

∂E [e f for t]
∂B

= A * M * SB * ln(S)

Therefore, in the simulation experiment section, we study
the changing of M or B variables, while keeping other
variables to be constant to determine their effects to the
cost and system performance.

IV. EXPERIMENT TOOL
we extend our previous work by adding extra

functionalities and input parameters to support the three
patterns. This allows software developers select their
preferred architecture after testing the performance of
each design pattern. Our key objective was to add a layer
of experimentation and design to our automatic code
generation. We added a cleaning functionality to
AutoGenerator, which allows users to experiment with
combinations of design patterns and service creation
without the risk of damaging their templated product.
Therefore, our ‘cleaning’ function provides users with
flexibility in their designs and improve software
development process. After we established our ‘cleaning’
functionality, we started on the creation of each micro-
service architecture design pattern. The first stage of
production was analysis of each design pattern. The
results of our design pattern analysis led to formulated
architecture diagrams. In Fig. 1, we demonstrate the
balanced design pattern for our micro-service architecture
in medical application. In the architecture diagram, a
balanced design pattern is followed by combining the fan
and chain design patterns. In the figure 1, the doctor and
patient services act as examples of the fan design pattern.
The doctor and patient services connect to our centralized
registration service through HTTP communication via
their localized micro-service servers. Within the fan
design pattern, each micro-service will contain its own
database, server to communicate with the central
registration server, and controller layer. Also, the
prescription service acts as an example of the chain design
pattern. In the chain design pattern, our AutoGenerator
establishes the formation of a new micro-service
consisting of a service layer and a database. The chain
design pattern demonstrates the pipeline execution
pattern, so prescription service acts as an addition to the
functionality of the fan structure’s patient service. In this
example, the patient service will query the prescription
service directly through a public interface to acquire
information about the prescriptions of a specific patient.
IServices are assigned a unique probability to appear as
micro-services within the fan or chain design patterns.
The element of probability in the balanced design pattern
allows for permutations of samplings to appear as the
result of the auto generation. Thus, basic analysis of each

design pattern allowed for translation into a micro-service
architecture for our AutoGenerator.

Fig. 1: A balanced micro-service architecture utilizing
both chain and fan pattern design.

Our process begins with IC cards, which define the
service interactions witnessed in the architecture being
designed [1]. Once the IC cards are defined, the ICMS can
output an XML specification as shown in Fig. 2. The
XML specification specifies the structure of different
software components and initial system parameters,
which all are used in the system simulations.

<?xml version="1.0" encoding="UTF-8"?>
<icCardList
xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance">
 <icCardEntry icEntryId="2788" icEntryName="ex3">

 <icCard icId="10265"
icName="drug_drugs_service" icDescription="Serves
information about the drug" icIntPattern="quietstate"
icMyTask="Serve information about the drug "
icTimeCriticalCondition="< 30 minutes and
Begin_Table T_DRUG(number, name, address)
End_Table" icNumberCurrent="1" icNumberTotal="1">
 …

</icCardEntry>
<configOptions>
 <arrivalRate value="Normal"/>
 <queueingDiscipline value="FCFS"/>
 <routing value="RoundRobin"/>
 <serviceTimeSeconds value="50"/>
 <serviceDemandSeconds value="30"/>
 <designPattern value="fan"/>
 <userPreference value = "Chain">
 </configOptions>

</icCardList>

Fig 2. The XML specification for the architecture
structure.

 Based upon the XML specification of the IC cards,

the AutoGenerator can then create the output modules.
Fig. 3 demonstrates a portion of the code to generate these
modules, which allows for several key variations. The
first variation is the parameter that designates the design
pattern to utilize. The input parameter may be selected as
“balanced”, “fan”, or “chain” depending on the use case.
Furthermore, each design pattern follows a set of
generation rules which establishes modularity and
provides a basis to fill in implementation details for the
architecture. For the chain pattern, our AutoGenerator
builds a simplified micro-service layer composed of the
necessary modules to connect a Micro-service to its
database and to another Micro-service. The necessary
modules are comprised of a data repository interface and
a method-layer interface to interact with the service. For
our balanced pattern, we follow the directed creation of a
fan or chain implementation of the auto generation based
upon probability. The same skeleton of our
AutoGenerator now contains flexibility in its design
pattern and the ability to enable hypothesis testing
through cleaning function.

for i, service in enumerate(services):

 if tables[i]:
 separated_table = tables[i].split('(')

 adjusted_columns =
adjust_columns(separated_table[1])

TABLE_NAME = separated_table[0]

 TABLE_COLUMN_1 = adjusted_columns[0]
 TABLE_COLUMN_2 = adjusted_columns[1]
 TABLE_COLUMN_3 = adjusted_columns[2]

 NEW_SERVICE = service
 NEW_SERVICE_PLURAL = services_plural[i]

 if DESIGN_PATTERN == 'balanced':
 choices = ['chain', 'fan']

 choice = random.choice(choices)
 if choice == 'chain':

 run_generation_chain(SRC_PATH,
NEW_SERVICE_PLURAL)

 else:
 run_generation_fan(SRC_PATH,

NEW_SERVICE_PLURAL)
 elif DESIGN_PATTERN == 'chain':

 run_generation_chain(SRC_PATH,
NEW_SERVICE_PLURAL)

 elif DESIGN_PATTERN == 'fan':
 run_generation_fan(SRC_PATH,

NEW_SERVICE_PLURAL)
 else:

 print("Please enter a valid design pattern!")

Fig. 3 Code to generate each of the architecture
structures.

V. QUEUING NETWORK MODELLING ANALYSIS
We decide to use Queuing Network simulation for
evaluating the different patterns’ performance. The layout
designs of the patterns are illustrated in Fig. 4 using the
JMT simulation software. All the simulation layouts
reflect the definition of different design patterns in the
beginning of the paper. JMT contributes to perform
system evaluation studies in the following two ways: 1.
Statistically analysis such as confidence interval analysis,
variance estimation, etc. 2. A friendly user interface for
the description of system and parameters analysis. The
main parameters related to the interested variables:
system size (B) and multiplier of system combining
process (M). Since we assume that the micro-service
design patterns are targeted to medical application, so that
M can be reflected the requirements of patients’ service
demand time, and B is the doctor service time. The S is
the application that handles the number of patients in the
system evaluation (Arrival rates): Exponential, Normal,
Uniform, etc. In this paper, we use the normal distribution
for better modelling the number of patients in real case.
Service Demand: the average amount of time (workload)
that each user/patient required for the doctor’s service (on
user/patient side). Queueing disciplines: 1. Non-
preemptive: First Come Frist Served (FCFS), Last Come

First Served (LCFS), Random (RAND), etc. 2.
Preemptive: Server sharing, Discriminatory Server
sharing, etc. Routing of the users/patients in the system:
the current setting is the Round Robin, which simulates
that there is a waiting room for the patient to visit doctor
in our system. Service Time: the maximum amount of
time that doctor to diagnose each patient (on doctor side).
User Preference: the developers’ inclining towards to
specific structure patterns. This allows the user to select
its own desired patterns.

Fig. 4 The top, middle, and button figures are the
simulation layouts for distributed, balance, and chain
pattern.

We converted the design of patterns into well-structured
XML code to input of simulation with specified

components layout and system parameters. The
simulation settings are: (1) The number of users is
continuously increasing; (2) All the servers have the
limited amount of disk capacity; (3) Each user submits the
jobs according to a normal distribution with parameters
different parameters; (4) The evaluation metrics are
Throughput (# of jobs /second), Queuing Time (sec/user),
Response Time (second/job), System utilization (# of
working jobs/second); (5) Each simulation lasts until the
model converges and we conducted 15 repeat runs
making sure the accurate final performance results of
each pattern. The experiment results are fall into with
relative error < 0.03. Our purpose of the simulation is to
find an appropriate structural design pattern, which plays
a critical role in software development process. We
alternate different parameters for different patterns during
the simulation. Figures 5, 6, and 7 show the performance
results of the 3 different patterns under the different
simulation inputs. The alternations of the desired
variables enable to reflect the behaviors of different
patterns. The simulation can see the fluctuations of
different patterns under the different parameters’ setting.
This allows the developers to decide appropriate design
pattern during the development process.

Figure 5: the performance of three patterns with the
increase of service demand from 30, 50, 100.

Figure 6: the performance of three patterns with the
increase of service time from 50, 100, 200.

Figure 7: the performance of three patterns with the
increase of normal distribution mean (15, 30, 60) for
modelling the increase number of users in the system.

We treat each user is managed by a process in the system,
which is related to the system requirements in operating
and combing user processes. The simulation results show
that the throughput of all patterns decreases with the
increase of all the parameters. The FAN pattern largely
impacted by the service time and the Chain pattern largely
influenced by the number of users in the system. The FAN
pattern has a higher and higher value in the System
utilization, which represents that there are increasing
number of working jobs in the system. The increase of the
service time surprisingly decreases the system utilization
of Balanced pattern, while the rest of two patterns both
increase. Our explanation is the routing problem due to
the number of data servers and components. Since there
are multiple servers in the Balanced pattern, it brings the
higher capacity to handle the dramatically increase of
users in the system. However, the data replication and
synchronization become the main challenge in this design
pattern.

As for the FAN (distributed) pattern, it maintains a
comparatively reasonable performance under different
parameters setting, but it can easily be influenced by the
alternations of parameters. The centralized data server
avoids problems in other two patterns but requires a more
intelligent routing and queuing discipline for handing
users in “burst” situation. The choice of different design
patterns depends on the design requirements and also
takes the user’s preference into the consideration. The
Chain pattern involves the structure of “pipeline” design.
The execution of each process is strictly followed the
order, which unavoidably cause the “stalls” inside the
execution pipeline. However, certain applications such as
online patient diagnosis in medical domain has the
preferences on chain pattern.

VI. CONCLUSION AND FUTURE WORK

This paper proposes a new software design approach
using the Micro-service architecture. The extended

automated code generation framework enables code
generation under three different design patterns. We
compared our design patterns using Queuing Network
modelling for performance analysis. The queuing
network allows for analytic study on the software system,
which is represented as a network of queues with
collections of service centers. We compared the
performances of the different design patterns under
different parameters settings and provided an analytical
evaluation for them. Our next goal is to study the
influence of parameters (such as the capacity of the
servers, data usage volume, user preferences of specific
patterns and so on) to the performance of different design
patterns.

REFERENCES
[1] H. Zheng, J. Kramer, and S. Chang, “Auto-Modularity
Enforcement Framework Using Micro-Service Architecture”,
in Journal of Visual Language and Computing, pp. 17-22, 2020.

[2] H. Mu and S. Jiang, “Design patterns in software
development,”2011 IEEE 2nd International Conference on
Software Engineering and Service Science, pp. 322–325, 2011

[3] P. Kuchana, Software architecture design patterns in Java.
Auerbach Publications, 2004.

[4] S. Jiang and H. Mu, “Design patterns in object-oriented
analysis and design,” in 2011 IEEE 2nd International
Conference on Software Engineering and Service Science, pp.
326–329, 2011.

[5] L. Safina, M. Mazzara, F. Montesi, and V. Rivera, “Data-
driven workflows for microservices: Genericity in Jolie,” in
2016 IEEE 30th International Conference on Advanced
Information Networking and Applications (AINA),pp. 430–
437, 2016.

[6] Kappagantula, S. (2020, November 25). Everything You
Need To Know About Microservices Design Patterns. Edureka.
https://www.edureka.co/blog/microservices-design-
patterns#Database

 [7] M. Svahnberg, C. Wohlin, L. Lundberg, and M. Mattsson,
“A method for understanding quality attributes in software
architecture structures,” in Proceedings of the 14th
International Conference on Software Engineering and
Knowledge Engineering, SEKE ’02, New York, NY, USA, p.
819–826, 2002.

[8] M.Bertoli, G.Casale, G.Serazzi.
“JMT: performance engineering tools for system modeling,”
ACM SIGMETRICS Performance Evaluation Review,
Volume 36 Issue 4, New York, US, 10-15, 2009.

