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Abstract—The ability to perform automated conversions be-
tween data conforming to different specifications is a key ingre-
dient to achieve interoperability among heterogeneous systems—
which, in turn, is at the basis of the creation of so-called
Systems of Systems. These conversions require the definition
of mappings between concepts of separate data specifications,
which is typically a hard and time-consuming task. In this paper,
we present a technique to automatically suggest mappings to
users, based on both linguistic and structural similarities between
terms. The approach has been implemented in our prototype
tool, SMART (SPRINT Mapping & Annotation Recommendation
Tool), and it has been validated through tests carried out using
specifications from the transportation domain.
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I. INTRODUCTION

In recent years there has been a growing interest in the
development and deployment of so-called Systems of Systems
[1], [2], where independent, heterogeneous systems built using
different technologies interact to provide complex services. A
paradigmatic example of this trend is found in the transporta-
tion domain, especially in the European Union, where initia-
tives are underway to create a Single European Transportation
Area [3], and in particular a Single European Railway Area
[4]. Most prominently, the EU Shift2Rail Joint Undertaking
[5], especially within its Innovation Programme 4, aims to
provide users with a “one-stop-shop” solution that allows them
to handle multi-modal trips across borders, using a single
application that integrates many different services (shopping,
booking, ticket issuing, etc.) from heterogeneous providers
of different Nations. This requires the integration of services
offered by transport operators from different countries, which
typically use different standards and specifications to describe
data such as travel offers, booking information, etc. This
heterogeneity of data representations significantly hinders the
interoperability of the systems to be integrated, and it can
be mitigated through the adoption of suitable conversion
mechanisms between data specifications. Scrocca et al. [6]
developed a promising data conversion approach, following
the schema described in [7] and shown in Figure 1.

In this schema, a reference ontology acts as “pivot”
between data specifications A and B, whereby specification A
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is “lifted” to the ontology (i.e., the concepts in specification
A are mapped to those in the ontology), and then the latter
is “lowered” to specification B. The approach has proven
to be effective [6] and, although it originated from projects
focusing on the transportation domain and has been tested
using transportation data, it is general and can be applied to
any other domain where a reference ontology is available.

At its core, the schema of Fig. 1 relies on declarations—
expressed in suitable notations—that precisely establish cor-
respondences between terms of specifications A, B with
concepts in the reference ontology. The creation of these
mappings, however, is typically a time-consuming activity,
which must be carried out by users who have a good level of
familiarity with the data specifications and with the reference
ontology.

This paper presents a technique that aims at easing the
process of creating mappings between concepts in different
data specifications and ontologies by: (i) suggesting to users
potential mappings between the terms in a specification and
those of an ontology; (ii) allowing them to review and con-
firm/revise the suggested mappings; and (iii) automatically
generating the necessary annotations and declarations that
enable the conversion technique of [6].

Syntactic Model
Standard A

Syntactic Model
Standard B

Semantic Model
Reference Ontology

Fig. 1. General schema of conversion mechanism (from [6], [7]).

The technique builds on the principles laid out in [8]. It
assumes that data specifications are provided as XSD files,
and it is based on two main steps. First, it looks for linguistic
similarities between the terms of a given data specification
and those in the reference ontology, thus creating an initial
mapping. Then, it uses the structure of the specification and



of the ontology (i.e., how terms are related to one another) to
refine—and possibly extend—the linguistic mapping.

The technique has been implemented in a prototype tool,
called SMART (SPRINT Mapping & Annotation Recommen-
dation Tool), as part of the SPRINT [9] project, which aims
to define an innovative Interoperability Framework [10]. The
tool supports users in the creation and review of the mappings,
and then in the generation of the corresponding annotations.
The technique and the tool have been validated through a
set of mapping experiments involving data specifications and
ontologies from the transportation domain.

The paper is structured as follows: Sect. II overviews some
relevant related works; Sect. III describes the procedures for
generating the suggested mappings and the corresponding an-
notations; Sect. IV briefly describes the SMART tool; Sect. V
presents the results of the validation, and Sect. VI concludes.

II. RELATED WORK

In the domain of mappings between XML-based data and
ontologies, most works focus on automatically transforming
XML Schemas into newly-created ontologies capturing the
implicit semantics existing in the structure of XML documents.
For example, Rodrigues et al. [11] specify mappings between
the elements of an XML Schema and those (classes, object
and datatype properties) defined by an OWL ontology. OWL
elements are identified by their URI references [12], while the
mapped XML nodes are identified by XPath [13] expressions.

When transforming XML-based information into an ontol-
ogy, two approaches are most common: in the first approach,
mapping rules between elements of the XSD and OWL stan-
dards are used to generate an ontology from an XSD file;
in the second approach, instead, the generated ontology is
populated from XML instances. Hacherouf et al. [14] focus on
the first approach. They use a set of transformation patterns
based on the Janus method [15] to translate an XSD block
to an equivalent ontology element. The Janus method uses a
greater number of XSD elements [16] compared to the work in
[11], where transformation rules are limited to the most-used
XSD elements (xsd:element, xsd:attribute, xsd:complexType).
Some works follow a linguistic approach to translate XML-
based information into ontologies. Among them, An et al. [17]
propose a heuristic algorithm for finding semantic mappings
based on tree pattern formulas [18]. Yin et al. [19] define
a method to create mappings between the concepts of two
different ontologies. The method divides each ontology into
several sub-trees using a classification method [20], and builds
mappings between the root nodes of the identified trees in the
ontologies. Word similarity is defined based on the assumption
that the longer the common substrings between two terms, the
more similar they are, and it is computed using the Longest
Common Substring algorithm [21]. Shen et al. [20] present a
method to compute contextual similarity between two words.
The idea is that two concepts can be mapped when they either
have high word similarity and low context dissimilarity, or low
word similarity and high context similarity.

Our proposed technique is unique in that it employs a two-
step process that combines both a linguistic and a structural
approach to map elements between XSD specifications and
ontologies. This has the advantage that, even when schema
elements do not correspond structurally, they might still be
linguistically similar, which makes it possible to establish
suitable correspondences. Some works (e.g., the Janus method
[15]) cover a greater range of XSD features than our approach
when transforming XSD schemas into OWL ontologies. How-
ever, on the one hand, we pursue a different aim, in that we
do not generate new ontologies, but identify correspondences
between existing elements; on the other hand, our approach
exploits both linguistic and structural features, and we leave
for future work the extension of the breadth of XSD features
taken into account by the algorithms.

The next section provides some details about the proposed
technique.

III. METHODOLOGY

The overall workflow of the approach implemented in
the SMART tool is depicted in Fig. 2. Given a pair of
specifications, SMART identifies a set of mapping sugges-
tions, where each suggestion is a pair of terms—one from
each specification—accompanied by a Confidence Score (CS).
Then, the selector module receives the mapping suggestions
and allows the user to manually inspect them; during the
inspection, the user can confirm or modify the mappings, and
even suggest new pairs, if necessary. Alternatively, the user
can let the SMART tool automatically choose the suggestions
with the highest CS. Finally, the pipeline sends the Confirmed
Mappings to the Annotation Generation module to produce
the annotations.

Fig. 2. Overview of the workflow implemented in the SMART tool.



The rest of this section describes the procedure for gen-
erating the pairs of suggested mappings, whereas Section IV
provides an overview of the implementation of the tool.

A. Mapping Algorithm

Given two different data specifications, the Mapping Al-
gorithm’s primary idea is to identify linguistically and struc-
turally similar terms. The algorithm uses two main techniques:
(i) linguistic mapping and, then, (ii) structural mapping. The
former applies Natural Language Processing (NLP) and Ma-
chine Learning (ML) techniques to identify similar terms.
The latter, instead, exploits the source and target data spec-
ifications’ structures to refine—and possibly extend—the set
of mappings. Algorithm 1 details the flow of the Mapping
Algorithm. For clarity and brevity, some parts have been
encapsulated in sub-algorithms that are shown as algorithms
2, 3 and 4.

The algorithm takes as input two specifications. Typically,
one of them is represented by an XSD file (X in line 2 of Alg.
1), whereas the other is an ontology represented by an OWL
file (O). However, the algorithm can also work when the input
files are both XSD files, or both ontologies.

Algorithm 1 Mapping Algorithm
1: procedure SMARTMAPPING
2: input: X: XSD file, O: OWL file
3: output P: set of triples 〈xt, ot, s〉, xt ∈ X, ot ∈ O, s:Confidence score
4: xName← (X.Attribute.name ∪ X.Element.name)
5: xType← (X.Attribute.type ∪ X.Element.type)
6: xCl← X.ComplexTypes
7: xObPr← {xb|xb ∈ xName if XType(xName) = ComplexType}
8: xDtPr← {xd|xd ∈ xName if XType(xName) = Datatype}
9: oCl← O.Class

10: oObPr← O.ObjectProperty
11: oDtPr← O.DatatypeProperty
12:
13: . Create initial mapping between terms using linguistic similarity
14: mappedClass← W2VlinguisticMap(xCl, oCl)
15: mappedObjProp← W2VlinguisticMap(xObPr, oObPr)
16: mappedDataProp← W2VlinguisticMap(xDtPr, oDtPr)
17:
18: . New mappings between object properties (Alg. 2)
19: mappedObjProp← AddObjPropFromClasses(

mappedObjProp,mappedClass,
xObPr, oObPr )

20:
21: . New mappings btw. classes based on classes & obj. prop. (Alg. 3)
22: mappedClass← AddClassesFromClassesAndObjProp(

mappedObjProp,mappedClass,
xCl, oCl )

23:
24: . New mappings between classes based only on properties (Alg. 4)
25: mappedClass← AddClassesFromObjProp(

mappedObjProp,mappedClass,
xCl, oCl )

26:
27: return mappedClass ∪ mappedObjProp ∪ mappedDataProp
28: end procedure

Linguistic Mapping: The proposed linguistic mapping
technique exploits the model presented in [22] built using
the Word2Vec (W2V) algorithm [23] pre-trained on Google
News dataset (about 100 billion words) [24]. In the rest of
the work, we refer to this W2V pre-trained model whenever

Algorithm 2 New Object Properties
1: procedure ADDOBJPROPFROMCLASSES
2: input: mappedObjProp, mappedClass, xObPr, oObPr
3: output P: set of triples 〈xt, ot, s〉, xt ∈ X, ot ∈ O, s:Confidence score
4:
5: propList← ∅
6: foreach (xcj , ocj , sj) ∈ mappedClass do
7: foreach (xci, oci, si) ∈ mappedClass do
8: foreach (xp, op) ∈ xObPr× oObPr do
9: if xci = xp.ComplexType & oci = op.Domain &

10: xcj = xp.Type & ocj = op.Range then
11: s← (si + sj)/2
12: propList← propList ∪ {(xp, op, s)}
13: end if
14: end foreach
15: end foreach
16: end foreach
17: return mappedObjProp ∪ propList
18: end procedure

we use the expression W2V model. The linguistic mapping
technique consists of the following five steps.

a) Initialization: This step loads the W2V model and
outputs its unique terms as a vocab list and its similarity vector
(i.e., the keyed vector representation of the terms).

b) Pre-processing the specifications: We assume that
the XSD specification represents the knowledge as a set of
ComplexTypes containing Elements and Attributes, along with
their types, which can be either DataType or ComplexElement.
On the other hand, the ontology represents knowledge as a
set of Classes and related Properties. Properties can be either
DataTypeProperty or ObjectProperty. A Property corresponds
to a relation between its domain (represented by a Class) and
its range (which can be a Class or a DataType). Inspired
by the mapping rules introduced in [11], we designed a set
of transformation rules presented in Table I. Then, this step
parses the XSD and the ontology files and builds three sets
of terms from each file. Lines 4-11 of Alg. 1 show the steps
to obtain these sets. The sets extracted from the XSD file
are xCl, xObPr, xDtPr, where xCl (resp., xObPr, xDtPr) is
the set of candidate terms to be mapped to Classes (resp.,
ObjectProperties, DataTypeProperties) in the ontology. Con-
cerning the ontology, instead, oCl (resp., oObPr, oDtPr) is the
set of terms corresponding to Classes (resp., ObjectProperties,
DataTypeProperties) in the ontology.

In the following steps (which are encapsulated in the
application of the W2VlinguisticMap function on lines 14-
16), mappings between pairs of terms from the various sets are
created, depending on their nature, using a linguistic approach.

c) Finding n similar terms: The W2V model is applied
separately to the six sets of terms to get n similar words for
each term, where n is a configuration parameter (a positive
integer). We tested various values for n (3, 5, 10, 20) to find a
good balance between accuracy and efficiency of the approach,
and we finally settled on n = 3. For instance, if x and y are
the number of terms from the two specifications (XSD file and
ontology), respectively, after obtaining n similar terms using
the W2V model, the resulting matrices will have size x·(n+1)
(for the XSD file) and y · (n + 1) (for the ontology)—notice



TABLE I
XSD TO OWL STRUCTURAL MAPPING RULES

XSD OWL Type and Name
<xsd:complexType name = "A"> Class(A)
<xsd:complexContent> SubClassof(B)
<xsd:extension base = "B">
Where B is another ComplexElement
<xsd:complexType name = "A"> ObjectProperty(hasE1)
<xsd:complexContent> Domain(Class(A))
<xsd:extension> Range(Class(B))
<xsd:element name = "E1" type= "B">
Where B is another ComplexElement
<xsd:complexType name = "A"> ObjectProperty(hasAttr1)
<xsd:complexContent> Domain(Class(A))
<xsd:extension> Range(Class(B))
<xsd:attribute name = "Atr1" type = "B">
Where B is another ComplexElement
<xsd: complexType name = "A"> DataTypeProperty(hasAttr1)
<attribute name = "Attr1" type = "D"> Domain(Class(A))
Where D is a DataType Range(DataType(D))
<xsd:complexType name = "A"> DataTypeProperty(hasE1)
<xsd:complexContent> Domain(Class(A))
<xsd:extension> Range(DataType(D))
<xsd:element name = "E1" type = "D">
Where D is a DataType

that each original term is also included. Table II provides an
example of the resulting matrix. The left-most column shows
the terms from each specification, whereas the others show the
words suggested through the W2V model for each term.

TABLE II
MATRIX REPRESENTATION AFTER STEP (C)

(A): W2V suggestions for terms in the first specification
Term SimilarTerm1 SimilarTerm2 SimilarTerm3
Itinerary Itinerary Itineraries CruiseTour
EffectiveDeparture Departs SuccessionPlan DepartsArrives

(B): W2V suggestions for terms in the second specification
Term SimilarTerm1 SimilarTerm2 SimilarTerm3
Trip Trip Travels FliesInto
departureTime departing abruptdeparture departures

d) Match terms in the first specification to those in the
second specification: In this step, each term from each matrix
produced in step (c) for the first specification is matched
to the terms in the corresponding matrix for the second
specification. Therefore, the matrix obtained for set xCl is
matched to the one of oCl (within the W2VlinguisticMap
invocation on line 14), and similarly for the other sets of
terms. The W2V similarity vector (discussed in step (a)) is
used to compute the cosine similarity [25] (CS) for each
pair of terms 〈MatTermS1,MatTermS2〉, where MatTermS1
(resp., MatTermS2) is a term of the matrix obtained for the
first (resp., second) specification (notice that the matrices
include the original terms retrieved from the specifications).
CS ranges from 0 to 1, where the higher the value, the
higher the similarity. The resulting triplets have the form
〈MatTermS1,MatTermS2,CS〉. We set 0.5 as cut-off threshold,
and consider a triplet as a potential generator of a mapping
(according to the rule described in step (e)) if its CS value is
greater than or equal to the threshold.

e) Count number of matches: In this step we take each
triple 〈MatTermS1,MatTermS2,CS〉 obtained in step (d), and
we trace it back to its pair of original terms 〈TermS1,TermS2〉
from the first and second specifications, respectively. For
example, consider again Table II. Imagine that, after step
(d), we have a triple 〈Itineraries,Travels, 0.677〉. We trace
it back to the original pair of terms 〈Itinerary,Trip〉, and
we increase by 1 the counter of the number of matches
between Itinerary and Trip. In this way, for each pair of
original terms 〈TermS1,TermS2〉 we count the number of
matches, and we compute the similarity value CSts1,ts2
for the pair as the average of the CS values of the
triples 〈MatTermS1,MatTermS2,CS〉 that trace back to it.
At the end of this step, we produce a set of triples
〈TermS1,TermS2,CSts1,ts2〉.

Step (e) concludes the linguistic part of the mapping
procedure. The rest of the algorithm (lines 19-27), which
is explained next, refines and extends the suggestions by
exploiting the structure of the two specifications.

Structural Mapping: The proposed structural mapping
technique relies on the rules presented in Table I. More
precisely, we use the structure of the ontology as guidance
to further refine the mappings returned by the linguistic
mapping. First of all, notice that the results produced by
the linguistic mapping are stored in three sets of triples of
the form 〈TermS1,TermS2,CSts1,ts2〉 named mappedClass,
mappedObjProp and mappedDataProp, where TermS1 and
TermS2 are names of Classes, ObjectProperties, or DataProp-
erties, depending on the set. Notice that, for the sake of
structural mapping, we consider as Classes, ObjectProperties
and DataProperties also elements from XSD specifications
when they match the rules of Table I (e.g., a ComplexType
is considered, for structural mapping purposes, as a Class).

In this step we consider that each specification defines
triples of the form 〈Domain,ObjectProperty,Range〉. In the
following, we indicate a triple from the first (resp., sec-
ond) specification as 〈DomainS1,ObjectPropertyS1,RangeS1〉
(resp., 〈DomainS2,ObjectPropertyS2,RangeS2〉).

We perform the following refinements of the mappings.
(i) Suggest properties if domains and ranges

match: If, in mappedClass, DomainS1 is mapped to
DomainS2 and RangeS1 is mapped to RangeS2, then triple
〈ObjectPropertyS1,ObjectPropertyS2,CSops1,ops2〉 is added
to set mappedObjProp, where CSops1,ops2 is the average of
the confidence scores of the mappings between domains and
ranges—i.e., pair 〈ObjectPropertyS1,ObjectPropertyS2〉 is
suggested with confidence score CSops1,ops2. This step is
performed by the procedure invoked at line 19 of Alg. 1; in
particular, the addition of each single new pair is performed
by lines 9-13 of Alg. 2.

(ii) Suggest domains (resp., ranges) if properties
and ranges (resp., domains) match: If ObjectPropertyS1
is mapped to ObjectPropertyS2 in mappedObjProp and
RangeS1 is mapped to RangeS2 in mappedClass, then pair
〈DomainS1,DomainS2〉 is suggested with confidence score
CSds1,ds2, where CSds1,ds2 is the average of the confidence



scores of the mappings between properties and ranges. Simi-
larly, if ObjectPropertyS1 is mapped to ObjectPropertyS2 and
DomainS1 is mapped to DomainS2, then we suggest pair
〈RangeS1,RangeS2〉). This step is performed by the procedure
invoked at line 22 of Alg. 1, which is detailed in Alg. 3.

Algorithm 3 New Classes Based on Properties and Classes
1: procedure ADDCLASSESFROMCLASSESANDOBJPROP
2: input: mappedObjProp, mappedClass, xCl, oCl
3: output P: set of triples 〈xt, ot, s〉, xt ∈ X, ot ∈ O, s:Confidence score
4:
5: rangeList, domainList← ∅
6: foreach (xci, oci, si) ∈ mappedClass do
7: foreach (xpj , opj , sj) ∈ mappedObjProp do
8: foreach (xc, oc) ∈ xCl× oCl do
9: . Domain and property are mapped, we map range

10: if xci = xpj .ComplexType & xc = xpj .Type &
11: oci = opj .Domain & oc = opj .Range then
12: s← (si + sj)/2
13: rangeList← rangeList ∪ {(xc, oc, s)}
14: end if
15: . Property and range are mapped, we map domain
16: if xci = xpj .Type & xc = xpj .ComplexType &
17: oci = opj .Range & oc = opj .Domain then
18: s← (si + sj)/2
19: domainList← domainList ∪ {(xc, oc, s)}
20: end if
21: end foreach
22: end foreach
23: end foreach
24: return mappedClass ∪ rangeList ∪ domainList
25: end procedure

(iii) Suggest domains and ranges if proprieties match: In
this case, if ObjectPropertyS1 is mapped to ObjectPropertyS2
in mappedObjProp, we suggest pairs 〈DomainS1,DomainS2〉
and 〈RangeS1,RangeS2〉, both with confidence score that is
60% that of the mapping between the properties (i.e., that
is equal to 0.6 · CSops1,ops2). This step is performed by the
procedure invoked at line 25 of Alg. 1 (see also Alg. 4).

Algorithm 4 New Classes Based on Properties
1: procedure ADDCLASSESFROMOBJPROP
2: input: mappedObjProp, mappedClass, xCl, oCl
3: output P: set of triples 〈xt, ot, s〉, xt ∈ X, ot ∈ O, s:Confidence score
4:
5: rangeList, domainList← ∅
6: foreach (xp, op, s) ∈ mappedObjProp do
7: foreach (xci, oci) ∈ xCl× oCl do
8: foreach (xcj , ocj) ∈ xCl× oCl do
9: if xci = xp.ComplexType & oci = op.Domain &

10: xcj = xp.Type & ocj = op.Range then
11: s← (s ∗ 0.6)
12: domainList← domainList ∪ {(xci, oci, s)}
13: rangeList← rangeList ∪ {(xcj , ocj , s)}
14: end if
15: end foreach
16: end foreach
17: end foreach
18: return mappedClass ∪ rangeList ∪ domainList
19: end procedure

Although the algorithms presented above assume that one
specification is given as an XSD file, and the other as an
ontology, indeed they have been adapted to also work when
the input specifications have the same format (i.e, they are both
XSD files, or both ontologies). More precisely, if both inputs

are XSD files, then the algorithm simply performs the same
pre-processing step explained in point (b) of the linguistic
mapping on both files, to extract a set of "candidate classes"
xCl1, xCl2 from each file, which are then used in the rest of
the algorithm instead of xCl and oCl (similarly for object and
data properties).

B. Annotation Generation

The suggested mappings, following a review of the user,
are sent to the the annotation generation module for the final
step of the process (see Fig. 2). The annotation generation
module is composed of two pipelines, one for each type of
annotations supported. More precisely, it can produce either
Java annotations compatible with the approach presented
in [7], or YARRRML rules compatible with the converter
presented in [6]. Since the annotation generation step is tightly
linked to the conversion approach depicted in Fig. 1, it assumes
that the first specification is given in terms of an XSD file,
whereas the second is an ontology. The rest of this section
provides a brief description of the two pipelines.

Java annotation pipeline: In this case, the module
analyzes each suggested mapping, and produces a corre-
sponding Java annotation. More precisely, it first determines
whether the mapping concerns Classes of Properties. De-
pending on the case, it fills the appropriate template (i.e.,
@Rdfs<TYPE>("<ONTOLOGY NAME>: <TARGET TERM>"))
and outputs a suitable annotation. For example, lines 2 and
4 in Fig. 3 show a pair of annotations for Class and Property
mappings, respectively. For instance, if the term “GeoPoint”
(in the XSD specification) is mapped to term “GeoCoordi-
nates”, which is a Class in the reference ontology (in this case,
the IT2Rail Ontology [26], see also Sect. V), the annotation
will be @RdfsClass(“IT2Rail: GeoCoordinates”). Then, the
annotation generation module uses the JAXB package [27] to
create, from the XSD file, the Java classes to be annotated.
In the final step of the pipeline, the module, for each mapped
term of the XSD specification, parses the Java files to find the
term’s declaration, then it inserts the corresponding annotation
appropriately (see lines in bold in Fig. 3). Finally, the user
receives a zipped folder containing the annotated Java classes.

YARRRML generation pipeline: YARRRML [28] is
a human-readable text-based representation for declarative
Linked Data generation rules. The YARRRML generation
module first identifies the structural relationships between the
terms in the XSD specification. More precisely, the module
extracts, for each term of the XSD file corresponding to a
Class, its Properties and stores those for which there is a
suggestion in the confirmed mappings. Next, according to
YARRRML’s syntax, the module generates the appropriate
prefixes and mappings blocks. The prefixes block contains
the required namespaces (e.g., the ontology’s namespace). In
the mappings block, instead, the module defines, for each
term corresponding to a Class in the XSD specification, the
following three elements: (i) data source location, (ii) subjects’
generation, and (iii) predicate-object annotations. As the result,
the user receives the YARRRML declarations in a .yml file.



1 ...
2 @RdfsClass("IT2Rail:GeoCoordinates")
3 public class GeoPoint extends FSMID
4 { @RdfProperty(propertyName = "IT2Rail:hasLatitude")
5 @XmlAttribute(name = "Latitude", required = true)
6 protected BigDecimal latitude;
7 ...

Fig. 3. Example of Java annotations for Class and a Property (in bold).

IV. TOOL

The current version of the SMART prototype is comprised
of two containerized components: a RESTful API and a
web server hosting a front-end built with Angular [29], both
communicating using JSON standard.

The API is designed to allow multiple simultaneous user
requests by relying on the FastAPI [30] framework; the
asynchronous environment coupled with the NginX [31] web
server allows the tool to manage high throughput of parallel
requests. Although NginX can handle up to thousands of
requests at once, the API is limited by the number of resources
the mapping process requires (e.g., in our experiments, each
run was using up to 8GB of RAM): requests that would
require SMART to exceed the available processing power are
enqueued for when the tool will become available again.

After uploading and selecting the specification files to be
mapped, the user can send a mapping request to the server.
Every incoming request is given a unique identifier and is
handled separately by the tool, allowing it to store and retrieve
results asynchronously. Once a request has been parsed, the
tool spawns a separate process to handle the computationally
heavy mapping process and relinquishes the control until this
operation is completed. The process itself can take several
minutes to complete.

Fig. 4. SMART term selection example.

Available from github.com/alexander-nemirovskiy/s2r_mapping_ui.git.

TABLE III
DATASETS DESCRIPTION

Specification Type Number of terms
NeTEx XSD 91
FSM XSD 113
IT2Rail Ontology 543
Transmodel Ontology 231
Neptune XSD 89

Once the mapping phase is completed, the user receives
a selection of up to 3 most-similar ontology terms for each
source term in the XSD file, each associated with its CS value
(see Sect. III-A) discretized as high (CS ≥ 0.75), medium
(0.30 ≤ CS < 0.75) and low (CS < 0.3) confidence. The user
can either confirm the suggested mapping, select one of the
alternatives, or add a choice of their own making as they see
fit, as shown in Fig. 4. In this case, SMART has selected the
ontology term Trip as a possible mapping for the XSD term
Itinerary with a medium CS rating. The “Other” input field
is used to create a new alternative if the user is not satisfied
with SMART recommendations. In addition, Fig. 4 shows that,
for the GeoPoint term of the XSD file, SMART suggested
a term (PointOfInterest), but the user decided to change the
mapping to GeoCoordinates. Alternatively, the user can choose
the automatic mapping process, in which the tool automatically
selects the term with the highest CS value for each pair. After
the selection has been made in either way, the user can proceed
with the annotation generation phase based on the pipeline
selected at the beginning of the mapping process, then the
annotated files can be downloaded.

V. VALIDATION

We evaluated the effectiveness of the approach on a few
case studies involving specifications from the transportation
domain. In particular, this section focuses on the accuracy of
the Mapping Algorithm (see Sect. III-A), which is the core
of the approach, in terms of its ability to suggest meaningful
mappings. More precisely, we took five specifications (XSD
files from NeTEx [32], FSM [33] and Neptune [34], and the
IT2Rail [26] and Transmodel [35] ontologies) from the trans-
portation domain, we used the Mapping Algorithm to generate
suggested mappings between various pairs of specifications,
then we manually evaluated the accuracy of the suggestions
output by the algorithm (before the review of the user).

Table III collects the basic information (type of
specification—XSD file or ontology—and number of
terms) about the five specifications used, which are briefly
introduced in the following. The IT2Rail ontology was created
in the project by the same name [26] and it is at the basis
of the ontology that is currently being developed within the
Shift2Rail Innovation Programme 4. Transmodel (short for
“Public Transport Reference Data Model”) is a European
Standard that covers various areas of the transportation

A short video of the tool is available at github.com/alexander-
nemirovskiy/s2r_mapping_ui/raw/master/docs/SMART_demo.mp4.

https://github.com/alexander-nemirovskiy/s2r_mapping_ui.git
https://github.com/alexander-nemirovskiy/s2r_mapping_ui/raw/master/docs/SMART_demo.mp4
https://github.com/alexander-nemirovskiy/s2r_mapping_ui/raw/master/docs/SMART_demo.mp4


domain, such as network topology representation, scheduling,
operation monitoring, fare management, etc. Recently, a
full-fledged ontology [35], which we have used for our
evaluation, has been defined starting from the Transmodel
standard. NeTEx [32] is a CEN technical standard for
exchanging public transport schedules and data. NeTEx is a
large standard, which is divided into three parts, each covering
a subset of Transmodel standard. For our experiments, we
considered a subset of NeTEx, focusing on the description
of the infrastructure (stop points, vehicles, etc.). FSM
(short for “Full Service Model”, [33]) is a standard for
representing information about ticketing and reservations in a
heterogeneous transport environment. Finally, Neptune [34] is
the reference format used in France to exchange information
concerning public transport (itineraries, timetables, etc.).

Each test case examines a different combination of specifi-
cations. Table IV lists the combinations that we tried. For each
test case, we carefully assessed the output results to determine
the accuracy of the mapping suggestions. For this purpose, we
relied on the documentation of each specification describing
the terms in the dataset. We categorized each suggested pair
as Correct, Incorrect, Ambiguous, or Unfeasible.
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Fig. 5. Detailed results of the evaluation, where the numbers in the bars
correspond to the number of pairs in each category, for each test case.

The first two categories are self-explanatory. A pair is
deemed Ambiguous if there is not enough information about
the meaning and usage of a term in the specification to evaluate
the correctness of the suggestion. A mapping is considered
Unfeasible if no equivalent representation of the term in the
first specification is available in the second one. Given this
categorization, the accuracy of the results of each test case was
computed as the percentage of the Correct mappings over the
sum of Correct and Incorrect ones. Both the Ambiguous and
the Unfeasible categories are excluded from the computation
as they do not provide a meaningful contribution for it, since
the pair either lacks a clear definition, or there is no alternative
for the first term in the second specification.

TABLE IV
VALIDATION RESULTS (WHERE Ambiguous AND Unfeasible MAPPINGS ARE

NOT CONSIDERED WHEN COMPUTING THE ACCURACY)

Spec1 Spec2 Accuracy Execution Time
NeTEx IT2Rail 67% 360s
FSM Transmodel 48% 312s
NeTEx Transmodel 72% 240s
FSM IT2Rail 78% 360s
Neptune NeTEx 67% 345s

Table IV presents, for each test case, the corresponding
accuracy, and the time that it took to generate the suggested
mappings using the procedure of Sect. III-A. For our exper-
iments, we deployed the tool on a general-purpose Amazon
EC2 instance with 32GB Memory, 8 vCPU 3.0 GHz Intel
Xeon processor, and up to 1Gb/s connection speed. The du-
ration of the mapping generation process depends on the size
of the input specifications; however, as shown in Table IV, no
experiment took more than 6 minutes. For completeness’ sake,
Figure 5 provides, in addition to a graphical representation of
the share of each category of mapping for each test case, the
number of elements in each category. On average, SMART’s
accuracy is 66.4%, ranging from 48% to 78% (recall that,
when computing the accuracy, we do not count Ambiguous
and Unfeasible mappings in the denominator of the ratio).

VI. CONCLUSION

This paper presented a tool-supported approach to suggest
mappings between terms of separate data specifications; this is
the basis for converting data between different data formats,
which is a core enabler of interoperability in heterogeneous
Systems of Systems. The approach, which is also able to
automatically create, from selected mappings, annotations
compatible with the conversion mechanisms introduced in
[6], [7], has been validated on various test cases from the
transportation domain, showing promising results.

In the future, we will refine both the underlying suggestion
mechanism and the supporting SMART tool. In particular, we
plan to explore the possibility of using domain-specific models
(e.g., tailored to the transportation domain) for the linguistic
mapping part of the procedure, instead of the general-purpose
one used in this work; this would improve the accuracy of the
first step of the procedure. In addition, we plan to extend the
structural mapping part of the algorithm with richer rules, able
to handle a wider range of features of XSD files.
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