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Abstract

Mining for latent emotions embedded in tweets can offer
clues about users’ affective state on a broad range of topics
ranging from their mental health to political opinions. This
paper presents a multi-class supervised learning approach
to group tweets into six emotions (joy, sadness, anger, fear,
love, and surprise) defined according to the Parrott’s frame-
work. After extensive pre-processing, linguistic and meta-
data features extracted from a corpus of tweets are used to
train popular machine learning classifiers. The performance
of these classifiers is evaluated using accuracy, sensitivity,
and specificity computed based on a multi-class confusion
matrix approach. Our framework can detect common emo-
tions of joy and sadness with excellent accuracy (> 90%),
anger and fear with moderate accuracy (75% − 85%), and
love and surprise with lower accuracy (50%− 60%). Over-
all, the accuracy of our framework still outperforms that of
contemporary approaches for all the six emotions. Further
analysis of an example multi-class confusion matrix indi-
cates that lower accuracy values for love and surprise may
arise because love is often confused with joy, whereas sur-
prise is mixed up with the positive emotion of joy and the
negative emotion of fear. Moreover, this confusion could be
attributed to an under-representation of these emotions in
the data. This highlights the need for building high-quality,
balanced benchmark data sets for training multi-label emo-
tion classifiers.

1 Introduction

Social media platforms such as Twitter, Facebook and
Instagram offer a forum for people to share and communi-
cate with large audiences as they go about their daily lives.
Twitter is one of the most popular social media platforms,
with nearly 330 million monthly active users on an average
as of 2019 [3]. Twitter’s large, active user base generates
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volumes of textual content in the form of tweets. This con-
tent shared by the users is interactive, spontaneous, conver-
sational, and unfiltered. Tweets thus contain a treasure trove
of information that can offer clues about users’ opinions,
thoughts, and feelings on a variety of topics from politics to
restaurants to even their mental health.

The plethora of information embedded in these tweets
has attracted significant attention in their mining and anal-
ysis. A large body of work has focused on detecting and
classifying the sentiment and/or polarity of the tweets [21].
In binary sentiment analysis, tweets are grouped according
to positive and negative polarities, whereas in multi-class
analysis they are grouped into more than two classes ac-
cording to the strength of the embedded sentiment. Tweets,
however, also contain affective information (moods, emo-
tions, and feelings) of the users, and they can also be mined
for these emotions. Emotion mining can thus be viewed as
a deeper, more advanced form of sentiment analysis [12].
This detailed, granular information that can be extracted
from tweets can support a range of applications such as tar-
geted advertising, recommending books, music and videos,
predicting the movements of stock markets, launching tele-
vision programs, detecting and monitoring mental health
problems, and gathering public opinion on politically and
socially sensitive issues.

Emotion classification can be binary, where opposing
emotions such as joy and sadness or love and hate are for-
mulated into targeted two-way detection problems. Binary
emotion classification problems can also be formulated by
combining all the positive emotions such as love, joy, and
trust into one class, and all the negative emotions includ-
ing hate, sadness and disgust into another class. Plutchik’s
wheel provides a natural anchor for formulating such two-
way problems, as opposing emotions are placed on the two
opposite ends of each axis on a wheel [11]. Multi-label clas-
sification of emotions, on the other hand, involves grouping
tweets into many classes; these classes are usually chosen
in a manner that is convenient based on the data, or are in
some cases inspired by a psychological framework such as
the Plutchik’s wheel [15], the Parrott’s framework [13] or



the Ekman’s atlas of emotions [6]. Overall, in the literature,
multi-label classification shows lower accuracy for all the
classes or is seen to trade away the accuracy of one class
for the other [14, 9, 19]. This could occur because all the
emotions in a multi-class problem may not be expressed to
a similar degree, that is, the data could be unbalanced. An-
other reason could be that these uncommon emotions are of-
ten confused or mistaken for the commonly occurring ones.
To the best of our knowledge, other than the fact that multi-
label emotion detection is a challenging problem, very little
is known in the way of reasons behind the challenge. This
objective of this paper is to present a framework that can
classify a corpus of tweets into multiple emotions with good
accuracy over contemporary approaches. A secondary ob-
jective is to gain deeper insights into the challenges involved
in building high accuracy multi-label classifiers through a
more in-depth analysis. The approach is built around a re-
cently annotated data set [16], which tags each tweet with
one of six emotions. We map these six labels to the six
basic emotions defined by the Parrott’s model [13]. We
extensively pre-process these tweets, extract linguistic and
metadata features, and train five popular machine learning
models using these features. We evaluate the performance
of these models using accuracy, sensitivity, and specificity,
computed based on the multi-class confusion matrix ap-
proach.

Our results indicate that the more basic and common
emotions of joy and sadness can be identified with excel-
lent accuracy (> 90%), anger and fear with moderate ac-
curacy (75%− 85%), and love and surprise with low accu-
racy (50% − 60%). With these accuracy values, our clas-
sifiers still perform better than the current approaches for
all the emotions. The classifiers show higher specificity
compared to sensitivity, which means that they are better
at ruling out a specific emotion rather than identifying it
affirmatively. An analysis of an example multi-class con-
fusion matrix indicates that love is often confused with joy,
whereas surprise is mixed up with the positive emotion of
joy and the negative emotion of fear, which could explain
the low detection accuracy for these emotions. This con-
fusion could occur because love and surprise are complex
emotions which embody both positive and negative feel-
ings. Moreover, because of their complexity, these emo-
tions could be underrepresented in our corpus compared to
the other classes; especially joy and sadness. Therefore, one
of the ways in which the accuracy of multi-label emotion
classification may be improved is by building high-quality
training data sets, with a balanced representation of all the
involved emotions.

The rest of the paper is organized as follows: Section 2
presents the emotion classification model. Section 3 de-
scribes the steps in the classification framework. Section 4
discusses the results. Section 5 compares and contrasts re-

lated research. Section 6 concludes the paper and offers
directions for future research.

2 Emotion Classification Model

We used the data set made available by Saravia et al [16].
This set of tweets was collected using a set of hashtags,
which served as noisy labels for subsequent distance-based
annotations. Each tweet is labeled into one of six emo-
tions: joy, sadness, anger, fear, love, and surprise. Anno-
tated tweets were split into train and test data sets, with the
total number of tweets in these partitions being 16000 and
2000 respectively. The number and percentage of tweets
in the train/test partitions for the six emotions are summa-
rized in Table 1. The table shows the imbalance between
the emotions; joy and sadness are the most common; fear,
anger and love form the next tier; whereas surprise is the
most rare. However, the train/test split was conducted us-
ing stratified sampling because the ratio of test to train is
maintained between 11% and 13% for all the emotions.

Emotion Train Test Test/Train
# % # %

Joy 5362 33.5% 695 34.75% 13.00%
Sadness 4666 29.17% 591 29.55% 12.67%

Fear 1937 12.10% 224 11.20% 11.57%
Anger 2159 13.50% 275 13.75% 12.73%
Love 1304 8.15% 159 8.00% 12.19%

Surprise 572 3.58% 66 3.3% 11.54%

Table 1: Summary of Tweets Per Emotion

We referred to the three most popular models of emo-
tions to formulate the multi-label classification problem.
These are the Gerrod Parrott’s model containing six ba-
sic human emotions [13], the Plutchik’s wheel of emo-
tions [15], and the Ekman’s atlas of emotions [6]. The emo-
tion labels in our data coincide exactly with Parrott’s model,
providing us a natural anchor for our six-way classification
problem.

3 Classification Framework

This section describes the classification framework.

3.1 Data Pre-processing

Our data consisted of the text of the tweets and its
emotion label. It was relatively clean, and there were no
emoticons, punctuations, links, hashtags and other mark-
ers. So, the pre-processing steps were relatively straightfor-
ward. First we tokenized all the words using white spaces.



In the second step, we removed the stop words using the
stop words list in NLTK library [18]. In the third step, we
removed proper nouns (names of persons, cities, etc). and
other non-English words by checking the presence of every
word against the NLTK list.

3.2 Feature Extraction

We considered two linguistic features: Term Frequency-
Inverse Document Frequency (TF-IDF) vectorization and
n-grams using the bag-of-words approach. These features
were extracted using the TF-IDF vectorizer class of Scikit-
Learn library [2]. TF-IDF refers to a scoring measure used
in information retrieval or summarization. It measures the
relevance of a word in a document by assigning an addi-
tional weight to frequent words. We computed the TF-IDF
scores for the topmost 1000 unigrams.

We extracted six meta-data features from the text of each
tweet prior to pre-processing. These include the number of
characters, number of words, number of stop words, and
number of unique words, TextBlob and Vader sentiment
scores. TextBlob calculates the sentiment polarity for each
tweet, which ranges from −1 to +1, where −1, 0 and +1
indicate negative, neutral and positive respectively. Vader
computes a compound score as a normalized and weighted
composite score obtained by analyzing each word in a tweet
for its direction of sentiment – a negative (positive) valency
for negative (positive) sentiment. It therefore ranges from
−1 to +1 depending on the net sentiment of the tweet. We
used both TextBlob and Vader scores because Vader may
be more sensitive to sentiments than TextBlob, even though
TextBlob may be better correlated with reviewer scores [1].

3.3 ML Models

We employed the following common machine learning
models for classification. Implementations of these models
in the Scikit-Learn and Keras libraries were used.

• Random Forests (RF): Random Forests is an ensem-
ble learning classification technique based on decision
trees. The number of decision trees is set to 30 and
the number of features used by each tree is equal to the
squared-root of the number of total features. Finally,
each tree was allowed to grow fully up to its leaves.

• Support Vector Machines (SVM): Support Vector
Machines is a classification method that estimates the
boundary (called hyper-plane) with the maximum mar-
gin. We used SVMs with linear kernel with other de-
fault parameters.

• Multi-Layer Perceptron (MLP): Multi-layer Percep-
tron is a deep neural network that consists of input,

hidden, and output layers. Our MLP model consisted
of 3 hidden layers with 10, 5, and 2 neurons respec-
tively, along with the rectifier linear unit (ReLu) acti-
vation function.

• Gradient Boosting (GB): Gradient Boosting is an-
other ensemble learning classifier which builds classi-
fier trees such that each tree takes a small step towards
the minimization of classification error from the pre-
vious tree. The algorithm continues until maximum
number of trees are built or there is no significant im-
provement in minimizing the error. Finally, predictions
for the test data are obtained by combining predictions
of the trees built in each stage using a weighted sum.
We used 100 estimators, with a maximum depth of 1.

• Neural Network (NN): We build a neural network
with three layers having 30, 10 and 6 neurons respec-
tively. We arrived at this architecture through exper-
imentation, considering that our data was of medium
complexity with about 1000 features.

3.4 Performance Metrics

For multi-label classification, the first step in defining the
performance metrics is the computation of the multi-class
confusion matrix, which represents how many of the tweets
originally in that class are classified accurately as belong-
ing to that class. Also, for a given class it represents the
number of tweets that are mis-labeled by a classifier as be-
longing to each of the other five classes. Finally, we divided
each of these six counts by their sum to obtain a normalized
accuracy measure. For example, let 500 tweets be originally
labelled as “surprise”. Now, suppose if 400 of these tweets
were labelled correctly by the classifier as “surprise” but the
other 100 tweets were mis-labelled. Further, suppose that
these 100 tweets were mis-labelled equally among the other
five classes meaning each of the other five classes included
20 of these tweets. Next, we divide these six counts by 500
to compute the six elements in the normalized multi-class
confusion matrix as 0.8, 0.04, 0.04, 0.04, 0.04, and 0.04.
We repeat this process to calculate all 36 entries in the con-
fusion matrix. The accuracy for each class is defined as the
percentage of tweets labeled correctly from that class, and
refers to the diagonal elements in the confusion matrix.

Alongside multi-label classification accuracy, we also
calculated two other performance metrics, namely, sensi-
tivity and specificity. Sensitivity and specificity together of-
fer insights into the bias of a classifier towards a particular
class. However, these two performance metrics are mainly
used in the context of binary classification problems, as they
need us to define positive and negative classes in order to be
able to compute true and false positives, and true and false



negatives. Therefore, we transformed this multi-label clas-
sification problem as six “one vs rest” classification prob-
lems. For example, to calculate the sensitivity and speci-
ficity for surprise, we considered the “surprise vs rest” clas-
sification problem. We designated the positive class as “sur-
prise” and all the other classes together formed the negative
class. True positives (TP) are the tweets which are correctly
classified as “surprise”, true negatives (TN) include tweets
originally not from the “surprise” class and are also not la-
beled as “surprise” by a classifier. Similarly we can define
false positives (FP) as those tweets that were incorrectly la-
beled as “surprise”, and false negatives (FN) as those tweets
that were originally labeled as “surprise” but the classifier
labeled them incorrectly with one of the other five classes.

Equation (1) shows the expressions for sensitivity and
specificity. Sensitivity of “surprise” class is the percentage
that a tweet labeled as “surprise” is correctly classified as
such. We note that sensitivity is identical to multi-label ac-
curacy. If a highly sensitive classifier classifies a tweet into
an emotion class, then it can be fairly certain that it actually
does. Specificity of “surprise” class is the percentage that a
tweet which is not labeled as “surprise” is classified as such.
If a highly specific classifier says that the tweet does not ex-
hibit an emotion, then we can be fairly certain that it indeed
does not. Generally, there is a trade-off between sensitivity
and specificity. A classifier with a high sensitivity usually
has low specificity, and vice versa.

After computing the sensitivity/accuracy and specificity
for each emotion, we compute the aggregate unweighted
and weighted values of these metrics across all classes. The
weight for each class is given by the percentage of tweets in
that class in the training data set.

Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP

(1)

4 Results & Discussion

The data was already split into train and test sets for
model training and performance evaluation. Table 2 shows
the per-class accuracy for the five models. With our un-
weighted and weighted overall accuracy values of 74%
and 83% for the NN model, our approach outperforms
many contemporary approaches with accuracy values in the
ranges of 50− 60% [4, 19, 9].

Tables 2 and 3 summarize the sensitivity/accuracy and
specificity values for the six classes by the five classifiers.
Across all the emotions, sensitivity values are lower than
their corresponding specificity values. All specificity val-
ues are around or over 95%, meaning that the classifiers are
excellent at negative differentiation, that is, they can iden-

tify with near certainty, the absence of a specific emotion.
Lower sensitivity values indicate that the classifiers are less
capable of zeroing in on a specific emotion. The classi-
fiers can identify joy and sadness with excellent accuracy,
fear and anger with moderate to low moderate accuracy, but
struggle with love and surprise; more so with surprise than
with love. Albeit low, our accuracy in detecting surprise
still exceeds the accuracy of the contemporary works that
have simply been unable to detect this emotion [14]. Neu-
ral networks offer the best specificity across all the emo-
tions. Sensitivity produces mixed results among models; for
each emotion the best model for sensitivity is different and
is identified in the parentheses: joy (SVM), sadness and fear
(NN), anger and love (MLP), and surprise (RF). Generally,
the difference in sensitivity/accuracy between the models is
small for all emotions except for surprise, where MLP di-
verges significantly.

To understand why the classifiers may struggle with the
emotions of love and surprise, we take a closer look at an
example multi-class confusion matrix from the SVM model
(matrices from other models show similar trends) as shown
in he Figure 1. This matrix shows how the tweets from each
class are mis-classified into the other five classes. From the
figure, it can be seen that love is most likely to be confused
with joy while surprise is most likely to be confused with
either joy or fear. Therefore, the expression of love is al-
most always positive, whereas, surprise can be expressed
in both positive and negative senses; and it embodies both
these emotions. This confusion, which leads to lower accu-
racy for love and surprise could be due to class imbalance;
Table 1 shows that only 8% tweets are labeled as love, and
an even lower 3% tweets are labeled as surprise.

joy sadness fear anger love surprise
predicted label

joy

sadness

fear

anger

love

surprise

tru
e 

la
be

l

0.93 0.03 0.01 0.01 0.02 0.01

0.06 0.88 0.02 0.03 0.01 0.01

0.07 0.09 0.77 0.05 0.00 0.02

0.10 0.14 0.01 0.73 0.01 0.00

0.30 0.08 0.01 0.00 0.62 0.01

0.17 0.06 0.26 0.00 0.00 0.52

0.0

0.2

0.4

0.6

0.8

Figure 1: Multiclass confusion matrix (SVM)



Model Joy Sadness fear Anger Love Surprise Unweighted Weighted
NN 0.91 0.91 0.84 0.75 0.64 0.53 0.74 0.83
RF 0.87 0.82 0.71 0.68 0.50 0.64 0.68 0.76

SVM 0.93 0.88 0.77 0.73 0.62 0.52 0.74 0.83
MLP 0.84 0.88 0.79 0.78 0.76 0.17 0.77 0.67
GB 0.84 0.79 0.76 0.77 0.61 0.46 0.71 0.78

Table 2: Sensitivity/Accuracy of ML Classifiers

Model Joy Sadness fear Anger Love Surprise Unweighted Weighted
NN 0.95 0.96 0.94 0.98 0.98 0.99 0.97 0.96
RF 0.84 0.89 0.99 0.99 0.99 0.99 0.95 0.91

SVM 0.90 0.93 0.98 0.98 0.99 0.99 0.96 0.94
MLP 0.95 0.94 0.96 0.96 0.96 0.99 0.96 0.95
GB 0.86 0.89 0.98 0.98 0.99 0.99 0.95 0.91

Table 3: Specificity of ML Classifiers

5 Related Research

Prevalent research efforts have mined emotions sur-
rounding specific events such as the presidential elec-
tion [20] or the Brazilian soccer league [5], or natural dis-
asters such as the California Camp Fire [10] and the MERS
outbreak [4]. However, extracting them from a general cor-
pus remains relatively unaddressed.

Many research works formulate multi-label classifica-
tion problems over a set of emotions; the chosen set may be
completely ad hoc, inspired by a psychological framework
such as the Ekman’s atlas of emotions [6] or the Plutchik’s
wheel [15], or a combination of psychology and heuris-
tics. For example, Wang et. al. [19] annotated a data set
of 2.5 million tweets based on hashtags related to emotion
words, and classified them into seven emotions, six basic
plus “thankfulness”. Their classification accuracy is around
60%, and this performance is further improved by about
5% [9]. Jaishree et. al. [14] label tweets by combining
the scores from NRC word-level lexicon tool and emotion-
based hashtags. Their problem considered 8 basic emotions
on the Plutchik’s wheel, however, their multi-label classi-
fication problem was completely unable to detect surprise,
and registered low scores for fear. A smaller set of 4 emo-
tions is also used by some [7, 17]. Although Mohammed et.
al. formulate their problem based on the Plutchik’s wheel,
they ultimately boil it down to binary classification by us-
ing the one vs. other method [8]. Generally, multi-label
emotion classification suffers from either low accuracy for
all classes or sacrifice the accuracy of some for the oth-
ers. The accuracy values of our approach are higher for all
the emotions compared to these contemporary approaches.
Moreover, a detailed analysis sheds further light into those

emotions that are difficult to detect, and how they could be
confused with the others.

6 Conclusions and Future Research

Simultaneous differentiation between multiple emotions
from content shared on social media platforms remains a
challenging problem. This paper proposes a classification
framework based on supervised machine learning that can
identify six emotions of joy, sadness, anger, fear, love, and
surprise defined in the Parrott’s framework from a corpus of
tweets. Relying on extensive pre-processing of tweets, fol-
lowed by the extraction of linguistic and metadata features
to train popular machine learning models, our classification
framework can identify joy and sadness with excellent ac-
curacy, anger and fear with moderate accuracy, and love
and surprise with low accuracy. Moreover, the aggregate
accuracy of our approach is better than contemporary ap-
proaches. Through a detailed analysis, we develop insights
into why love and surprise could be difficult to detect, and
offer that one plausible explanation for this difficulty could
stem from an under-representation of these two emotions in
the data.

Our future research involves building a high-quality bal-
anced data set that can be used to train classifiers for multi-
label emotion classification. Experimenting with identi-
fying emotions surrounding high profile events related to
Covid-19 such as vaccinations, or the passage of the Amer-
ican Rescue Plan Act of 2021 is also a topic of the future.
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