
A Framework for Mutation Testing of Machine

Learning Systems

Raju Singh

Department of Computer Science & Information Systems

BITS Pilani

Pilani, India

p20200106@pilani.bits-pilani.ac.in

Mukesh Kumar Rohil

Department of Computer Science & Information Systems

BITS Pilani

Pilani, India

rohil@pilani.bits-pilani.ac.in

Abstract—In this paper, we provide an insight journey of Testing

of Machine Learning Systems (MLS), its evolution, current

paradigm, and we propose a machine learning mutation testing

framework with scope for future work. Machine Learning (ML)

Models are being used even in critical applications such as

Healthcare, Automobile, Air Traffic control, Share Trading, etc.,

and failure of an ML Model can lead to severe consequences in

terms of loss of life or property. To remediate this, the ML

community around the world, must build highly reliable test

architectures for critical ML applications. At the very foundation

layer, any test model must satisfy the core testing attributes such

as test properties and its components. These attributes should

come from the software engineering discipline but the same cannot

be applied in as-is form to the ML testing and in this paper, we

explain why it is challenging to use Software Engineering

Principles as-is when testing any MLS.

Keywords-Machine Learning, Software Testing, Quality

Attributes, Deep Learning, Model Mutation Testing.

I. INTRODUCTION

In the current context of software development and machine

learning (ML), it is inevitable, not to come across an ML

scenario in day to day life. It spans across business critical

applications such as share trading, insurance and banking,

medical applications such as drug manufacturing, identification

of disease and medical imaging, and safety critical applications

such as autonomous driving and robotics [1]-[3]. Software

testing [4] of mathematical software [5] and Intelligent systems

[6] has adopted some of the software testing methodologies.

Applications of ML in several critical sectors make ML testing

[7] a reliable way to ensure quality and minimize failure

scenarios. An adoption of testing framework from traditional

software testing with the addition of key ML quality attributes

[7] makes more sense. Testing framework that covers

performance (for critical real time systems), security (for

business applications and health care applications) and safety

(for system of systems) increases its trustworthiness.

To better understand the testing challenges for ML systems
[8]-[10], we need to deep dive as how ML systems are different
from traditional software system. Traditional software is more
deterministic in nature, lacks dynamicity in terms of varied
inputs. On the other hand, ML systems are dynamic, non-
deterministic and expected to learn from data (labels), and
predict the output accordingly.

For instance, a rover has to determine the path on a rocky
terrain based on the imaging data that it gathers from the
surrounding, the forest fire alert systems have to generate a
prediction based on the environmental data such as air humidity,
wind, temperature and climatic conditions. The model tends to
evolve and learn from historical data.

Oracle Problem [11]: Machine learning models are difficult
to test because they are designed to solve problem based on
learning from past experience (label data, supervised learning),
without past experience (unsupervised learning) or through re-
enforcement. Attempts have been made to draw parallel between
the ML testing approach with Software Testing. By
understanding the process of software development, we should
be able to break down the software stack into components
(unifiable units), and build test cases around it. In other
approaches, we have Test Driven Development (TDD) to setup
in testing framework. This approach might not work well with
ML models. It is because, machine learning models are mostly
monolith, and components may not reflect the true nature of the
ML model as a whole. Again, breaking ML model into unifiable
components or developing with TDD is a cumbersome task.

In order to understand and design a test framework for ML
system, we need to understand the behaviour [4] of the model,
and how the model interacts with the surroundings. Studying
behaviour of the ML model, gives limited insight into the model.

Further the paper is organized as: Section II summarises the
background and related work, Section III summarizes Machine
Learning Testing Scenarios in terms of faults, failures and
Oracle problem, Section IV explains machine learning testing by
considering dynamicity of MLS, Section V describes proposed
framework for machine learning system testing, Section VI
describes prediction mutation testing to explore the possibility
of testing machine learning models such as Deep Neural
Network (DNN) models, Section VII summarizes model
mutation testing, Section VIII presents the major challenges,
Section IX lists the assumptions and hypothesis for set of
transformation rules to yield mutated DNN models, Sections X
brings out some approaches for mutation testing, and Section XI
furnishes conclusion and scope for future work.

II. BACKGROUND AND RELATED WORK

Mutation testing in traditional software predates any similar

testing framework in Machine Learning and DNNs specifically.

Here, the mutation testing is a proven tool and has higher

DOI reference number: 10.18293/SEKE2021-155

accuracy. Mutant operators form a well-researched area that has

its implementation in several high level programming

languages for traditional software. With time and increasing

complexity of traditional software, the mutation testing

framework has been extended well. Use of mutation testing in

machine learning, is being extensively researched and several

researchers have established milestones for most of the known

DNN models. One such approach is DeepMutation.

Machine Learning: Machine learning is a field of study that
gives the ability to computers to learn without being explicitly
programmed. A computer program is said to learn from
experience E with respect to some task T and some performance
measure P, if its performance on T, as measured by P, improves
with experience E [12], [13].

Machine learning is a phased approach. The first phase is the
learning phase. In this phase, data is gathered and bucketed as
training and test data sets. Training data set is identified by
attributes and label. The outcome of this phase is a model that
is drawing the relationship between the attributes and the label.
The subsequent phase deals with applying the model to different
dataset (test data). There are several algorithms to accomplish
this, such as classification algorithms, ranking algorithms, etc.
There are several attempts and general-purpose availability of
model based mutation testing, which depends upon comparing
results from different test scenarios.

Terms used in machine learning domain:

Dataset: An ingredient for machine learning model, consists
of sets of instances for building or evaluating the model. It is
further categorized as:

Training Data: This data is obtained from the sources
(sensors, data collection devices, etc. aggregated and cleaned up
to exclude bias and noise) and is used for the purpose of training
a machine learning model. This model is basically an organic
algorithm which learns from the training data and performs a
particular task.

Validation data: This data is from the training data, used to
tune the hyper-parameters of learning algorithm.

Test data: This data is the part of training data, for which
machine learning model has not been trained yet. Based on the
performance of the ML model and its behaviour with the test
data, we can attribute the machine learning model maturity.

Sub Definitions:

Instance is an information record about the object. Feature
is a measurable property. Errors are also an important aspect of
machine learning, and it is this property that the model behaviour
depends on. Test error is mainly focused on deviation measure
between the obtained value and the expected value.

Let us classify Machine Learning.

Supervised Learning [9]: The goal is to predict the value of
an outcome measure based on the number of input measures. It
is commonly referred to as regression [14] problem since its
outcome measurement is quantitative.

Unsupervised Learning [15]: The goal is to describe the
association and patterns in a set of input measures. We only
observe the feature and have no measurement about the
outcome.

Reinforcement Learning [16]: In this approach, agent
(learning system) can observe an environment, selectively
perform actions, and get rewards (or penalties). The key here is,
it must learn by itself, and accordingly respond in actions for the
good. This approach is referred to as policy, to get most reward
over a period of time. In nutshell, a policy defines what actions
the agent should take when subjected to a condition.

III. MACHINE LEARNING TESTING SCENARIOS

Fault and Failures [17], [18]: The following discussion

involves classification of the faults and failure scenarios of the

ML systems. Since most of the ML systems deal with uncertain

components, faults and failures are possible in ML models.

These can be handled by creating counter measures to prevent

failure scenarios, however, we can have inevitable scenarios.

Definitions in the IEEE Standard Glossary (IEEE 1990)

[19]:

Fault: An incorrect step, process, or data definition in a

computer program.

Failure: The inability of a system or component to perform

its required functions within specified performance

requirements.

Data Sensitive Fault: A fault that causes a failure in

response to some particular pattern of data.

Program Sensitive Fault: A fault that causes a failure when

some particular sequence of program steps is executed.

The core of the testing system is to find the deviation of ML

models from the expected outcome.

Oracle: Oracle tests are basically intended towards the
Behaviour test. This is a challenging aspect as the behaviour of
ML systems is unpredictable, and this unpredictability makes
sure sense to build oracle tests. In MLS context, Metamorphic
Oracles have gained ground as a feasible approach to infer oracle
information from data. Metamorphic oracles insight
metamorphic relations between input values, i.e. if a
metamorphic relation exists between the inputs, the
corresponding MLS outputs must satisfy a pre-existing relation
(ideally, equality or equivalence relation). Input data and its
dimension poses a greater instability towards the ML testing
realm. So, it is vital to choose adequate test data in order to cover
impactful dimensions.

IV. MACHINE LEARNING TESTING

Software testing techniques, such as unit, integration and

system testing [20], can be used in ML testing domain.

Additionally, in order to address the dynamicity of the ML

systems, additional recommendation has been made for ML

testing domain which includes input, model and integration

testing.

Input Testing: These tests are concentrated on the input data

which is used to train the ML model. The core reason of using

input test is to minimise the risk of faults. It can be either offline

testing or online testing. During the offline testing, it detects

faults by alerting the bias in the training data. In online testing,

where ML models are expected to predict for unlabelled data,

this testing helps on input validation.

Model Testing: Model testing tests the function aspects of

the system under test (SUT) (ML model in isolation, without

taking any other component into account). It tries to find the

faults in the model architecture, training process, etc. It uses

accuracy (for classifier) or mean squared error (for regressions

[14], [21]). It is sometimes considered as unit testing.

Integration Testing: Integration testing considers the

integration aspect of ML models, hardware systems, software

systems and their interactions.

System Testing: System testing is a holistic test to evaluate

the system’s measures under a given requirement.

Black-box and White-box Testing: Black-box testing [22]

screens the internal structure of the design, code and its

implementation, of ML systems, without having access to the

core while white-box testing is crucial as it knows the internal

structure of the code, design, implementation and behaviour of

the ML systems. This way it makes more sense to use white-

box testing in ML model. In contemporary software, source

code is the main source of faults or defects. Mutation testing

injects modified program code to introduce defects or faults,

and this enables the qualitative measurement of test data by

detecting manual changes. With the knowledge on such

mutation testing framework, we can suggest a Deep Learning

(DL) based mutation testing framework with two stage process.

Source level mutation: DL systems depend on the training

program and training data. Training process is defined as the

articulation of training program on training data. The master

source code of training program and master record of the

training data is mutated over a period of time during the testing

and the deviation of the Model is recorded. The new evolved

model, result from the mutation exercise, is set to run through

the training set in order to determine the quality of the test data.

The mutation operator can be categorized as: data mutation

operator and program mutation operator.

Data Mutation Operators: DL model depends heavily on

training data. We know that DL model’s robustness depends on

the underlying data quality. Error introduces at any stage of data

collection, data aggregation and data cleaning, and skews the

DL model as the data contains noise.

Program Mutation Operators: Training programs in DL

systems are coded using high level languages, and use problem

specific programming framework. Injection faults in the

program would cause unexpected behaviour in the DL systems.

This requires us to carefully craft mutant operations to inject

faults into the training program. The kind of fault we can think

of now is like, addition and removal of layers from DL models,

pass on skewed weights and activation function while training

process.

Model Mutation Testing for DL Systems:

Most of the mutation testing frameworks which work

efficiently in traditional software systems do not hold ground

with the DL models. The problem is, most of the mutation

testing from traditional system is written on the source code, or

its low level representation such as byte-code. However, model

mutation testing can be a better approach and we will show it.

In source level mutation testing, the algorithm injects

modifications in the training data and training program, while

in model level mutation testing, the algorithm updates the DL

model obtained from the training program. As the expectation

remains intact for both approaches, i.e. to evaluate effectiveness

and weakness of the test data set, model level mutation testing

leads the way forward by directly mutating the DL model.

ML System Attributes:

Security: ML systems are as vulnerable as any other

software systems, along with few inherited vulnerability, given

the model footprint. Security reciprocates to the robustness.

Efficiency: ML system efficiency reciprocates to accuracy

of its prediction.
Fairness: ML systems suffer from statistical problems such

as bias, deviations and skewness.

V. MACHINE LEARNING TESTING FRAMEWORK

Behaviour Framework: ML system might behave

differently given similar data. The main challenge is to identify

the extreme boundaries for a given input space. This is similar

to boundary-value analysis.

Test Adequacy Criteria: Any test suite woven around an ML

system, should satisfy the quality attributes. As the classical

approaches (based on the source code control flow [23]) are not

relevant to the ML systems, researchers are trying to find out

new domain in order to satisfy the test adequacy.

Mutation: In contemporary software testing domain,

mutation testing is gaining grounds. It has become an efficient

tool to find the faults in the ML systems, by injecting mutants.

DeepMutation fundamentally works at the model level, iterates

through varying mutation within the boundary space.

DeepMutation: DNNs have gained ground in several critical

applications such as healthcare, autonomous vehicle and

robotics. Any DNN system can either be a Feedforward Neural

Network (FNN) or a Recurrent Neural Network (RNN) system.

An FNN system processes the input information at each layer

and forwards it to the next layer. This process continues until

the decision is reached. This way, the FNN model preserves the

local properties of each layer. On the other hand, the RNN

extends the Long-Short Term Memory (LSTM) or memory

cells and partially propagates the information backward to

secure temporal information of sequential inputs. This way, the

decision at any stage not only depends on the given input, but

also on the current state. This makes RNN reliable for handling

sequential data, for instance, Natural Language Processing

(NLP). The spirit of mutation in DNN [24], [25] is similar to

that of traditional software. The main idea behind

DeepMutation is to introduce adequate number of mutants or

operators. The mutants must satisfy the quality attributes for the

testing framework, such as input (test) data analysis.

Traditional software is built upon decision logic. This logic

is implemented in the form of program code, whereas the DL

models and systems are guided by the underlying DNN

structures and their weights.

The weight of DL system is generally obtained from

executing training program on a given training data, and DNN

structure is defined as the code of the training program. These

are two potential reasons, a deviation in which cause

behavioural issue in the DL systems. The mutation operator can

be inflicted in either training data set of training program or

both. Once the mutant operators are injected, training program

is executed on training data to generate mutated DL models.

DeepMutation Testing Framework:

DNN uses high level languages such as Python and R,

however DNN is represented as hierarchical data structure. We

are going to shortly lay down on to discuss on the mutation

testing framework for DL systems. The first step is to design

source level mutation testing operators. These operators can

modify the training data and training program. The basic idea

behind this is to improve the data quality evaluation. The fault

might be injected manually, or might naturally occur in the

training data or in training program. This framework must

address the mutated DL models efficiently and address issues

such as computation resource requirements, security

vulnerability issues. Given this, we must work backward to

generate efficient mutant operators. Before we deliver further,

we need to elaborate model-level testing.

Model Level Testing: A model is used to represent the
desired behaviour of the system under test (SUT), or to represent
the testing strategies and a test environment. A model
representation of SUT is at abstraction or partial behaviour. We
can derive only functional test cases from SUT. The idea here is
to come up to the conclusion that how many model level
mutation operators would result in the efficient generation of a
set of mutations without inducing model level problem.

VI. PREDICTION MUTATION TESTING

Prediction Mutation Testing topic tends to attract two sorts

of discussion – Mutation Testing approach in Machine learning,

and – Machine learning approach in mutation testing. We will

talk a little about the latter part, and then resume the discussion

on the primary topic which is related to exploring the possibility

of testing machine learning models such as DNN using

mutation testing, its framework, challenges, pros and cons,

future works, etc.

When we discuss the approach of machine learning and its

impact on mutation testing, we consider that here mutation

testing can be again applied to a software system or machine

learning system. However, applying mutation testing in

software system is inherently different from applying mutation

testing in machine learning, and it is because of the behavioral

changes that software systems and machine learning systems

exhibit when subjected to mutation testing.

Testing, in general is a powerful and unified (yet

distributed) way to evaluate the quality of underlying systems,

be it traditional software systems or machine learning systems.

In this approach, we tend to generate a large number of mutants

and execute against a test suite to check the ratio of killed

mutants. This makes mutation testing computationally

expensive. So, it is worthwhile to invest some time to learn

about predicting behavior of mutation testing. It is important to

note here that this approach is based on the classification model.

This model predicts whether mutants are killed or survived

during the testing without executing it. However, unlike several

predicted problems, this approach also suffers from accuracy

loss (which we can ignore as it is minimalistic).

In general, mutants are a set of program variants (or training

program in machine learning). A set of transformation rules

generates mutants from the original program. These mutants are

called mutation operator, that seed logic and syntactic changes

into the program one at a time.

Killed Mutants: A mutant, killed by a test-suite, if at least of

the test from the source has a varied execution behavior on the

mutants and original program. Such mutants are called killed

mutants. Elsewise, the mutant is known to have survived. The

ratio of killed mutants to all mutants (non-equivalents) is

referred as mutation score. It is usually used to evaluate the test

suite’s effectiveness.

Other areas, where use of mutation testing is prevalent are

simulation testing, localizing faults, model transformation and

guided test generation.

As mentioned earlier, mutation testing is an extremely

expensive approach. It requires generating and executing each

mutant on the test suite. Both of these activities – generation of

mutations and execution of mutants, are expensive operations

on hardware of scale. In recent times, however, we have seen

phenomenal progress to bring down the operational cost for

mutant generation, though executions remain expensive in spite

of several refinement techniques such as selective mutation

testing, weak mutation testing, high-order mutation testing,

optimized-mutation testing, etc.

Due to the problems faced for the expense versus

effectiveness, predictive mutation testing is gaining ground.

Mutation testing enables machine learning to build a predictive

model by means of collecting a series of features. These features

can be test-suite coverage or mutation operators on already

executed mutants of earlier versions of the project or even other

projects.

Earlier versions of same projects are commonly referred to

as cross-version prediction. Cross project predictions are

referred to other projects under test.

Tradeoff - Efficiency versus Effectiveness:
Any prediction model inherently suffers from accuracy

problem. However, several experimental approaches in
predication mutation testing domain have shown positive signs

as it improves efficiency and accuracy of mutation testing. This
is a clear indication of how prediction mutation testing stands
out of traditional mutation testing. It will be worthwhile to look
into the class probability distribution provided by the classifier,
with which developer may choose the mutant with proper
probability distribution in order to get better prediction result. It
is a considerable improvement over traditional mutation testing,
as it is light weight, in-expensive comparatively, with relatively
high accuracy. In this article, it is assumed that mutation testing
refers to prediction mutation testing.

VII. MODEL MUTATION TESTING

Models are common in software testing. It is used to select
test suites. Applications of mutation testing at a model level can
contribute to reliable and early assessment of the quality of the
test suits. This can also help in defining a test suite which has
high fault detection rates. One of the issues which we observed
while using mutation testing [18] at the early development stage,
is related to its reliability and quantifying it.

VIII. CHALLENGES

Contemporary coding for functional requirements is

different from programming a DL model. The basic difference

is, in contemporary programming, we break down the monolith

requirements into small chunks of programmable units. Each

unit is programmed separately and satisfies the software quality

attributes such as correctness, fairness, security, etc. and then

the units can be combined together with other modules to form

the holistic program. In this approach, each unit or module has

its own logic, an aggregation of which comply with the integrity

attributes of the whole program.

While in DL systems, which are fundamentally data driven
models, the logic that we can drive at the highest may be of
abstraction. It might not be same when we try to modularize it.
It is so because the logic is guided by the weight and activation
functions. Moreover, DL systems are behaviour-driven systems
which are built by executing training program on training data.
Here, underlying logic is guided by the training data and not the
requirement (as in traditional software).

IX. HYPOTHESIS

Let us make some assumption about the samples,

adversarial samples and normal samples. In testing, adversarial

samples are those samples which are vulnerable to any changes

and show far more deviation in behaviour with respect to usual

samples. Consider a scenario where the original DNN models

have undergone a set of transformation rules to yield mutated

DNN models. These mutated DNNs usually tend to label an

adversarial data with a different label (label generated by

original mutated DNN). We would assume this state, and try to

measure the crucial factors such as model uncertainty estimate,

density estimate, model sensitivity to the input changes.

Even before we can create a procedure for our hypothesis,
we need an efficient way to generate the mutants. The
fundamental approach is to generate or seed several program
level mutations (mutants). This would require program under
consideration to go through set of mutation operators by
applying set of transformation rules. To the core of which lies,

the process to define mutant operators. As it is known that
traditional software systems are logic oriented, structured, while
DNN models are behaviour and model oriented, therefore
mutation operators’ application to the former scenario
(Traditional Software Systems) does not work for the latter
(DNN Systems). There are quite a few techniques which work
independently and using mutation testing in order to establish
the testing framework.

X. APPROACH

Initialization

One of the initial approaches would be a way to build

foundation steps to measure Label Change Rate (LCR) for the

adversarial samples and normal samples. This is measurable

when we inject these samples into a set of already mutated DNN

models.

TABLE I. MODEL MUTATION OPERATOR

Mutation

Operator

Level Description

Gaussian Fuzzing
(GF)

Weight Fuzzy weight by Gaussian
Distribution

Weight Shuffling

(WS)

Neuron Shuffle selected weights

Neuron Switch (NS) Neuron Switch two neurons within a layer

Neuron Activation
Inverse (NAI)

Neuron Change the activation status of a
neuron

Let x: input sample (adversarial sample or normal sample).

Let f: DNN model (post mutation operators are applied).

Now, we go through the model mutation operator as

provided in the Table 1 (sequence wise) and select the mutation

models. Quite a few times, the output mutated model is of

moderate to low quality (assuming high precision and

confidence as measure of high quality mutated models). This

means that the accuracy and effectiveness on the training data

work well, however on the test data, it significantly deprecates.

We let go or ignore these low quality mutated models. Only

mutated models with high accuracy are considered. We can

adopt the scale based on our experience and historical data

obtained from mutated models. Ideally, any model with more

that 90% accuracy of the original model is part of the set. This

is to make sure that we meet the decision boundary [25]

conditions and they are not impacted much. Upon segregating

the mutated models, we further obtain a label of the input

sample on each mutated model.

Building a Model

In this stage, we follow the hypothesis to create a model.

This model validates (on certain criteria) the observation. If we

recount, earlier we mentioned that adversarial samples are

generated in such a way that it tends to minimize the mutated

behaviour on normal samples, while, it is being able to jump the

decision boundary [25]. There are different ways of mutation to

achieve this behaviour. As per the hypothesis, the effective

adversarial samples are closer to the decision boundary. This

minimizes the restricted modification in the model. With this,

adversarial samples would be considered as a case of crossing

the decision boundary, unlike randomly selected mutated

model. This implies, if we inject mutated adversarial sample

into the mutated model, the outcome of the label tends to change

it from its original label.

Algorithm Design

Experiments and test results show that LCR can be a
distinguisher between adversarial samples and normal samples.
We can discuss on the algorithm which can be designed to detect
samples at runtime based on LCR measures of the provided
samples. This algorithm would delete the LCR, and would keep
on generating more effective and accurate mutated models. For
this to happen, we must define a stopping condition on the
mutation model generation algorithm that could be satisfied.
Prediction algorithm can help us get a set of mutated models
with higher accuracy beforehand.

XI. CONCLUSION AND FUTURE WORK

In this work, we proposed the machine learning mutation

testing framework, its usefulness and approach to detect

adversarial samples for DNN at runtime. We laid down the

details of source level mutation techniques on datasets (training

and test) and training (or test) programs. This required us to

further the details of the process and techniques involved in

designing source level mutation operators, and feed faults into

the DNN models during their development and testing process.

This accompanied the details of model level mutation

technique. Model level mutation technique differs from the

source level mutation technique in the approach that it adopts

to inject the faults. Model level mutation technique directly

feeds the faults into the DNN system. It is also noteworthy how

to measure the quality of these mutation models.
We also briefly touched upon how to predict the mutant

operators even before we can analyse the same by executing.
This is primarily done as mutants’ generation is a
computationally expensive approach. In the end, we proposed a
hypothesis and an approach to build the problem set, analyse it
and proceed under certain assumption to mitigate the same.

REFERENCES

[1] G. Litjens et al., “A survey on deep learning in medical image analysis,”
Medical Image Analysis, vol. 42, pp. 60–88, 2017.

[2] K. Pei, Y. Cao, J. Yang, and S. Jana, “DeepXplore: Automated Whitebox

Testing of Deep Learning Systems,” in 26th Symposium on Operating
Systems Principles, 2017, pp. 1–18.

[3] C. Chen, A. Seff, A. Kornhauser, and J. Xiao, “DeepDriving: Learning

Affordance for Direct Perception in Autonomous Driving,” in 2015 IEEE
International Conference on Computer Vision (ICCV), 2015, pp. 2722–

2730.

[4] P. Ammann and J. Offutt, Introduction to Software Testing, 2nd ed., New
York: Cambridge University Press, 2016.

[5] M. Pacula, “Unit-Testing Statistical Software,” Maciej Pacula. Updated

February 17, 2011. [Blog]. Available: http://blog.

mpacula.com/2011/02/17/unit-testing-statistical-software.

[6] A. Ramanathan, L. L. Pullum, F. Hussain, D. Chakrabarty, and S. K. Jha,
“Integrating symbolic and statistical methods for testing intelligent

systems: Applications to machine learning and computer vision,” in 2016

Design, Automation & Test in Europe Conference & Exhibition (DATE),

2016, pp. 786-791.

[7] S. Amershi, A. Begel, C. Bird, R. DeLine, H. G., E. Kamar, N. Nagappan,
B. Nushi, and T. Zimmermann, “Software Engineering for Machine

Learning: A Case Study,” 2019 IEEE/ACM 41st International Conference
on Software Engineering: Software Engineering in Practice (ICSE-SEIP),

2019, pp. 291-300.

[8] M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of Machine

Learning, 2nd ed., Cambridge: The MIT Press, 2018.

[9] M. I. Jordan and T. M. Mitchell, “Machine learning: Trends, perspectives,
and prospects,” Science, vol. 349, no. 6245, pp. 255–260, 2015.

[10] T. M. Mitchell, Machine Learning, New York: McGraw-Hill, 1997.

[11] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, “The Oracle
Problem in Software Testing: A Survey,” IEEE Transactions on Software

Engineering, vol. 41, no. 5, pp. 507–525, 2015.

[12] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O.
Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,

A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay,

“Scikit-learn: Machine Learning in Python,” Journal of Machine Learning
Research, vol. 12, pp. 2825–2830, 2011.

[13] J. Shawe-Taylor and N. Cristianini, “Kernel Methods for Pattern

Analysis,” Cambridge: Cambridge University Press, 2004.

[14] S. R. Safavian and D. Landgrebe, “A survey of decision tree classifier
methodology,” IEEE Transactions on Systems, Man, and Cybernetics,

vol. 21, no. 3, pp. 660–674, 1991.

[15] M. Liu, T. Breuel, and J. Kautz, “Unsupervised Image-to-Image
Translation Networks,” in 31st International Conference on Neural

Information Processing Systems (NIPS 2017), 2017, pp. 700–708.

[16] X. Pan, Y. You, Z. Wang, and C. Lu, “Virtual to Real Reinforcement
Learning for Autonomous Driving,” arXiv:1704.03952 [cs.AI], 2017.

[17] D. Clark and R. M. Hierons, “Squeeziness: An information theoretic

measure for avoiding fault masking,” Information Processing Letters, vol.
112, no. 8–9, pp. 335–340, 2012.

[18] Y. Jia and M. Harman, “Constructing Subtle Faults Using Higher Order

Mutation Testing,” in 2008 Eighth IEEE International Working
Conference on Source Code Analysis and Manipulation, 2008, pp. 249-

258.

[19] “IEEE Standard Glossary of Software Engineering Terminology,”

in IEEE Std 610.12-1990, pp.1-84, 1990.

[20] J. M. Zhang, M. Harman, L. Ma, and Y. Liu, “Machine Learning Testing:
Survey, Landscapes and Horizons,” IEEE Transactions on Software

Engineering, 2020.

[21] J. Neter, M. H. Kutner, C. J. Nachtsheim, and W. Wasserman, “Applied
Linear Statistical Models,” 4th ed., Chicago: Irwin, 1996.

[22] M. Wicker, X. Huang, and M. Kwiatkowska, “Feature-Guided Black-Box

Safety Testing of Deep Neural Networks,” in 24th International
Conference on Tools and Algorithms for the Construction and Analysis

of Systems (TACAS 2018), 2018, pp. 408–426.

[23] S. Amershi, A. Begel, C. Bird, R. DeLine, H. Gall, E. Kamar, N.
Nagappan, B. Nushi, and T. Zimmermann, “Software Engineering for

Machine Learning: A Case Study,” in 2019 IEEE/ACM 41st International

Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP), 2019, pp. 291–300.

[24] L. Ma, F. Zhang, J. Sun, M. Xue, B. Li, F. Juefei-Xu, C. Xie, L. Li, Y.

Liu, J. Zhao, and Y. Wang, “DeepMutation: Mutation Testing of Deep
Learning Systems,” in 2018 IEEE 29th International Symposium on

Software Reliability Engineering (ISSRE), 2018, pp. 100-111.

[25] W. Shen, Y. Li, Y. Han, L. Chen, D. Wu, Y. Zhou, and B. Xu, “Boundary
sampling to boost mutation testing for deep learning models,” Information

and Software Technology, vol. 130, Article ID 106413, 2021.

