
From Vulnerability Anti-Patterns to Secure Design
Patterns

Alok Chandrakant Ratnaparkhi
Dept. of Computer & Information Science

University of Massachusetts Dartmouth
Dartmouth, MA, U.S.A.
aratnaparkhi@umassd.edu

Onyeka Ezenwoye
Computer and Cyber Sciences

Augusta University
Augusta, GA, USA

oezenwoye@augusta.edu

Yi Liu
Dept. of Computer & Information Science

University of Massachusetts Dartmouth
Dartmouth, MA, U.S.A.

yliu11@umassd.edu

Abstract—A secure design pattern is a well-proven reusable
solution to a recurring security problem that arise in specific
contexts. Using secure design patterns properly can help tackle
software vulnerabilities during software development. However,
the lack of selection guidance of secure patterns makes it
more difficult for developers to use secure design patterns than
conventional design patterns. To address this issue, this paper
presents a methodology of selecting the appropriate secure design
patterns for software vulnerabilities formalized in anti-patterns.
This methodology bridges the gap between the vulnerabilities
and secure design patterns to produce a useful tool for secure
software development.

Index Terms—software vulnerabilities, anti-patterns, secure
design patterns

I. INTRODUCTION

Software vulnerabilities are weaknesses in a system’s ar-
chitecture, design, or code that can cause violations of the
system’s security policy. Its existence is the primary cause of
attacks on software systems [1]. Even though security is a crit-
ical quality attribute, security is often seen as an afterthought.
Many research studies on software vulnerabilities focus on
testing methodologies, such as using machine learning [2] to
identify the common vulnerabilities.

Although software testing is absolutely mandatory and
necessary in locating the vulnerabilities, security needs should
be emphasized throughout the entire software development
process and the vulnerabilities should be identified as early
as possible. After software has been deployed, it becomes
more expensive to remove vulnerabilities by patching. Thus,
software developers should elicit security expectations during
the requirements analysis stage and consider them during the
stages that follow. Citing research by Software Engineering
Institute (SEI), the U.S. Department of Homeland Security
(DHS) states in its Software Assurance information sheet
that “90% of reported security incidents result from exploits
against defects in the design or code of software” [4]. Most
of the vulnerabilities reported in software are the results of
bad decisions made during the implementation stage, however,
many of them actually originate in the previous software
development stage, the design stage. ”Secure by design” is
not a new concept and has been explored by many researchers.

DOI reference number: 10.18293/SEKE2021-179

Deogun et al. [5] introduced the good practices for implement-
ing essential software features using design as the primary
driver for security. Several researchers have published various
secure design patterns to address security vulnerabilities at
the design level [8], [9]. However, very few research studies
have explored the methodology of selecting appropriate secure
design patterns to mitigate security vulnerabilities.

This research proposes a methodology for selecting the
appropriate secure design patterns for addressing software
security vulnerabilities. The rest of the paper is organized as
follows. Section 2 briefly discusses the security vulnerabilities,
secure design patterns, and anti-patterns. Section 3 presents the
methodology of selecting appropriate secure design patterns
for addressing the security vulnerabilities. Section 4 discusses
the related works, and section 5 concludes the work.

II. BACKGROUND

A. Software Vulnerabilities

A software vulnerability is an exploitable flaw in any part
of a system’s artifact or component. Cross-site scripting (XSS)
is an example of a commonly recurring security vulnerability
in web applications. With the advent of scripting languages
such as JavaScript, it has become feasible for attackers to
inject malicious scripts into a victim’s browser. By injecting
the script, attackers can read private data, hijack the user
session, or delete essential data. Fig.1, 2 & 3 show an example
of a DOM-based XSS attack, which is found in OWASP’s
Juice Shop application [13]. The application’s search product
function is intentionally developed in such a way that user
input is not validated or sanitized before execution. An attacker
can enter malicious script (Fig.1) as user input in the search
field. The malicious script entered into the search field (Fig.
2) is then submitted to the server and gets executed on the
client side. In this example, code from a different domain
(soundcloud.com), in the form of a soundtrack, is inserted
instead of legitimate search results (Fig. 3).

B. Anti-Patterns

Anti-patterns are commonly occurring solutions to a prob-
lem that generates negative consequences [3]. Software de-
velopment is a complicated process and many decisions may
cause a project to fail. Formal documentation of the decisions



Fig. 1. XSS malicious script

Fig. 2. The malicious script is entered into the search field

or processes that lead to failure can guide future software
engineers on what to avoid. Anti-patterns can help developers
capture the causes of security vulnerabilities in architecture,
design, or source code. Dougherty [8] discussed the need
for anti-patterns to describe bad decisions, causing software
security failures in a formal way. Nafees et al. [12] proposed
the format of documenting vulnerability into anti-patterns.

C. Secure Design Patterns

Secure design patterns help to prevent the occurrence of
vulnerabilities [8]. Secure design patterns address security
issues in the architectural design and implementation phases
of the development life cycle [8]. Many secure patterns have
been proposed and a good number of significant work have
been published [8], [9].

III. METHODOLOGY

The approach we designed for selecting secure design pat-
terns to address security vulnerabilities include 3 steps: 1) for-
malizing a software vulnerability using anti-pattern description
model; 2) selecting the secure design pattern candidates that
can address the vulnerability’s anti-pattern; and 3) testing the
selected secure design pattern(s) for the anti-pattern problem.

A. Formalizing Vulnerability to Anti-Pattern Description

The first step is to identify and formalize the vulnerability
using an anti-pattern description. We adopt the anti-pattern
description model [12] with the following modifications:

• Our model follows conventional anti-pattern description
model to include elements Context, Problem, Solution,
and Consequences. These elements are important to help
the audience understand what the actual vulnerability is.

• Our model introduces the element Root Causes, which is
an essential factor in identifying appropriate solutions.

The elements Problem, Context, Root causes, and Solution
are the major factors to address in mapping the anti-pattern
to appropriate secure design patterns. Our vulnerability anti-
pattern description model has ten elements. The following is an

Fig. 3. The malicious script injects code from another domain when submitted

example of using the anti-pattern description model to specify
Cross-Site Scripting (XSS) anti-pattern.

1) Anti-pattern Name: Cross-Site Scripting Anti-pattern
2) Also Known as: Improper Neutralization of Input During

Web Page Generation, XSS
3) Context: Any web application that uses JavaScript, VB-

Script, ActiveX, CSS, or any other scripting language
4) Anti-pattern problem: Cross-site scripting (XSS) is an

injection attack in which attackers can execute malicious
scripts on the victim’s browser.

5) Root causes:
• Lack of input validation: Vulnerable applications trust
the data from input without validating it. Without vali-
dation, malicious content can be executed in the victim’s
browser.
• Lack of data sanitization: The victim’s browser misin-
terprets external malicious data as a part of the script and
executes it without sanitization.

6) Example: A DOM-based XSS attack example is found
in OWASP’s Juice Shop application [13], as shown in
Section II-A.

7) Consequences: Private data breach; User session hijack-
ing; Identity theft; Phishing Attacks; Web site deface-
ment; Port scan; Keylogging; Trojan Attack

8) Solution:
•Data sanitization: Sanitize the external inputs via en-
coding or escaping. The encoding must be applied to all
potential vectors.
•Input validation: Validate the inputs using blacklist or
whitelist validation (preferable).
•Miscellaneous solutions: Using process level,
technology-specific or configurational solutions, such as
implementing Content Security Policy, using HTTPOnly
cookie flag, SameSite cookie parameter, etc.

9) Attack Types: Reflected/non-persistent XSS attack,
Stored/persistent XSS attack DOM-based XSS attack,
Self-XSS, Mutated XSS, and Universal XSS attack

10) Common Weakness Enumeration: CWE-79 [18]

B. Selecting secure patterns for addressing the anti-pattern

The second step of the approach is to go through the pool
of secure design patterns and select the best-fit candidates
that can address a vulnerability anti-pattern. Two phases,
Collection Phase and Analysis Phase, are involved in this step.

1) Collection Phase: Secure patterns are often published in
conferences, academic literature, books,repositories, and the
internet [8], [9]. The collection phase begins with searching



for published secure design patterns. The most crucial problem
in the pattern community is, there is no single comprehensive
secure pattern repository that exists today. This step can be
skipped after a secure pattern repository is developed.

Below are the samples from our collected secure patterns
for addressing the XSS anti-pattern. They are categorized
into architecture, design and implementation levels.
• Architectural level: Application Firewall, Broker, Roles [15]
• Design level: Secure Strategy Factory, Secure Chain
of Responsibility, Intercepting Filter, Controlled Object
Monitor,Secure Logger [8]
• Implementation level: Account lockout, Client Input Filters,
Input Validation [8]

2) Analysis Phase: The analysis phase is to analyze the
collected patterns from the previous phase. The approach is to
find potential solutions by mapping the elements Root causes,
Problem, Context, Solution of a vulnerability anti-pattern de-
scription to the essential elements of secure design patterns.
These elements include Intent, Problem, Context, Forces,
Motivation, Applicability, Solution,Structure/Participants, and
Collaborations. The following questions should be asked and
answered during the mapping process:

1) Question1: Does the Intent element is present or sufficient
in capturing the pattern’s purpose?

2) Question2: Does the Intent of the secure pattern help
address the vulnerability anti-pattern’s root cause(s)?

3) Question3: In case the Intent element is not present
or insufficient in capturing the purpose of the pattern,
Do Problem/Context/Forces/Motivation/Applicability are
relevant to the vulnerability anti-pattern’s root cause(s)?

4) Question4: Does Solution/Structure/Participants and Col-
laborations of the secure pattern help deliver the Solution
of the anti-pattern?

Fig. 4. Flow chart of Mapping Process

The workflow of the mapping process is illustrated in Fig.
4. The analysis begins with scanning of the pattern description
model’s Intent element to understand the purpose of the pattern
and check if it can map to the root cause(s) of the targeted

vulnerability anti-pattern. If the Intent element is absent or
insufficient, explore other elements (such as forces) of the
secure pattern description model. If the secure pattern’s Intent
or solution does not address the root cause, the pattern is ruled
out; otherwise, add the pattern in the selected pattern list.

TABLE I
SECURE DESIGN PATTERNS AND THEIR INTENT

Secure Patterns Intent
Application Fire-
wall [A]

To filter calls and responses to/from enterprise appli-
cations, based on an institution access control policy

Broker pattern [A] Coordinates communication between client and server
via requests and responses

Roles [A] Organizing the users with similar security privileges
Controlled Object
Monitor[D]

To control access to objects by processes

Intercepting Filter
[D]

To provide mechanism for centrally intercepting the
requests and pass them through series of filters before
forwarding them to intended destination

Secure Chain of
Responsibility[D]

To preprocess or postprocess requests/responses using
series of handlers

Secure Logger [D] To facilitate in centralized logging mechanisms
Secure Strategy
Factory [D]

To facilitate easy creation of security objects and use
of interchangeable security strategies

Account Lockout
[I]

Lock the user’s account after limited number of
incorrect password attempts

Client Input Fil-
ters [I]

All incoming requests from the client should be
filtered at the server.

Input Validation
[I]

To validate all external inputs from untrusted data
sources

The mapping process of secure patterns’ Intent to XSS anti-
pattern’s root causes are illustrated in Table 1. It lists the
Intent of each of the collected secure design patterns from
the Collection phase. The intent of each secure pattern is
then compared with the root cause of the XSS anti-pattern
to find a mapping. Table II gives the reasoning of whether a
secure pattern is considered fitting to solve the anti-pattern’s
root causes. Several secure patterns are ruled out at this point.

Same strategy is used in the analysis of other collected
secure patterns. Due to the page limit, the complete analysis
process is not presented. Table III presents the selected secure
patterns to address the XSS anti-pattern without considering
additional requirements on the solution space, such as per-
formance and flexibility. However, additional requirements or
attributes required in the design are not avoidable. They should
be carefully analyzed in this phase.

C. Testing the suggested secure design patterns

The final step is to apply the selected secure design pattern
on the already vulnerable application to test whether the secure
design patterns can tackle the anti-pattern problem. Any false
positives from the final list are eliminated at this stage. We
redesigned the OWASP Juice Shop [13] with Secure Strategy
Factory pattern, Input Validation pattern and Intercepting
Filter pattern at the design and implementation level [17].
Manual security testing was performed on [13]. The malicious
script shown in Fig. 1 was not executed by browser after the
redesign. Results show that the selected secure design patterns
can be adopted to address XSS anti-pattern problem.



TABLE II
SECURE PATTERN INTENT VS. ROOT CAUSE(S) OF XSS ANTI-PATTERN

Secure Pattern Addressing root causes of XSS Anti-pattern ?
Application
Firewall[A]

The pattern supports the usage of firewalls to detect
possible attacks by scanning for malicious signatures
using Input Validation. It is most relevant to our anti-
pattern problem.

Broker
pattern[A]

This pattern may help if a separate component is
placed between client and server to validate or sanitize
the external data.

Roles [A] Ruled out: The pattern is related to organizing the
users with same role, which is irrelevant to the anti-
pattern problem.

Controlled Ob-
ject Monitor[D]

Ruled out: This pattern is for controlling objects,
which is irrelevant to our anti-pattern problem

Intercepting
Filter[D]

The pattern may be used to intercept all web requests
and pass them through filters to eliminate malicious
requests using Input Validation.

Secure Chain
of Responsibil-
ity[D]

May be used for preprocessing the web requests using
Input Validation and/or Sanitization.

Secure Logger
[D]

Ruled out: Logging can not help in addressing the
anti-pattern problem

Secure Strategy
Factory [D]

The pattern allows interchangeable strategies and sep-
arate them from client who uses it. May help in
designing Input Validation/ Sanitization strategies

Account Lock-
out [I]

Ruled out: The pattern is related to authentication,
which does not help in Input Validation/Sanitization.

Client Input
Filters [I]

This pattern may help if the good inputs are filtered
from bad inputs using Input Validation

Input
Validation[I]

This pattern is most relevant to our anti-pattern prob-
lem.

TABLE III
MAPPING ANTI-PATTERNS TO SECURE DESIGN PATTERNS

Vulnerability Secure Design Pattern
Anti-Pattern Architectural Design Implementation
XSS Anti-
pattern

Broker;
Application
Firewall

Intercepting Fil-
ter; Secure Strat-
egy Factory; Se-
cure Chain Of
Responsibility;

Input Validation;
Client Input Fil-
ters

IV. DISCUSSION

The research on security pattern is an active and growing
field across the globe [14]. Much research has been done
on the secure design pattern classification, but little research
has considered selecting appropriate secure design patterns
for a given problem. The pattern selection approach proposed
in [15] was generalized and not intended for security goals.
Alvi et al. [1] proposed a security pattern selection technique
based on security objectives and security flaws. However,
security flaws do not formally capture what bad decisions
can cause the vulnerability in the applications.Different from
Alvi’s [1] approach, our methodology is based on the anti-
pattern model, which presents not only the result but the causes
of a vulnerability. Our research does not aim for suggesting
the best pattern for a given context like the other approaches
[1], [16], but on selecting potential pattern(s) for an anti-
pattern problem. In addition to the secure patterns discussed
in this paper, other patterns, such as the process patterns

and technology patterns [3], can also be used to address
vulnerability anti-pattern problems. Our methodology can be
easily extended to involve such patterns in the solution.

V. CONCLUSION

Majority of the security vulnerabilities are in software and
many security weaknesses in software originate in the design
stage during the software development process. It is critical to
tackle the vulnerabilities in the software design. This research
demonstrates a novel approach of selecting appropriate secure
design patterns based on the vulnerability anti-pattern model
to mitigate common software vulnerabilities in the design. The
future work will be focused on two directions. One direction
is to track published up-to-date secure patterns and develop a
web-based repository of these patterns for the researchers and
developers. Another direction is to develop a recommendation
tool that applies this approach to identify the anti-patterns of
the top eight most common web application vulnerabilities
[11] and recommend appropriate secure design patterns.

REFERENCES

[1] A. K. Alvi and M. Zulkernine, ”A Natural Classification Scheme for
Software Security Patterns,” 2011 IEEE Ninth International Conference
on Dependable, Autonomic and Secure Computing, 2011

[2] X. Xie, C. Ren, Y. Fu, J. Xu and J. Guo, ”SQL Injection Detection for
Web Applications Based on Elastic Pooling CNN”, IEEE Access, vol(7)

[3] W. J. Brown, R. C. Malveau, H. W. McCormick, and T. J. Mowbray,
”AntiPatterns: Refactoring Software, Architectures, and Projects in Cri-
sis”, Wiley, 1998.

[4] The U.S. Department of Homeland Security (DHS), ”Software Assur-
ance,” https://www.us-cert.gov/sites/default/files/publications/ infosheet-
SoftwareAssurance.pdf, last accessed: March, 2021.

[5] D. Deogun, D. Johnsson and D. Sawano, ”Secure by Design,” Manning,
2019.

[6] J. Yoder and Jeffrey Barcalow, ”Architectural Patterns for Enabling
Application Security,” Proceedings of Fourth Conference on Patterns
Languages of Programs, 1998.

[7] C.Steel, R. Nagappan and R. Lai, Core Security Patterns: Best Practices
and Strategies for J2EE(TM), Web Services, and Identity Management,
Prentice Hall, 2005.

[8] C. Dougherty, K. Sayre, R. C. Seacord,D. Svoboda and K. Togashi,
Secure Design Pattern, Software Engineering Institution, Carnegie-
Mellon University, 2009.

[9] E. B. Fernandez, Security Patterns in Practice: Designing Secure Archi-
tectures Using Software Patterns, John Wiley & Sons, 2013.

[10] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software, Addison Wesley, 1995.

[11] O. Ezenwoye, Y. Liu and W. Patten, ”Classifying Common Security
Vulnerabilities by Software Type,” Proceedings of the 32nd International
Conference on Software Engineering and Knowledge Engineering, 2020.

[12] T. Nafees, N. Coull, I. Ferguson, and A. Sampson, ”Vulnerability anti-
patterns: a timeless way to capture poor software practices (vulnerabil-
ities),” In 24th Conference on Pattern Languages of Programs, 2018.

[13] OWASP, ”Juice shop application,” https://github.com/bkimminich/juice-
shop, last accessed: March, 2021.

[14] A. Jafari and A. Rasoolzadegan, Security patterns: A systematic mapping
study, Journal of Computer Languages, vol 56, 2020.

[15] F. Buschmann, R. Meunier,H.Rohnert, P. Sommerlad, M.Stal,”A System
of Patterns: Pattern-Oriented Software Architecture”, Wiley Series in
Sotware Design Patterns, 2002.

[16] N. Nahar and K. Sakib, ”ACDPR: A Recommendation System for
the Creational Design Patterns Using Anti-patterns,” IEEE International
Conference on Software Analysis, Evolution, and Reengineering, 2016.

[17] Alok Ratnaparkhi, ”Repositories”, https://github.com/AlokRatnaparkhi,last
accessed: March, 2021.

[18] Cross-Site Scripting, https://cwe.mitre.org/data/definitions/79.html,last
accessed: May, 2021.


