
 Revisiting UML Class Relationship Recovery for Online Education

Dionysis Athanasopoulos
School of Electronics, Electrical Engineering, and Computer Science

Queen’s University of Belfast, Northern Ireland, UK
D.Athanasopoulos@qub.ac.uk

Abstract

UML recovery has been a long-standing challenge for
the software-engineering community. The complete re-
covery of UML class relationships needs the employment
of both static and dynamic code analyses. However, the
dynamic-code analysis is not usually applicable at the de-
sign time of programs and especially for incomplete pro-
grams in online education. To overcome this restriction,
we propose a formally defined set of mappings between
UML relationships and object-oriented relationships that
are based on static-code analysis exclusively. We evalu-
ate the precision and the recall of our mappings on student
projects against ground-truth UML diagrams and against
diagrams recovered by existing UML class recovery tools.

1 Introduction

The motivation of our research come from a real story.
It all started a few weeks ago in the labs of a computer-
science school. Amelia1, an undergraduate student, wanted
in the context of a software-design module to take online
feedback on her UML class diagrams2 that visualize the de-
sign of her Object-Oriented (OO) programs. Class diagrams
describe the static structure of OO programs by showing the
program’s classes, fields, methods, and class relationships.

Amelia generally feels confident to build up a UML di-
agram only if she can map it to the source-code elements
that implement the diagram. In other words, she prefers first
writing (a skeleton of) her OO programs and then mapping
them to UML diagrams via using her favorite integrated de-
velopment environment, IDE (e.g., Eclipse3). The program
that she has started developing today contains classes that
are related to each other in various ways. Amelia found it
difficult to build the diagram on her own and especially, to

DOI reference number: 10.18293/SEKE2021-170
1Please note that the persona names in our story are fake.
2https://www.uml.org
3https://www.eclipse.org

differentiate the usage of the various kinds of arrows that
UML provides. In particular, she was confused while she
was mapping the implementation-level relationships of her
program to UML class arrows.

Thus, Amelia needed an online tool that takes as input
her OO programs and outputs a visual medium for her pro-
grams. Such a tool should be quite precise with respect to
the usage of the UML arrows. Moreover, the tool should be
able to work on incomplete programs that cannot necessar-
ily be executed. In other words, the tool should be based on
the static-code analysis of OO programs. Amelia thought
such a tool is a necessary classroom assistant in the era of
online education that has recently stressed.

Luckily for Amelia, her module owner, Bob, suggested
to her to use a freeware (e.g., ObjectAid4) that can be in-
tegrated with her IDE and recover UML diagrams from in-
complete Java programs. Amelia was happy to see that the
tool can draw UML diagrams by just dragging and dropping
Java classes, providing a visual medium for Java programs.
However, when she used the tool for her programs, she was
concerned about the arrows used by the tool used for some
Java class relationships in the recovered diagram. To dou-
ble check the diagram, Amelia discussed her concerns with
the module owner. Bob drew his own diagram and verified
Amelia’s concerns about the precision of the tool, as anal-
ysed in a next section of the current paper.

Overall, existing UML recovery tools that use static-
code analysis are not precise enough for online learning pur-
poses. Moreover, the state-of-the-art research approaches
that could be adopted for overcoming this limitation are not
completely based on static-code analysis (e.g., [1, 2]) or
they do not satisfy the lifetime and the share-ability object
properties required for recovering the UML composition re-
lationship (e.g., [3]).

We contribute an initial version of an automatic approach
that takes as input an OO program and outputs the expected
UML class relationships. To this end, we formally define
the concepts of OO classifier, OO relationship, and UML
relationship via using static-code syntactic analysis exclu-

4https://www.objectaid.com/home

https://www.uml.org
https://www.eclipse.org
https://www.objectaid.com/home

sively. We further propose a formally defined set of map-
pings between OO and UML relationships that satisfy the
required lifetime and the share-ability properties5. We fi-
nally evaluate the precision and the recall of our mappings
on existing student projects against ground-truth UML di-
agrams and against diagrams recovered by existing profes-
sional UML class recovery tools.

The rest of the paper is structured as follows. Section 2
presents the related research approaches. Section 3 defines
the concept of OO relationship. Section 4 maps OO rela-
tionships to UML relationships. Section 5 evaluates the ef-
fectiveness of our approach. Finally, Section 6 summarizes
our contribution and proposes future research directions.

2 Related Work

UML class diagrams represent OO classifiers (e.g., class,
interface), fields, methods, and classifier relationships. The
UML standard6 defines the following kinds of relationships
between classifiers: dependency, inheritance, realization,
association, aggregation, and composition. The association
can be a directed or a unidirectional relationship.

We organize the existing approaches of the round-trip en-
gineering between UML diagrams and OO programs into
three categories. The first-category approaches generate
source code from UML diagrams based on UML to OO
mappings [4]. Other approaches recover business processes
from UML sequence diagrams by using a set of heuristics
[5]. The second-category approaches define consistency
links between UML diagrams and source code [6, 7, 8, 9].

The third category includes reverse-engineering ap-
proaches that recover (parts of) UML diagrams from OO
source code. [10] recovers UML use-case diagrams by us-
ing trace-ability links between use-case elements and clas-
sifiers. [11] recovers UML behaviour diagrams from source
code by identifying patterns in the source code. [1, 2, 12] re-
cover UML relationships by identifying mappings between
UML and OO relationships. [13] apply heuristics to static
and semantic analysis of Java classes.

Our approach belongs to the third category and is related
to [1, 2, 3]. [1, 2] recover UML relationships via checking
the following set of properties for objects: multiplicity, ex-
clusivity, and lifetime. However, static and dynamic code
analyses are used to confirm the properties.

[14, 3] recover composition relationships via checking
the non-accessibility property for objects. To this end,
[14, 3] check whether a reference to an object is exported
by its owner object to a third-party object. However, [15]
states that the definition of composition based on the non-
accessibility property is not consistent with the UML spec-

5We have left as future work the possible consideration of semantic
code analysis (e.g., lexical analysis).

6https://www.omg.org/spec/UML

ification. [15] further states that the lifetime and the share-
ability properties are the properties that should be used for
recognizing composition relationships. [15] specifies an
OCL formalization of the above properties. However, the
complete verification of the above properties needs both
static and dynamic code analyses.

Program 1 OO Skeleton of the Flight-Booking Program
1: class BOOKING (ABSTRACT)
2: int id; B Built-in field.
3: String name;
4: double price;
5: function BOOKING(int id, String n, double p, double e)
6: this.id := id;
7: this.name := n;
8: this.price := p;
9: this.extraPrice := e;

10: class ECONOMY EXTENDS BOOKING
11: int seat;
12: function ECONOMY(int id, String n, double p,int s,double e)
13: super(id, n, p, e);
14: this.seat := s;
15: class BUSINESS EXTENDS BOOKING
16: String menu;
17: function BUSINESS(int id,Stringn,doublep,Stringm,double e)
18: super(id, n, p, e);
19: this.menu := m;
20: class PRINTING
21: function PRINTBUSINESSPRICE(Business b) B Reference.
22: print(. . .);
23: function PRINTECONOMYPRICE(Economy e)
24: print(. . .);
25: class FLIGHT
26: Printing c := new Printing(); B Developer-defined field.
27: List<Business> bList; B Owned object(s).
28: List<Economy> eList;
29: function ADDB(int id, String n, double p,String m,double e)
30: Business b := new Business(id, n, p, m, e);
31: c.printBusinessPrice(b);
32: if bList = null then bList := new ArrayList<Business>
33: bList.add(b);
34: function ADDE(int id, String n, double p, int s, double e)
35: Economy e := new Economy(id, n, p, s, e);
36: c.printEconomyPrice(e);
37: if eList = null then eList := new ArrayList<Economy>
38: eList.add(e);
39: class BOOKINGSYSTEM
40: function MAIN
41: Flight f := new Flight(); B Local variable.
42: f.addB(20, “Tom”, 100, “Chicken”, 1000);
43: f.addE(5, “Sam”, 100, 5, 10);

3 Object-Oriented Relationships

We illustrate our definitions via using a running exam-
ple. We take an example that corresponds to a small part of
an OO flight-booking system. The program calculates the
total price of a booking and prints out the overall booking
information. The Java-like pseudo-code of the classes of
the above program is provided in Prog. 1.

Classifier fields and methods. A classifier mainly con-
sists of classifier-level fields (e.g., built-in data-types, ob-
jects of other classifiers) and/or methods.

Owned object reference. An A classifier can be associ-
ated to an object of a B classifier even if A has not created the

https://www.omg.org/spec/UML

B object. In this case, A is associated with a reference to the
B object (line 21 of Prog. 1). If A does not create a B object
but A has a reference to the object that is kept in the fields
of A, then A has an owned reference to the object. To distin-
guish the case of an object reference owned by the classifier
that created the object, we further use the term owned ob-
ject. If A creates a B object stored in the fields of A, then A

has an owned object (line 27 in Prog. 1). The definitions of
the concepts of owned object and reference are provided in
the remainder of this section.

Object finalization. By default, all the references to an
object are freed when a program finishes its execution. A
classifier method may explicitly finalize an object via using
a reference to the object before the termination of the pro-
gram. If an A classifier has a reference to a B object and this
reference has been finalised by another classifier, then A has
lost/cannot refer to the B object.

Definition 1 (OO Classifier) A classifier, c, includes (i) its
name n whose prefix is its package path (this combination
can uniquely identify the classifier in a program); (ii) its
kind k (concrete class, abstract class, interface, enum); (iii)
a (possibly empty) set of generic classifiers gi that c ex-
tends/implements; (iv) a (possibly empty) set of classifier-
level developer-defined fi fields (owned objects), along with
their maximum li multiplicity; (v) a (possibly empty) set of
the di classifiers whose object references are explicitly fi-
nalized by c; (vi) a (possibly empty) set of the ri object ref-
erences that are owned by c; (vii) a (possibly empty) set
of the methods of c; (viii) a (possibly empty) set of the ui

classifiers (along with their maximum li multiplicity) whose
objects are created by c. If the object is created by using a
combination of generic and concrete classifiers, then the ui

set includes both the generic and the concrete classifiers.

c =
(
n, k, {gi}, {(fi, li)}, {di}, {ri}, {mi}, {(ui, li)}

)
Definition 2 (Method) A method is characterized by (i) its
name n; (ii) a (possibly empty) set of argi arguments that
are developer-defined classifiers (along with their maximum
li multiplicity); (iii) its (possibly absent) ret developer-
defined return type (along with its maximum l multiplicity).

m =
(
n, {(argi, li)}, (ret, l)

)
Definition 3 (Owned Object) A c1 classifier owns an ob-
ject of a c2 classifier if the c2 object belongs to the
developer-defined fields of c1 and the c2 object has been
created by the c1 classifier. To put it formally, a c2 object is
owned by c1 if the following condition is evaluated as true.

ownedObj(c2, c1) := c2 ∈ c1.{fi} ∧ c2 ∈ c1.{uj}

Definition 4 (Owned Reference) A c1 classifier just owns
a reference to an object of a c2 classifier if the c2 object

reference belongs to the developer-defined fields of c1 but
the c2 object has not been created by the c1 classifier.

ownedRef(c2, c1) := c2 ∈ c1.{fi} ∧ c2 /∈ c1.{uj}

Definition 5 (Associated Reference) A c1 classifier is as-
sociated with a reference to an object of a c2 classifier if the
c2 reference does not belong to the developer-defined fields
of c1, the c2 object has not been created by the c1 classifier,
and the c2 object is included in the arguments of a method
of the c1 classifier.

assocRef(c2, c1) := c2 /∈ c1.{fi} ∧
c2 /∈ c1.{uj} ∧ c2 ∈ c1.mk.{argl}

4 OO and UML Relationship Mapping

According to [15], composition should be defined based
on the lifetime and the share-ability properties. The share-
ability property requires that an object of a classifier, along
with the references to the object, must be owned by at most
one composite classifier. The lifetime property requires that
the object of a composite classifier cannot be outlived by
its owned objects. In other words, when the object of a
composite classifier is finalized, its owned objects and the
references to the owned objects are finalized too.

Definition 6 (Object Share-ability) A c1 classifier shares
a c2 object with a c3 classifier if there is a reference owned
by c3 to the c2 object that is created and owned by c1.

share(c1, c2, c3) := ownedObj(c2, c1) ∧ ownedRef(c2, c3)

To compare the lifetime between an object of a compos-
ite classifier and its owned objects via using OO relation-
ships, we define and prove the following theorem that is
based on the object share-ability.

Theorem 1 (Composite object lifetime) The lifetime of
an object of a c1 composite classifier is longer than or the
same to the lifetime of an object of a c2 classifier that is
owned by c1 if there is no other c3 classifier that explicitly
finalizes the c2 object and c3 does not own a reference to
the c2 object. If c3 owns a reference to the c2 object, then
c1 should explicitly finalize c2.

life(c1, c2) := ownedObj(c2, c1) ∧ c2 /∈ c3.{di}
(@c3 : ownedRef(c2, c3) ∨ c2 ∈ c1.{di})

Proof 1 We assume that a c2 object is owned by a c1 object
and we examine all the possible cases with respect to the
ownership of the c2 object/references and the finalization
time of the objects.

(a) If c3 explicitly finalizes c2, then c1 cannot use its owned
c2 and consequently, the lifetime comparison of c1 and
c2 is meaningless (the second condition is false).

(b) If c3 does not explicitly finalize c2, c3 owns a reference
to c2, and

(i) c1 is finalized without finalizing c2 (swallow final-
ization), then c2 has longer lifetime than c1 be-
cause there is a live reference to c2 in the c3 object
(both third and fourth conditions are false)

(ii) c1 and c2 are finalized together (deep finaliza-
tion), then c1 and c2 have the same lifetime and c3
cannot use c2 because c2 has been finalized (the
first, second, and fourth conditions are true).

(c) If c3 does not explicitly finalize c2, if there is no c3 ob-
ject that owns reference(s) to c2 and

(i) c1 is finalized without finalized c2 (swallow final-
ization), then there is no left object that uses c2
and we consider that the lifetime of c1 and c2 is
the same (the first, second, and third conditions
are true)

(ii) c1 and c2 are finalized together (deep finaliza-
tion), then c1 and c2 have the same lifetime (all
conditions are true).

Illustrative example. The Flight object owns a
Business object in Prog. 1, but there is no reference to
the same Business object owned by another object. Ac-
cording to Theorem 1, the lifetime of the Flight object is
longer or the same to the lifetime of the Business object.

Definition 7 (Composition) A c1 classifier is composed by
a c2 classifier if there is no c3 classifier that shares with the
c1 classifier the same c2 object and the lifetime of the c1
object is longer or the same to the lifetime of the c2 object.

comp(c1, c2) := @ c3 : share(c1, c2, c3) ∧ life(c1, c2)

Illustrative example. The Flight object in Prog. 1
owns a Business object, there is no reference to the same
Business object that is owned by another object, and the
Flight and the Business objects have the same lifetime.
In this case, the Flight and the Business classes have a
UML composition relationship.

Aggregation relates a composite classifier and its owned
objects/references. To capture this relationship, we use the
owned object and reference relationships (Def. 3 and Def.
4), without the composite and the owned objects/references
satisfying the lifetime and the share-ability properties.

Definition 8 (Aggregation) A c1 classifier aggregates a c2
classifier if c1 owns c2 object(s)/reference(s) but c1 does not
have a composition relationship with c2.

aggr(c1, c2) := (ownedObj(c1, c2) ∨
ownedRef(c1, c2)) ∧ ! comp(c1, c2)

According to the UML standard, association exists when
a classifier is associated with references to object(s) of an-
other classifier. In other words, the association can be
defined by using Def. 4. But if the former classifier is
composite that owns the object(s)/reference(s) of the lat-
ter classifier, then the classifiers may have a composi-
tion/aggregation relationship.

Definition 9 (Association) A c1 classifier is associated
with a c2 classifier if a c1 object does not own a c2 ob-
ject/reference and the c1 object is associated with a refer-
ence to a c2 object: assoc(c1, c2) := assocRef(c1, c2)

Please note a set of binary associations can be combined
to form N-ary associations that may exist. However, the
current work focuses on the recovery of binary associations,
leaving as future work the recovery of N-ary associations.

Definition 10 (Realization) A c1 classifier realizes a c2
classifier if c2 is an interface and c1 implements c2.

impl(c1, c2) := c2 = c1.gi ∧ c2.k = “interface′′

Definition 11 (Inheritance) A c1 classifier inherits from a
c2 classifier if c1 extends c2 and c2 is concrete/abstract
class: inher(c1, c2) := c2 = c1.gi ∧ c2.k = “class′′

The dependency generally indicates that a source clas-
sifier uses an object of a target classifier. But if
the former is a composite classifier that owns the ob-
ject(s)/reference(s) of the latter, then the classifiers have a
composition/aggregation relationship. Otherwise, if the for-
mer uses a reference to an object of the latter, then the clas-
sifiers have an association relationship.

Definition 12 (Dependency) A c1 classifier depends on
a c2 classifier if a c1 object does not own a c2 ob-
ject/reference, the c1 object is not associated with a c2 ob-
ject reference, and c2 is the return type of a c1 method or c1
has created the c2 object.

dep(c1, c2) := ! ownedObj(c1, c2) ∧ ! ownedRef(c1, c2) ∧
! assocRef(c1, c2) ∧ (c2 ∈ c1.{ui} ∨ c2 = c1.mj .ret)

Overall example. Applying our definitions on Prog.
1, we took as output the UML class diagram of Fig. 2.
On the contrary, the diagram generated by the professional
ObjectAid UML recovery tool is presented in Fig. 1.
Comparing the two diagrams, we observe that the diagrams
differ in five out of the seven UML relationship arrows.

Table 1. The dataset that we used for the effectiveness evaluation of the UML Recoverer.
ID Num. of Classifiers Num. of Fields Num. of Num. of Method Arguments Num. of Method Return-Types

Total Concrete Abstract Interface Enum. Total Dev. defined Methods Total Dev. defined Total Dev. defined
1 15 15 0 0 0 27 6 33 62 3 11 0
2 23 23 0 0 0 79 40 112 64 36 68 19
3 23 13 1 9 0 66 16 92 90 12 22 0
4 30 29 1 0 0 69 38 102 60 17 48 6
5 31 21 7 3 0 54 16 154 123 43 97 12
6 36 30 2 4 0 48 20 168 124 36 128 20
7 34 23 2 9 0 26 8 89 81 36 33 6
8 44 35 3 6 0 99 58 216 107 40 112 25

Figure 1. The diagram recovered by
ObjectAid for Prog. 1.

5 Experimental Evaluation

We implemented in Java the UML Recoverer research-
prototype of our approach. We evaluate the effectiveness
of the UML Recoverer on anonymized student projects
against ground-truth UML diagrams and diagrams recov-
ered by existing professional UML class recovery tools.
The number of the classifiers of the projects ranges from 15
to 44 (Table 1) and the number of their UML relationships
ranges from 20 to 170 relationships. Searching for exist-
ing (free to use) UML class recovery Eclipse plug-ins in the
Eclipse Marketplace, we found that the most widely used
tools currently are the ObjectAid7 and the UML Lab8. To
assess the effectiveness of the recovered binary UML re-
lationships, we compare them against manually extracted
relationships via using the precision and recall metrics [16].

The precision results are depicted in the first chart of
Fig. 3. We observe the precision of the UML Recoverer

steadily equals 1.0 in all projects (independently of the
project cases). On the contrary, the precision of the other
tools ranges from 0.37 to 0.86 and from 0.04 to 0.53,
respectively. The recall results are depicted in the sec-
ond chart of Fig. 3. We observe the recall of the UML

Recoverer ranges from 0.79 to 1.0. In particular, the
lower the number of the abstract classes and the inter-
faces a project includes, the higher the recall of the UML

7https://www.objectaid.com/class-diagram
8https://www.uml-lab.com/en/uml-lab/videos/

reverse-egnineering

Figure 2. The diagram recovered based on our
definitions for Prog. 1.

Recoverer is. This is due to the fact that the UML

Recoverer does not capture association relationships to
late-binding cases. The recall of the other tools ranges from
0.43 to 0.85 and from 0.05 to 0.53, respectively.

To explain why the precision and the recall values of
the two tools is very low in some cases, we inspected the
numbers of the UML relationships recovered by the tools
and we made the following observations. The two tools
do not recover the aggregation and the composition rela-
tionships at all. In particular, the ObjectAid considers as
dependencies/associations the relationships that are aggre-
gations or compositions. The UML Lab considers as asso-
ciations the relationships that are dependencies, aggrega-
tions or compositions. The number of the associations re-
covered by the UML Recoverer is slightly lower than the
ground-truth number. The reason is the late binding to ob-
jects. In particular, there are methods in the student projects
that accept as input objects of abstract classes/interfaces and
the UML Recoverer identifies the association to abstract
classes/interfaces but not to concrete classes.

6 Conclusion and Future Work

We formally defined a set of mappings between UML re-
lationships and OO relationships via using static-code anal-
ysis exclusively. A future direction of our work is the com-
parison of our algorithm against UML class recovery ap-
proaches that apply dynamic-code analysis. Another inter-

https://www.objectaid.com/class-diagram
https://www.uml-lab.com/en/uml-lab/videos/reverse-egnineering
https://www.uml-lab.com/en/uml-lab/videos/reverse-egnineering

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

Java Project ID

Pr
ec

is
io

n

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

Java Project ID

R
ec

al
l

0

0.2

0.4

0.6

0.8

1

1.2

UML Recoverer ObjectAid UML Lab

Figure 3. The precision and the recall results
for the three recovery tools.

esting future direction would be the recovery of N-ary asso-
ciations. Finally, the employment of semantic code analysis
could further enrich the effectiveness of our approach.

References

[1] Y. Guéhéneuc and H. Albin-Amiot, “Recovering bi-
nary class relationships: Putting icing on the uml
cake,” in ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Ap-
plications, 2004, pp. 301–314.

[2] Y. Guéhéneuc, “A reverse engineering tool for pre-
cise class diagrams,” in Conference of the Centre for
Advanced Studies on Collaborative research. IBM,
2004, pp. 28–41.

[3] A. Milanova, “Composition inference for UML class
diagrams,” Automated Software Engineering, vol. 14,
no. 2, pp. 179–213, 2007.

[4] W. Harrison, C. Barton, and M. Raghavachari, “Map-
ping UML designs to java,” in ACM SIGPLAN Confer-
ence on Object-Oriented Programming Systems, Lan-
guages & Applications, 2000, pp. 178–187.

[5] M. C. Leonardi, M. V. Mauco, L. Felice, G. Mon-
tejano, D. Riesco, and N. C. Debnath, “Recovering
business process diagrams from UML diagrams,” in
IEEE International Conference on Computer Systems
and Applications, 2010, pp. 1–6.

[6] H. M. Chavez, W. Shen, R. B. France, B. A. Mechling,
and G. Li, “An approach to checking consistency be-
tween UML class model and its java implementation,”
IEEE Transactions on Software Engineering, vol. 42,
no. 4, pp. 322–344, 2016.

[7] D. Torre, Y. Labiche, M. Genero, and M. Elaasar, “A
systematic identification of consistency rules for UML
diagrams,” Journal of Systems and Software, vol. 144,
pp. 121–142, 2018.

[8] D. Torre, Y. Labiche, M. Genero, M. T. Baldas-
sarre, and M. Elaasar, “UML diagram synthesis tech-
niques: a systematic mapping study,” in ACM Interna-
tional Workshop on Modelling in Software Engineer-
ing, MiSE@ICSE, 2018, pp. 33–40.

[9] D. Torre, Y. Labiche, M. Genero, M. Elaasar, and
C. Menghi, “UML consistency rules: a case study
with open-source UML models,” in ACM Interna-
tional Conference on Formal Methods in Software En-
gineering, 2020, pp. 130–140.

[10] M. Grechanik, K. S. McKinley, and D. E. Perry, “Re-
covering and using use-case-diagram-to-source-code
traceability links,” in ACM SIGSOFT International
Symposium on Foundations of Software Engineering,
2007, pp. 95–104.

[11] J. Niere, “Recovering uml diagrams from java code
using patterns,” in Workshop on Soft Computing Ap-
plied to Software Engineering, 2001, pp. 1–9.

[12] M. J. Decker, K. Swartz, M. L. Collard, and J. I.
Maletic, “A tool for efficiently reverse engineering ac-
curate UML class diagrams,” in IEEE International
Conference on Software Maintenance and Evolution,
2016, pp. 607–609.

[13] A. M. Sutton and J. I. Maletic, “Mappings for ac-
curately reverse engineering UML class models from
C++,” in IEEE Working Conference on Reverse Engi-
neering, 2005, pp. 175–184.

[14] A. Milanova, “Precise identification of composition
relationships for UML class diagrams,” in IEEE/ACM
International Conference on Automated Software En-
gineering, 2005, pp. 76–85.

[15] H. M. Chavez and W. Shen, “Formalization of UML
composition in OCL,” in IEEE International Confer-
ence on Computer and Information Science, 2012, pp.
675–680.

[16] R. A. Baeza-Yates and B. A. Ribeiro-Neto, Modern
Information Retrieval. ACM Press/Addison-Wesley,
1999.

	Introduction
	Related Work
	Object-Oriented Relationships
	OO and UML Relationship Mapping
	Experimental Evaluation
	Conclusion and Future Work

