
Evaluating a Tool for Creating Bug Report Assignment Recommenders

Disha Devaiya, John Anvik, Meher Bheree, Farjana Yeasmin Omee

Department of Mathematics and Computer Science
University of Lethbridge, Alberta, CANADA

E-mail: devaiya86@gmail.com, [john.anvik, bheree, omee]@uleth.ca

Abstract

Large software development projects that use bug track-
ing systems can become overwhelmed by the number of re-
ports filed. To assist in reducing the workload of project
members, researchers have proposed the use of bug report
assignment recommenders. To assist project members with
the creation of assignment recommenders, we proposed a
web-based tool called the Creation Assistant for Support-
ing Triage Recommenders (CASTR). This paper presents
the results of both a laboratory and field study of CASTR.
We found that CASTR can create assignment recommenders
with accuracy as high as 95%, 80%, and 70% for Top-
1, Top-3 and Top-5, respectively. The field study showed
that 60% of the participants found CASTR easy to use,
whereas the remaining participants found CASTR moder-
ately or slightly easy to use.

1. Introduction

An issue tracking system plays an important role in the
development of a high-quality software product. Such sys-
tems record information for a bug report or feature request.
These records include the name of the developer that re-
solved the issue and other relevant development activity. Is-
sue tracking systems are particularly important when team
members are globally distributed [3].

During the testing phase of software development, a de-
veloper or tester confirms that the software is working per
the specifications. If irregularities are found, a triager marks
it as a bug in the issue tracking system and includes such
information as the steps to reproduce and screenshots. A
triager will then assign the reported bugs to the appropri-
ate developer based on the view of the developer’s ability
or their bug fixing history. In the case of large projects, a

This work was funded by the Natural Sciences and Engineering Re-
search Council of Canada.

DOI reference number: 10.18293/SEKE2021-163

large number of new bugs can be submitted daily [2]. For a
software project that uses a manual triage process, the bug
triagers can become overwhelmed. To address such prob-
lems, researchers have proposed the use of bug report as-
signment recommenders [3, 4, 6, 7, 8].

However, the creation of a bug report assignment rec-
ommender for a software project can be a complex and
time-consuming process. To address this problem, we pre-
viously proposed the Creation Assistant for Easy Assign-
ment (CASEA) [1]. CASEA was further refined into a
web-based tool called the Creation Assistant for Support-
ing Triage Recommenders (CASTR) [5]. CASTR allows a
project member to create an assignment recommender for
a project by specifying such items as labelling heuristics,
a machine learning algorithm and a data imbalance tech-
nique. They can also use a “specify and verify” approach to
determine the optimal configuration settings for a project-
specific assignment recommender. By providing a little
project knowledge, a project member can produce a bug re-
port assignment recommender in a short period.

This paper presents an evaluation of the CASTR system
to answer the following research questions:

1. RQ1: Does CASTR create assignment recom-
menders that make accurate recommendations? If
CASTR creates assignment recommenders that make
accurate recommendations, then a triager need not ex-
amine the report as deeply. Using such recommenders
changes the triager’s role from making decisions rely-
ing on their knowledge, experience, intuition or infor-
mation they can gain from existing tools to confirm-
ing decisions made by the recommender. This shift
changes, and hopefully, reduces triager cognitive load.

2. RQ2: Can human triagers make effective use of in-
formation presented by CASTR? If CASTR creates
assignment recommenders that assist human triagers
then time can be saved by not assigning bug reports to
the appropriate developer manually. Some of the hu-
man resources consumed by the triage process can be
then directed elsewhere in the project.

1

Our analytical evaluation conducted using bug report
datasets from the Plasmashell1, LibreOffice2 and Firefox3

projects showed that recommenders with good accuracy
could be created. A field study with ten participants from
different technical backgrounds gave evidence that they
were able to make effective use of the information provided
and that most of them are likely to use CASTR in creating
an assignment recommender.

2. Creation Assistant for Supporting Triage
Recommenders (CASTR)

CASTR [5] is a platform-independent web-based tool
that assists a project member with the creation of bug re-
port assignment recommenders. It provides a web interface
for downloading a dataset from a Bugzilla repository. In-
formation about the collected dataset is displayed by a Con-
figuration tab. CASTR assists with setting project-specific
heuristics for labelling reports with the names of the de-
veloper to be recommended. As not all of the developer
names may be valid, CASTR allows the user to select a
minimum threshold of resolution activity to eliminate de-
velopers that have resolved a small number of bug reports.
CASTR provides the option of choosing one of four su-
pervised machine learning algorithms: Support Vector Ma-
chines (SVM), Multinomial Naı̈ve Bayes, C4.5, and Rules.
We chose these algorithms as they represent different cate-
gories of supervised machine learning algorithms. CASTR
also provides three different approaches to handle imbal-
anced data: oversampling using SMOTE, manual oversam-
pling and undersampling using Expectation-Maximization
(EM). When the user clicks the “Recommender” button
in the Configuration tab, a request is sent to the CASTR
web service and redirects the user to an Analysis tab that
presents progress information, such as the time to train the
recommender and evaluation results. The Analysis tab dis-
plays the average Top-1, Top-3 and Top-5 precision and re-
call values for a testing set. A user can tune a recommender
by comparing these values with the last five generated rec-
ommenders to create the best assignment recommender for
their project.

3. Evaluation

In evaluating CASTR, we sought to answer our two re-
search questions. We answered RQ1 using an analytical
evaluation of the recommenders created by CASTR and in-
vestigated RQ2 through a field study.

1https://bugs.kde.org
2https://bugs.documentfoundation.org
3https://bugzilla.mozilla.org

3.1. An Analytic Evaluation of the Recommenders

We selected bug reports with the resolution Fixed from
three open source projects: Plasmashell, LibreOffice and
Firefox. Also, we removed bug reports for developers who
fixed less than 20 reports. We used a 90%/10% split be-
tween training and testing sets. Table 1 shows the number
of bug reports used for the three projects. The third column
shows the number of bug reports remaining filtering.

We evaluate the performance of a recommender using
the metrics of precision4 and recall5. This requires us to
know the set of developers who could have been accurately
assigned to a bug report. We approximated this information
using the names of developers who fixed reports in the same
component as the testing bug report.

We explored all possible combinations of machine learn-
ing and data imbalance algorithms provided by CASTR.
As Table 2 shows, we found that LibreOffice produced
the highest precision values (97/95/91) with the Naı̈ve
Bayes/SMOTE combination whereas for Firefox the Naı̈ve
Bayes/undersampling with EM technique was the best
(55/36/36). On the other end, Plasamshell had the best re-
sults (96/83/73) using an SVM algorithm without any im-
balance technique applied. The low recall values are likely
a result of overestimating the set of possible developers. For
example, in the Firefox project, it was not uncommon for
the estimated set of developers to be 30+ developers, mean-
ing that the best recall value for a single recommendation
would be about 3% (1/30).

3.2. A Field Study of CASTR

To answer our second research question, we conducted
a field study with experienced software developers, project
managers, bug triagers and graduate students. The study
contained ten (10) participants: 3 project managers, 5 ap-
plication developers and 2 graduate students.

The field study was conducted by first asking participants
to complete an initial survey that collected demographic
information and technical background details. The demo-
graphic questions were for general analysis to break down
the response data into meaningful groups. For example, we
found that Indian participants took the survey more than the
participants with other nationalities and the majority were
in the age range of 26 to 39. Most participants completed
a graduate-level of schooling, and most of them belong to
the job function Application Developer. For technical back-
ground, 60% reported having a lot of prior experience with
issue tracking systems, and 33% had a good amount of ex-
perience with contributing to large open-source projects.

4Precision measures how often the approach makes a relevant recom-
mendation for a report

5Recall measures how many of the relevant recommendations are truly
recommended

2

Projects Original
Dataset Size

After Filtering
Dataset Size

of Bug Reports in
Training Set

of Bug Reports in
Testing Set

Plasmashell 1112 532 479 53
LibreOffice 2500 1725 1553 172

Firefox 1000 777 699 78

Table 1. Training and testing set sizes for evaluating recommenders.

Project Algorithm Sampling
Technique

Precision Recall
Top 1 Top 3 Top 5 Top 1 Top 3 Top 5

Plasmashell SVM None 96 83 73 11 26 38
LibreOffice Naı̈ve Bayes SMOTE 97 95 91 2 7 11

Firefox Naı̈ve Bayes UnderSampling/EM 55 36 36 11 15 9

Table 2. Evaluation results of assignment recommender

Overall, participants had low bug triaging experience6 and
low familiarity with the machine learning algorithms.

After completing the initial survey, participants were
given a user manual of CASTR and asked to create an as-
signment recommender for the Plasmashell project. The
Plasmashell dataset used was identical to that used for the
analytical experiment.

In the field study, a total of 71 recommenders were cre-
ated by the participants using different heuristic configura-
tions provided by CASTR. Table 3 shows the quantitative
results for the best recommender created by each partici-
pant. The first column identifies the unique participant. The
second column presents the machine learning algorithm se-
lected by the participants for creating their best assignment
recommender. The next two columns present the minimum
and maximum threshold that the participants selected be-
fore creating their most accurate assignment recommender
using CASTR. Half of the participants chose values greater
than or equal to 10 for the minimum threshold and the other
half used values less than 10. By default, the maximum
threshold is set to the largest activity value depending on the
set project-specific heuristics. These values were left un-
changed by the participants. The next three columns show
the Top-1, Top-3 and Top-5 precision and recall values for
the best assignment recommender created by the partici-
pants. Most of the assignment recommenders were created
using the SVM machine learning algorithm. In the case of
Top-5, two scenarios have no values as the recommender
suggested less than 5 developers because of threshold value
settings.

As a part of the recommender evaluation, CASTR pro-
vides information about how long the tool takes to create
a recommender. For most users, the average time to cre-
ate a recommender using any of the algorithms was less

6A possible reason for this is that most of the participants were part of
a large software development project team where their responsibilities are
limited to within specific modules or feature development.

than 30 seconds. In general, the results show that assign-
ment recommenders created using the C4.5 and SVM al-
gorithms took more processing time than the assignment
recommender created using the Naı̈ve Bayes and Rules al-
gorithms. Two notable exceptions were for Users 1 and
7, whose average recommender creation times using C4.5
was between 160 and 200 seconds. A possible reason for
the large processing time is that both participants had set
the minimum threshold value as 1, meaning that CASTR
considered all of the possible developers for classification,
which led to a substantial increase in the processing time.

Although participants were provided with a video pre-
sentation of CASTR and a brief tutorial of the recommender
creation process at the beginning of the field study, partici-
pants encountered some problems related to understanding
concepts, specifically with labelling bug reports and setting
an appropriate minimum threshold value. Most of the par-
ticipants did not initially understand how to select the ap-
propriate label for bug report resolution and which machine
learning algorithm to use. Also, the meaning of the preci-
sion and recall metrics was not initially well understood by
participants. However, once their meaning was understood,
participants felt they made more intelligent choices.

The field study results show that 60% of the participants
found CASTR easy to use whereas the remaining partici-
pants found CASTR moderately or slightly easy to use. We
received positive responses about recommending CASTR
for creating a recommender for bug report assignment with
50% of the participants responding “very likely” or “ex-
tremely likely”, and the remaining participants responding
“moderately likely”. When asked whether they believed
that the assignment recommenders created using CASTR
would reduce the time to triage bug reports, all participants
responded either “extremely likely” (2), “very likely” (5),
or ”moderately likely” (3).

Based on observations while analyzing the field study re-
sult, participants were found to employ two strategies for as-

3

Identifier Algorithm Trials to
Best

Threshold Top 1 (%) Top 3 (%) Top 5 (%)
Min Max Precision Recall Precision Recall Precision Recall

User1 SVM 2 5 108 92 9 83 25 72 34
User2 SVM 1 10 130 96 11 83 25 77 38
User3 SVM 1 26 112 94 11 85 30 - -
User4 Naı̈ve Bayes 5 49 73 87 9 78 21 - -
User5 SVM 1 10 130 96 11 83 25 77 38
User6 SVM 2 1 141 74 17 58 33 56 49
User7 SVM 4 1 61 91 7 85 21 74 29
User8 Naı̈ve Bayes 1 1 117 50 5 37 10 33 14
User9 SVM 1 10 115 94 10 82 24 76 38

User10 SVM 7 1 102 87 14 65 27 60 42

Table 3. Best assignment recommenders created by participants.

signment recommender creation using CASTR. Some par-
ticipants were found to be very experimental in their ap-
proach, making many changes before creating a new recom-
mender. Other users were more methodical, making small
changes and testing the results. Most of the time, partici-
pants changed the heuristic configurations and not the min-
imum threshold. Out of 71 recommenders, 42 were created
with the minimum threshold value as 1, 27 recommenders
were created with a threshold more than or equal to 10 and
the remaining 2 recommenders were created with thresholds
of 3 and 5. The majority of recommenders were created us-
ing the SVM machine learning algorithm (32), with Naı̈ve
Bayes being the second most used algorithm (19) and the
C4.5 and Rules algorithm each used 10 times.

4. Conclusions

This paper presented the results of our evaluation of
CASTR, a tool to assist software development projects with
the creation of bug report assignment recommenders. Our
analytical evaluation showed that CASTR can create rec-
ommenders with good accuracy, answering RQ1.

Our field study demonstrated that users were able to cre-
ate accurate bug report assignment recommenders in less
than 10 trials. This indicates that they were able to make
good use of the information provided by CASTR, answer-
ing RQ2. Also, users found the tool was generally easy to
use.

Although the results we obtained have shown that a
CASTR assists the project members with the creation of as-
signment recommenders based on feedback and the results
of the user study, several future improvements were identi-
fied. These include extending CASTR to collaborate with
the other issue tracking systems, having the tool use infor-
mation from duplicate bug reports, supporting the creation
of other types of triage recommenders, and a field study by
dataset project members.

References

[1] J. Anvik, M. Brooks, H. Burton, and J. Canada. Assisting
software projects with bug report assignment recommender
creation. In Proceedings of the 26th International Conference
on Software Engineering and Knowledge Engineering, pages
470–473, 2014.

[2] J. Anvik, L. Hiew, and G. C. Murphy. Who should fix this
bug? In Proceedings of the 28th International Conference on
Software Engineering, ICSE ’06, pages 361–370, New York,
NY, USA, 2006. ACM.

[3] J. Anvik and G. C. Murphy. Reducing the effort of bug re-
port triage: Recommenders for development-oriented deci-
sions. ACM Trans. on SE and Methodology, 20, 2011.

[4] P. Bhattacharya and I. Neamtiu. Fine-grained incremen-
tal learning and multi-feature tossing graphs to improve bug
triaging. In Proceedings of the 2010 IEEE International Con-
ference on Software Maintenance, ICSM ’10, pages 1–10,
Washington, DC, USA, 2010. IEEE Computer Society.

[5] D. Devaiya. Castr: A web-based tool for creating bug re-
port assignment recommenders. Master’s thesis, University
of Lethbridge, Lethbridge, Alberta, CANADA, 2019.

[6] G. Jeong, S. Kim, and T. Zimmermann. Improving bug triage
with bug tossing graphs. In Proceedings of the the 7th Joint
Meeting of the European Software Engineering Conference
and the ACM SIGSOFT Symposium on The Foundations of
Software Engineering, ESEC/FSE ’09, pages 111–120, New
York, NY, USA, 2009. ACM.

[7] S. Kim and E. J. Whitehead, Jr. How long did it take to fix
bugs? In Proceedings of the 2006 International Workshop
on Mining Software Repositories, MSR ’06, pages 173–174,
New York, NY, USA, 2006. ACM.

[8] R. Shokripour, J. Anvik, Z. M. Kasirun, and S. Zamani.
Why so complicated? simple term filtering and weighting
for location-based bug report assignment recommendation. In
Proceedings of the 10th Working Conference on Mining Soft-
ware Repositories, MSR ’13, pages 2–11, Piscataway, NJ,
USA, 2013. IEEE Press.

4

