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Abstract—In this paper, we provide an insight journey of Testing 

of Machine Learning Systems (MLS), its evolution, current 

paradigm, and we propose a machine learning mutation testing 

framework with scope for future work. Machine Learning (ML) 

Models are being used even in critical applications such as 

Healthcare, Automobile, Air Traffic control, Share Trading, etc., 

and failure of an ML Model can lead to severe consequences in 

terms of loss of life or property. To remediate this, the ML 

community around the world, must build highly reliable test 

architectures for critical ML applications. At the very foundation 

layer, any test model must satisfy the core testing attributes such 

as test properties and its components. These attributes should 

come from the software engineering discipline but the same cannot 

be applied in as-is form to the ML testing and in this paper, we 

explain why it is challenging to use Software Engineering 

Principles as-is when testing any MLS.  

Keywords-Machine Learning, Software Testing, Quality 

Attributes, Deep Learning, Model Mutation Testing. 

I.  INTRODUCTION 

In the current context of software development and machine 

learning (ML), it is inevitable, not to come across an ML 

scenario in day to day life. It spans across business critical 

applications such as share trading, insurance and banking, 

medical applications such as drug manufacturing, identification 

of disease and medical imaging, and safety critical applications 

such as autonomous driving and robotics [1]-[3]. Software 

testing [4] of mathematical software [5] and Intelligent systems 

[6] has adopted some of the software testing methodologies. 

Applications of ML in several critical sectors make ML testing 

[7] a reliable way to ensure quality and minimize failure 

scenarios. An adoption of testing framework from traditional 

software testing with the addition of key ML quality attributes 

[7] makes more sense. Testing framework that covers 

performance (for critical real time systems), security (for 

business applications and health care applications) and safety 

(for system of systems) increases its trustworthiness. 

To better understand the testing challenges for ML systems 
[8]-[10], we need to deep dive as how ML systems are different 
from traditional software system. Traditional software is more 
deterministic in nature, lacks dynamicity in terms of varied 
inputs. On the other hand, ML systems are dynamic, non-
deterministic and expected to learn from data (labels), and 
predict the output accordingly.  

For instance, a rover has to determine the path on a rocky 
terrain based on the imaging data that it gathers from the 
surrounding, the forest fire alert systems have to generate a 
prediction based on the environmental data such as air humidity, 
wind, temperature and climatic conditions. The model tends to 
evolve and learn from historical data. 

Oracle Problem [11]: Machine learning models are difficult 
to test because they are designed to solve problem based on 
learning from past experience (label data, supervised learning), 
without past experience (unsupervised learning) or through re-
enforcement. Attempts have been made to draw parallel between 
the ML testing approach with Software Testing. By 
understanding the process of software development, we should 
be able to break down the software stack into components 
(unifiable units), and build test cases around it. In other 
approaches, we have Test Driven Development (TDD) to setup 
in testing framework. This approach might not work well with 
ML models. It is because, machine learning models are mostly 
monolith, and components may not reflect the true nature of the 
ML model as a whole. Again, breaking ML model into unifiable 
components or developing with TDD is a cumbersome task. 

In order to understand and design a test framework for ML 
system, we need to understand the behaviour [4] of the model, 
and how the model interacts with the surroundings. Studying 
behaviour of the ML model, gives limited insight into the model. 

Further the paper is organized as: Section II summarises the 
background and related work, Section III summarizes Machine 
Learning Testing Scenarios in terms of faults, failures and 
Oracle problem, Section IV explains machine learning testing by 
considering dynamicity of MLS, Section V describes proposed 
framework for machine learning system testing, Section VI 
describes prediction mutation testing to explore the possibility 
of testing machine learning models such as Deep Neural 
Network (DNN) models, Section VII summarizes model 
mutation testing, Section VIII presents the major challenges, 
Section IX lists the assumptions and hypothesis for set of 
transformation rules to yield mutated DNN models, Sections X 
brings out some approaches for mutation testing, and Section XI 
furnishes conclusion and scope for future work. 

II. BACKGROUND AND RELATED WORK 

Mutation testing in traditional software predates any similar 

testing framework in Machine Learning and DNNs specifically. 

Here, the mutation testing is a proven tool and has higher 
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accuracy. Mutant operators form a well-researched area that has 

its implementation in several high level programming 

languages for traditional software. With time and increasing 

complexity of traditional software, the mutation testing 

framework has been extended well. Use of mutation testing in 

machine learning, is being extensively researched and several 

researchers have established milestones for most of the known 

DNN models. One such approach is DeepMutation. 

Machine Learning: Machine learning is a field of study that 
gives the ability to computers to learn without being explicitly 
programmed. A computer program is said to learn from 
experience E with respect to some task T and some performance 
measure P, if its performance on T, as measured by P, improves 
with experience E [12], [13]. 

Machine learning is a phased approach. The first phase is the 
learning phase. In this phase, data is gathered and bucketed as 
training and test data sets. Training data set is identified by 
attributes and label. The outcome of this phase is a model that 
is drawing the relationship between the attributes and the label. 
The subsequent phase deals with applying the model to different 
dataset (test data). There are several algorithms to accomplish 
this, such as classification algorithms, ranking algorithms, etc. 
There are several attempts and general-purpose availability of 
model based mutation testing, which depends upon comparing 
results from different test scenarios. 

Terms used in machine learning domain: 

Dataset: An ingredient for machine learning model, consists 
of sets of instances for building or evaluating the model. It is 
further categorized as: 

Training Data: This data is obtained from the sources 
(sensors, data collection devices, etc. aggregated and cleaned up 
to exclude bias and noise) and is used for the purpose of training 
a machine learning model. This model is basically an organic 
algorithm which learns from the training data and performs a 
particular task. 

Validation data: This data is from the training data, used to 
tune the hyper-parameters of learning algorithm. 

Test data: This data is the part of training data, for which 
machine learning model has not been trained yet. Based on the 
performance of the ML model and its behaviour with the test 
data, we can attribute the machine learning model maturity. 

Sub Definitions: 

Instance is an information record about the object. Feature 
is a measurable property. Errors are also an important aspect of 
machine learning, and it is this property that the model behaviour 
depends on. Test error is mainly focused on deviation measure 
between the obtained value and the expected value. 

Let us classify Machine Learning. 

Supervised Learning [9]: The goal is to predict the value of 
an outcome measure based on the number of input measures. It 
is commonly referred to as regression [14] problem since its 
outcome measurement is quantitative. 

Unsupervised Learning [15]: The goal is to describe the 
association and patterns in a set of input measures. We only 
observe the feature and have no measurement about the 
outcome. 

Reinforcement Learning [16]: In this approach, agent 
(learning system) can observe an environment, selectively 
perform actions, and get rewards (or penalties). The key here is, 
it must learn by itself, and accordingly respond in actions for the 
good. This approach is referred to as policy, to get most reward 
over a period of time. In nutshell, a policy defines what actions 
the agent should take when subjected to a condition. 

III. MACHINE LEARNING TESTING SCENARIOS 

Fault and Failures [17], [18]: The following discussion 

involves classification of the faults and failure scenarios of the 

ML systems. Since most of the ML systems deal with uncertain 

components, faults and failures are possible in ML models. 

These can be handled by creating counter measures to prevent 

failure scenarios, however, we can have inevitable scenarios. 

Definitions in the IEEE Standard Glossary (IEEE 1990) 

[19]: 

Fault: An incorrect step, process, or data definition in a 

computer program. 

Failure: The inability of a system or component to perform 

its required functions within specified performance 

requirements. 

Data Sensitive Fault: A fault that causes a failure in 

response to some particular pattern of data. 

Program Sensitive Fault: A fault that causes a failure when 

some particular sequence of program steps is executed. 

The core of the testing system is to find the deviation of ML 

models from the expected outcome. 

Oracle: Oracle tests are basically intended towards the 
Behaviour test. This is a challenging aspect as the behaviour of 
ML systems is unpredictable, and this unpredictability makes 
sure sense to build oracle tests. In MLS context, Metamorphic 
Oracles have gained ground as a feasible approach to infer oracle 
information from data. Metamorphic oracles insight 
metamorphic relations between input values, i.e. if a 
metamorphic relation exists between the inputs, the 
corresponding MLS outputs must satisfy a pre-existing relation 
(ideally, equality or equivalence relation). Input data and its 
dimension poses a greater instability towards the ML testing 
realm. So, it is vital to choose adequate test data in order to cover 
impactful dimensions. 

IV. MACHINE LEARNING TESTING 

Software testing techniques, such as unit, integration and 

system testing [20], can be used in ML testing domain. 

Additionally, in order to address the dynamicity of the ML 

systems, additional recommendation has been made for ML 

testing domain which includes input, model and integration 

testing. 



Input Testing: These tests are concentrated on the input data 

which is used to train the ML model. The core reason of using 

input test is to minimise the risk of faults. It can be either offline 

testing or online testing. During the offline testing, it detects 

faults by alerting the bias in the training data. In online testing, 

where ML models are expected to predict for unlabelled data, 

this testing helps on input validation. 

Model Testing: Model testing tests the function aspects of 

the system under test (SUT) (ML model in isolation, without 

taking any other component into account). It tries to find the 

faults in the model architecture, training process, etc. It uses 

accuracy (for classifier) or mean squared error (for regressions 

[14], [21]). It is sometimes considered as unit testing. 

Integration Testing: Integration testing considers the 

integration aspect of ML models, hardware systems, software 

systems and their interactions.  

System Testing: System testing is a holistic test to evaluate 

the system’s measures under a given requirement. 

Black-box and White-box Testing: Black-box testing [22] 

screens the internal structure of the design, code and its 

implementation, of ML systems, without having access to the 

core while white-box testing is crucial as it knows the internal 

structure of the code, design, implementation and behaviour of 

the ML systems. This way it makes more sense to use white-

box testing in ML model. In contemporary software, source 

code is the main source of faults or defects. Mutation testing 

injects modified program code to introduce defects or faults, 

and this enables the qualitative measurement of test data by 

detecting manual changes. With the knowledge on such 

mutation testing framework, we can suggest a Deep Learning 

(DL) based mutation testing framework with two stage process. 

Source level mutation: DL systems depend on the training 

program and training data. Training process is defined as the 

articulation of training program on training data. The master 

source code of training program and master record of the 

training data is mutated over a period of time during the testing 

and the deviation of the Model is recorded. The new evolved 

model, result from the mutation exercise, is set to run through 

the training set in order to determine the quality of the test data. 

The mutation operator can be categorized as: data mutation 

operator and program mutation operator. 

Data Mutation Operators: DL model depends heavily on 

training data. We know that DL model’s robustness depends on 

the underlying data quality. Error introduces at any stage of data 

collection, data aggregation and data cleaning, and skews the 

DL model as the data contains noise. 

Program Mutation Operators: Training programs in DL 

systems are coded using high level languages, and use problem 

specific programming framework. Injection faults in the 

program would cause unexpected behaviour in the DL systems. 

This requires us to carefully craft mutant operations to inject 

faults into the training program. The kind of fault we can think 

of now is like, addition and removal of layers from DL models, 

pass on skewed weights and activation function while training 

process. 

Model Mutation Testing for DL Systems: 

Most of the mutation testing frameworks which work 

efficiently in traditional software systems do not hold ground 

with the DL models. The problem is, most of the mutation 

testing from traditional system is written on the source code, or 

its low level representation such as byte-code. However, model 

mutation testing can be a better approach and we will show it. 

In source level mutation testing, the algorithm injects 

modifications in the training data and training program, while 

in model level mutation testing, the algorithm updates the DL 

model obtained from the training program. As the expectation 

remains intact for both approaches, i.e. to evaluate effectiveness 

and weakness of the test data set, model level mutation testing 

leads the way forward by directly mutating the DL model. 

ML System Attributes: 

Security: ML systems are as vulnerable as any other 

software systems, along with few inherited vulnerability, given 

the model footprint. Security reciprocates to the robustness. 

Efficiency: ML system efficiency reciprocates to accuracy 

of its prediction. 
Fairness: ML systems suffer from statistical problems such 

as bias, deviations and skewness. 

V. MACHINE LEARNING TESTING FRAMEWORK 

Behaviour Framework: ML system might behave 

differently given similar data. The main challenge is to identify 

the extreme boundaries for a given input space. This is similar 

to boundary-value analysis. 

Test Adequacy Criteria: Any test suite woven around an ML 

system, should satisfy the quality attributes. As the classical 

approaches (based on the source code control flow [23]) are not 

relevant to the ML systems, researchers are trying to find out 

new domain in order to satisfy the test adequacy. 

Mutation: In contemporary software testing domain, 

mutation testing is gaining grounds. It has become an efficient 

tool to find the faults in the ML systems, by injecting mutants. 

DeepMutation fundamentally works at the model level, iterates 

through varying mutation within the boundary space. 

DeepMutation: DNNs have gained ground in several critical 

applications such as healthcare, autonomous vehicle and 

robotics. Any DNN system can either be a Feedforward Neural 

Network (FNN) or a Recurrent Neural Network (RNN) system. 

An FNN system processes the input information at each layer 

and forwards it to the next layer. This process continues until 

the decision is reached. This way, the FNN model preserves the 

local properties of each layer. On the other hand, the RNN 

extends the Long-Short Term Memory (LSTM) or memory 

cells and partially propagates the information backward to 

secure temporal information of sequential inputs. This way, the 

decision at any stage not only depends on the given input, but 

also on the current state. This makes RNN reliable for handling 



sequential data, for instance, Natural Language Processing 

(NLP). The spirit of mutation in DNN [24], [25] is similar to 

that of traditional software. The main idea behind 

DeepMutation is to introduce adequate number of mutants or 

operators. The mutants must satisfy the quality attributes for the 

testing framework, such as input (test) data analysis. 

Traditional software is built upon decision logic. This logic 

is implemented in the form of program code, whereas the DL 

models and systems are guided by the underlying DNN 

structures and their weights. 

The weight of DL system is generally obtained from 

executing training program on a given training data, and DNN 

structure is defined as the code of the training program. These 

are two potential reasons, a deviation in which cause 

behavioural issue in the DL systems. The mutation operator can 

be inflicted in either training data set of training program or 

both. Once the mutant operators are injected, training program 

is executed on training data to generate mutated DL models. 

DeepMutation Testing Framework: 

DNN uses high level languages such as Python and R, 

however DNN is represented as hierarchical data structure. We 

are going to shortly lay down on to discuss on the mutation 

testing framework for DL systems. The first step is to design 

source level mutation testing operators. These operators can 

modify the training data and training program. The basic idea 

behind this is to improve the data quality evaluation. The fault 

might be injected manually, or might naturally occur in the 

training data or in training program. This framework must 

address the mutated DL models efficiently and address issues 

such as computation resource requirements, security 

vulnerability issues. Given this, we must work backward to 

generate efficient mutant operators. Before we deliver further, 

we need to elaborate model-level testing. 

Model Level Testing: A model is used to represent the 
desired behaviour of the system under test (SUT), or to represent 
the testing strategies and a test environment. A model 
representation of SUT is at abstraction or partial behaviour. We 
can derive only functional test cases from SUT. The idea here is 
to come up to the conclusion that how many model level 
mutation operators would result in the efficient generation of a 
set of mutations without inducing model level problem. 

VI. PREDICTION MUTATION TESTING 

Prediction Mutation Testing topic tends to attract two sorts 

of discussion – Mutation Testing approach in Machine learning, 

and – Machine learning approach in mutation testing. We will 

talk a little about the latter part, and then resume the discussion 

on the primary topic which is related to exploring the possibility 

of testing machine learning models such as DNN using 

mutation testing, its framework, challenges, pros and cons, 

future works, etc. 

When we discuss the approach of machine learning and its 

impact on mutation testing, we consider that here mutation 

testing can be again applied to a software system or machine 

learning system. However, applying mutation testing in 

software system is inherently different from applying mutation 

testing in machine learning, and it is because of the behavioral 

changes that software systems and machine learning systems 

exhibit when subjected to mutation testing. 

 

Testing, in general is a powerful and unified (yet 

distributed) way to evaluate the quality of underlying systems, 

be it traditional software systems or machine learning systems. 

In this approach, we tend to generate a large number of mutants 

and execute against a test suite to check the ratio of killed 

mutants. This makes mutation testing computationally 

expensive. So, it is worthwhile to invest some time to learn 

about predicting behavior of mutation testing. It is important to 

note here that this approach is based on the classification model. 

This model predicts whether mutants are killed or survived 

during the testing without executing it. However, unlike several 

predicted problems, this approach also suffers from accuracy 

loss (which we can ignore as it is minimalistic).  

In general, mutants are a set of program variants (or training 

program in machine learning). A set of transformation rules 

generates mutants from the original program. These mutants are 

called mutation operator, that seed logic and syntactic changes 

into the program one at a time. 

Killed Mutants: A mutant, killed by a test-suite, if at least of 

the test from the source has a varied execution behavior on the 

mutants and original program. Such mutants are called killed 

mutants. Elsewise, the mutant is known to have survived. The 

ratio of killed mutants to all mutants (non-equivalents) is 

referred as mutation score. It is usually used to evaluate the test 

suite’s effectiveness.  

Other areas, where use of mutation testing is prevalent are 

simulation testing, localizing faults, model transformation and 

guided test generation. 

As mentioned earlier, mutation testing is an extremely 

expensive approach. It requires generating and executing each 

mutant on the test suite. Both of these activities – generation of 

mutations and execution of mutants, are expensive operations 

on hardware of scale. In recent times, however, we have seen 

phenomenal progress to bring down the operational cost for 

mutant generation, though executions remain expensive in spite 

of several refinement techniques such as selective mutation 

testing, weak mutation testing, high-order mutation testing, 

optimized-mutation testing, etc. 

Due to the problems faced for the expense versus 

effectiveness, predictive mutation testing is gaining ground. 

Mutation testing enables machine learning to build a predictive 

model by means of collecting a series of features. These features 

can be test-suite coverage or mutation operators on already 

executed mutants of earlier versions of the project or even other 

projects. 

Earlier versions of same projects are commonly referred to 

as cross-version prediction. Cross project predictions are 

referred to other projects under test. 

 

Tradeoff - Efficiency versus Effectiveness: 
Any prediction model inherently suffers from accuracy 

problem. However, several experimental approaches in 
predication mutation testing domain have shown positive signs 



as it improves efficiency and accuracy of mutation testing. This 
is a clear indication of how prediction mutation testing stands 
out of traditional mutation testing. It will be worthwhile to look 
into the class probability distribution provided by the classifier, 
with which developer may choose the mutant with proper 
probability distribution in order to get better prediction result. It 
is a considerable improvement over traditional mutation testing, 
as it is light weight, in-expensive comparatively, with relatively 
high accuracy. In this article, it is assumed that mutation testing 
refers to prediction mutation testing.  

VII. MODEL MUTATION TESTING 

Models are common in software testing. It is used to select 
test suites. Applications of mutation testing at a model level can 
contribute to reliable and early assessment of the quality of the 
test suits. This can also help in defining a test suite which has 
high fault detection rates. One of the issues which we observed 
while using mutation testing [18] at the early development stage, 
is related to its reliability and quantifying it. 

VIII. CHALLENGES 

Contemporary coding for functional requirements is 

different from programming a DL model. The basic difference 

is, in contemporary programming, we break down the monolith 

requirements into small chunks of programmable units. Each 

unit is programmed separately and satisfies the software quality 

attributes such as correctness, fairness, security, etc. and then 

the units can be combined together with other modules to form 

the holistic program. In this approach, each unit or module has 

its own logic, an aggregation of which comply with the integrity 

attributes of the whole program. 

While in DL systems, which are fundamentally data driven 
models, the logic that we can drive at the highest may be of 
abstraction. It might not be same when we try to modularize it. 
It is so because the logic is guided by the weight and activation 
functions. Moreover, DL systems are behaviour-driven systems 
which are built by executing training program on training data. 
Here, underlying logic is guided by the training data and not the 
requirement (as in traditional software). 

IX. HYPOTHESIS 

Let us make some assumption about the samples, 

adversarial samples and normal samples. In testing, adversarial 

samples are those samples which are vulnerable to any changes 

and show far more deviation in behaviour with respect to usual 

samples. Consider a scenario where the original DNN models 

have undergone a set of transformation rules to yield mutated 

DNN models. These mutated DNNs usually tend to label an 

adversarial data with a different label (label generated by 

original mutated DNN). We would assume this state, and try to 

measure the crucial factors such as model uncertainty estimate, 

density estimate, model sensitivity to the input changes. 

Even before we can create a procedure for our hypothesis, 
we need an efficient way to generate the mutants. The 
fundamental approach is to generate or seed several program 
level mutations (mutants). This would require program under 
consideration to go through set of mutation operators by 
applying set of transformation rules. To the core of which lies, 

the process to define mutant operators. As it is known that 
traditional software systems are logic oriented, structured, while 
DNN models are behaviour and model oriented, therefore 
mutation operators’ application to the former scenario 
(Traditional Software Systems) does not work for the latter 
(DNN Systems). There are quite a few techniques which work 
independently and using mutation testing in order to establish 
the testing framework. 

X. APPROACH 

Initialization 

One of the initial approaches would be a way to build 

foundation steps to measure Label Change Rate (LCR) for the 

adversarial samples and normal samples. This is measurable 

when we inject these samples into a set of already mutated DNN 

models. 

TABLE I.  MODEL MUTATION OPERATOR 

Mutation 

Operator 

Level Description 

Gaussian Fuzzing 
(GF) 

Weight Fuzzy weight by Gaussian 
Distribution 

Weight Shuffling 

(WS) 

Neuron Shuffle selected weights 

Neuron Switch (NS) Neuron Switch two neurons within a layer 

Neuron Activation 
Inverse (NAI) 

Neuron Change the activation status of a 
neuron 

 

Let x: input sample (adversarial sample or normal sample). 

Let f: DNN model (post mutation operators are applied). 

Now, we go through the model mutation operator as 

provided in the Table 1 (sequence wise) and select the mutation 

models. Quite a few times, the output mutated model is of 

moderate to low quality (assuming high precision and 

confidence as measure of high quality mutated models). This 

means that the accuracy and effectiveness on the training data 

work well, however on the test data, it significantly deprecates. 

We let go or ignore these low quality mutated models. Only 

mutated models with high accuracy are considered. We can 

adopt the scale based on our experience and historical data 

obtained from mutated models. Ideally, any model with more 

that 90% accuracy of the original model is part of the set. This 

is to make sure that we meet the decision boundary [25] 

conditions and they are not impacted much. Upon segregating 

the mutated models, we further obtain a label of the input 

sample on each mutated model. 

Building a Model 

In this stage, we follow the hypothesis to create a model. 

This model validates (on certain criteria) the observation. If we 

recount, earlier we mentioned that adversarial samples are 

generated in such a way that it tends to minimize the mutated 

behaviour on normal samples, while, it is being able to jump the 

decision boundary [25]. There are different ways of mutation to 

achieve this behaviour. As per the hypothesis, the effective 

adversarial samples are closer to the decision boundary. This 

minimizes the restricted modification in the model. With this, 



adversarial samples would be considered as a case of crossing 

the decision boundary, unlike randomly selected mutated 

model. This implies, if we inject mutated adversarial sample 

into the mutated model, the outcome of the label tends to change 

it from its original label. 

Algorithm Design 

Experiments and test results show that LCR can be a 
distinguisher between adversarial samples and normal samples. 
We can discuss on the algorithm which can be designed to detect 
samples at runtime based on LCR measures of the provided 
samples. This algorithm would delete the LCR, and would keep 
on generating more effective and accurate mutated models. For 
this to happen, we must define a stopping condition on the 
mutation model generation algorithm that could be satisfied. 
Prediction algorithm can help us get a set of mutated models 
with higher accuracy beforehand. 

XI. CONCLUSION AND FUTURE WORK 

In this work, we proposed the machine learning mutation 

testing framework, its usefulness and approach to detect 

adversarial samples for DNN at runtime. We laid down the 

details of source level mutation techniques on datasets (training 

and test) and training (or test) programs. This required us to 

further the details of the process and techniques involved in 

designing source level mutation operators, and feed faults into 

the DNN models during their development and testing process.  

This accompanied the details of model level mutation 

technique. Model level mutation technique differs from the 

source level mutation technique in the approach that it adopts 

to inject the faults. Model level mutation technique directly 

feeds the faults into the DNN system. It is also noteworthy how 

to measure the quality of these mutation models.  
We also briefly touched upon how to predict the mutant 

operators even before we can analyse the same by executing. 
This is primarily done as mutants’ generation is a 
computationally expensive approach. In the end, we proposed a 
hypothesis and an approach to build the problem set, analyse it 
and proceed under certain assumption to mitigate the same. 
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