
Analyzing Program Comprehensibility of Go
Projects

Moumita Asad, Rafed Muhammad Yasir, Shihab Shahriar, Nadia Nahar, Md. Nurul Ahad Tawhid
Institute of Information Technology, University of Dhaka, Bangladesh
{bsse0731, bsse0733, bsse0703, nadia, tawhid}@iit.du.ac.bd

Abstract—Program comprehension is one of the most impor-
tant activities in developing and maintaining software. Although
existing studies have examined aspects of Go such as design
patterns, code smells and comment density, the comprehensibility
of Go has not been explored yet. This study analyzes the
comprehensibility of Go by comparing it with Java based on
five metrics namely Too Long Files, Too Long Methods, Nesting
Depth, Lack of Cohesive Comments and Duplicate Comments.
For comparison, 50 popular, diverse and open-source projects
are selected from each language. Results show that Go projects
outperform Java in terms of Nesting Depth, Lack of Cohesive
Comments and Duplicate Comments.

Index Terms—Go, Java, Program comprehensibility, Software
maintenance.

I. INTRODUCTION

Go is an open-source programming language developed and
maintained by Google [1]. At present, the popularity of Go
is rising rapidly and many teams are adopting it for their
projects. Renowned projects such as Docker and Kubernetes
have been written in Go. Existing studies [1], [2], [3] have
analyzed aspects of Go such as design patterns, code smells
and comment density. However, the comprehensibility (the
degree of ease with which a programmer read and comprehend
a program [4]) of Go projects have not been explored yet.

Program comprehension is the precondition of performing
any maintenance related activities [5]. It consumes more than
half of the maintenance resources [6]. A major reason behind
introducing the Go programming language is to make code
more maintainable [7]. To make Go projects maintainable,
code must be comprehensible [4]. Therefore, analyzing the
program comprehensibility of Go projects will help to gain
insight regarding their maintainability and identify scopes for
making the projects more comprehensible. Furthermore, it will
help developers to decide whether they should use Go for their
projects [6].

In this context, the current study aims at investigating the
comprehensibility of projects written in Go. Additionally, a
tool named CompreGo has been developed to detect code
fragments that need to be refactored for improving comprehen-
sibility. To analyze the comprehensibility of Go, it is compared
with Java. The reason is that both of these languages are
object-oriented languages [2] and both of these belong to the
C-family (e.g., C++, C#) [8]. Furthermore, an existing study

DOI reference number: 10.18293/SEKE2021-152

concluded that Java projects have higher program compre-
hensibility compared to C, C++ and C# projects [9]. This
study measures program comprehensibility using five static
code metrics namely Too Long Files, Too Long Methods,
Nesting Depth, Lack of Cohesive Comments (non-informative
comments) and Duplicate Comments [9], [10]. These metrics
are language-independent and found to be a good indicator of
program comprehensibility. Based on these metrics, Wilcoxon
Rank-Sum Test [11] is used to analyze comprehensibility of
Go and Java projects.

For analysis, 50 popular, diverse and open-source projects
are selected from each language based on several criteria such
as projects cannot be a fork, and it must have a description
or readme file [9]. Results show that Go projects have signif-
icantly better comprehensibility than Java in terms of Nesting
Depth, Lack of Cohesive Comments and Duplicate Comments.
However, Java projects have significantly fewer long methods
than Go. Regarding Too Long Files, no significant difference
is found between the two languages.

II. METHODOLOGY

This study analyzes the program comprehensibility of Go
projects by comparing those with Java projects. The study is
conducted in 4 steps namely dataset selection, dataset prepro-
cessing, comprehensibility metrics calculation and statistical
analysis. At first, Go and Java projects are selected based
on several criteria such as availability of readme files. Next,
relevant files (e.g., production code) are selected from the
projects to achieve better comparability of results [9]. After
that, comprehensibility metrics of the code residing in these
files are calculated. Based on these metrics, statistical analysis
is performed to identify if the comprehensibility of Go and
Java projects are significantly different. The details of these
steps are given below:

1) Dataset Selection: This study selects Go and Java
projects that fulfill the following criteria:

• To filter out dummy projects, repositories having at
least 10,000 lines of code and a readme file or a
GitHub description are selected, as followed in [9].

• To avoid duplicate projects, repositories must not be
a fork or mirror of another one.

• An existing study found that almost 75% projects
above 215 MB contain the same code multiple times
[9]. Besides, 99% repositories in the GHTorrent
dataset (a collection of GitHub repositories) [12]

are below this threshold. Therefore, the size of the
codebase should not exceed this threshold.

2) Dataset Preprocessing: After selecting the projects,
folders containing external libraries, generated source
files or test code are excluded to solely focus on the core
code of the repository. Although test codes are impor-
tant, those are excluded from analysis to improve compa-
rability between the repositories because it is found that
developers may not apply high quality standards to it [9].
To filter out these files, a list of 60 file system paths (e.g.,
“**/libs/**”, “**/test/**”, “**/testsuite/**”) provided in
[9] is used. The entities of the list do not depend on the
organization or naming convention followed by the Go
or Java repositories. Apart from the list, the pkg folder
is excluded from Go projects since it contains internal
libraries that are not part of the main source code.

3) Metrics Calculation: To measure program comprehen-
sibility, five static code metrics namely Too Long Files,
Too Long Methods, Nesting Depth, Lack of Cohesive
Comments and Duplicate Comments are used. These
metrics are language-independent and found to be a
good indicator of program comprehensibility [9]. These
metrics are calculated by inspecting source code files
and parsing the corresponding Abstract Syntax Tree.

• Too Long Files (TLF): Long files are difficult to
comprehend since a large fragment of code needs
to be reviewed [9]. These files can indicate bad
modularization as well. Too Long Files measures
the portion of source code lines that are located in
files exceeding 750 lines [9]. For calculating this
metric, (1) is used.

TLF =

∑
LOC of long files

total LOC
∗ 100 (1)

Where, total LOC denotes LOC of the whole
project.

• Too Long Methods (TLM): Similar to long files,
long methods are difficult to comprehend since a
large code fragment needs to be examined [6], [9].
Too Long Methods calculates the number of code
lines that reside in methods surpassing 75 lines [9].
It is measured using (2).

TLM =

∑
LOC of long methods

total LOC
∗ 100 (2)

• Nesting Depth (ND): Deeply nested codes are hard
to comprehend as the interleaving control structure
of the code needs to be considered, as shown in List-
ing 1 [13]. Nesting Depth measures the fraction of
code lines belonging to methods exceeding nesting
depth 5 [9]. It is calculated using (3).

ND =

∑
LOC of deeply nested methods

total LOC
∗100

(3)

if(marks<40) {
result = "fail";

}
else {

if(marks>=80) {
result = "A";

}
else if(marks>=60) {

result = "B";
}
else {

result = "C";
}

}

Listing 1. Nesting Depth

• Lack of Cohesive Comments (LCC): Comments
lack cohesiveness when they are non-informative
[10]. A sample comment is shown in Listing 2,
where the comment conveys obvious information.
Lack of cohesive comments can confuse and mis-
lead developers and increase the cost to comprehend
and maintain code [14].

/**
* @return true or false
*/
protected boolean

isLoginTicketBased() throws
Exception {
..........
..........

}

Listing 2. Non-cohesive Comment

To compute Lack of Cohesive Comments, the name
and lead comment of each method are tokenized us-
ing camel case format and white-space respectively
[14]. Next, the similarity between these two token
sets is measured using Levenshtein distance [15].
Two tokens are considered similar if the distance
is smaller than 2 [10]. To calculate coherence, the
total number of similar words are divided by the
total number of comment words. If the value of
coherence is 0 or above 0.5, the comment is non-
cohesive [10]. Lastly, Lack of Cohesive Comments
is calculated using (4).

LCC =
total non-cohesive comments

total comments
∗100 (4)

Where, total comments represents the total num-
ber of method lead comments in the project.

• Duplicate Comments (DC): Existing studies show
that source code often contains methods with du-
plicate comments [14], [16]. These comments do
not provide meaningful information on the different
implementation of methods and thereby increases
the difficulty in program comprehension [14]. Cal-
culation of Duplicate Comments follows a similar
process as Lack of Cohesive Comments. Duplicate

comments are searched within a file since they are
more likely to occur in the same file [16]. At first, all
the comments of a file are tokenized and stored in
lists. For each comment pair, Levenshtein distance
[15] is calculated between elements of their corre-
sponding token lists. Two comments are considered
duplicate if the distances of all the elements are
less than 2 [10]. Lastly, Duplicate Comments are
measured using (5).

DC =
total duplicate comments

total comments
∗ 100 (5)

All of the above metrics are measured in percentage and
a higher value indicates lower comprehensibility.

4) Statistical Analysis: After calculating the metrics,
Wilcoxon Rank-Sum Test [11] is conducted to check
whether the comprehensibility of Go and Java projects
are significantly different. Wilcoxon Rank-Sum Test is
used because it makes no assumption regarding the
distribution of the data (e.g., normal distribution) and it
can handle unequal sample size (e.g., different number
of duplicate comments for Go and Java projects) [11].
The null hypothesis is “Code written in Go and Java
have no differences regarding comprehensibility”. This
hypothesis is tested individually for each of the five
comprehensibility metrics discussed above.

III. SUPPORTING TOOL: COMPREGO

To calculate comprehensibility metrics for Go, a tool named
CompreGo is developed which is publicly available 1. Devel-
opers can use the tool to measure the comprehensibility of a
project and identify which fragments need to be refactored for
improving comprehensibility.

• Comprehensibility Metrics of a Project: To find com-
prehensibility metrics (Too Long Files, Too Long Meth-
ods, Nesting Depth, Lack of Cohesive Comments and
Duplicate Comments) of a project, run the following
command, where directory is the project path.

./comprego -d directory

The output will show metrics value in percentage, as
displayed in Fig. 1. Here, Too Long Files, Too Long
Methods, Nesting Depth, Lack of Cohesive Comments
and Duplicate Comments are 15.92%, 10.69%, 4.55%,
17.45% and 6.06% respectively.

Fig. 1. Comprehensibility Metrics of a Project

1https://github.com/rafed/CompreGo

A number of optional arguments can be specified with
this command.

– “-TLF”: View list of too long files
– “-TLM”: View list of too long methods
– “-ND”: View list of deeply nested methods
– “-LCC”: View list of non-cohesive comments
– “-DC”: View list of duplicate comments
– “-ALL”: View details of all the five metrics

A sample output for “-TLM”command is shown in Fig.
2. Here, cleanPath() method from file gin-1/4.0/path.go
is a long method since its LOC is 90.

Fig. 2. List of Long Methods

• Custom Thresholds for Metrics Calculation: The de-
fault thresholds for Too Long Files, Too Long Methods
and Nesting Depth are 750, 75 and 5 respectively [9].
However, each project and its maintainers are different
and thus thresholds may need to be changed. For this
reason, CompreGo has a provision for customizing these
thresholds. These thresholds can be changed by adding
the following arguments while running the tool:

– “-lf number”: Set customized threshold for Too Long
Files

– “-lm number”: Set customized threshold for Too
Long Methods

– “-nd number”: Set customized threshold for Nesting
Depth

Where, number represents the customized threshold
value.

IV. EXPERIMENTATION AND RESULT ANALYSIS

For comparing the comprehensibility of Go and Java, 50
popular, open-source projects of each language are selected
from GitHub that fulfill the criteria presented in Section 2
[17]. The popularity of a project is measured based on the
number of stars, as followed in [18], [19]. Table I shows the
top 5 projects from each language along with their number of
stars and LOCs. For example, project Guava has 40000 stars
and its LOC is 756954.

To compare the projects, Wilcoxon Rank-Sum Test [11] is
conducted separately for each of the five comprehensibility
metrics (Too Long Files, Too Long Methods, Nesting Depth,
Lack of Cohesive Comments and Duplicate Comments), dis-
cussed in Section 2. The results are presented in Table 2.

Although the mean of Too Long Files is slightly higher
in Go, there is no significant difference between the two
languages (p-value = 0.39 > 0.05). In terms of Too Long
Methods, Go has longer methods than Java. This is because

TABLE I
DESCRIPTION OF TOP 5 JAVA AND GO PROJECTS

Language Project Star LOC

Java

Elasticsearch 53200 2566030
Spring Boot 53000 563943

RxJava 44100 467397
Guava 40000 756954
Retrofit 37400 36610

Go

Moby 59400 1396099
Hugo 49400 144222
Gin 44800 15968
Fro 42300 20771

Gogs 36200 90034

of the error handling mechanism followed by these two lan-
guages. In Java, errors are mostly dealt with try catch blocks.
On the contrary, errors in Go are handled using if statements.
Whenever a function is called in Go, it usually returns an
error in its return values [8]. The errors returned by the
callee function are handled with an if block inside the caller
function. For example, the function PreparedQueryResolve()
in Listing 3 returns ErrMissingQueryID as an error and the
caller function Explain() in Listing 4 handles the error using an
if statement. Although Java can handle multiple errors using
one catch block, Go associates individual if statement for each
function call. Consequently, more error handling statements
are written inside Go method than Java which increases the
method size. Through analysis, it is found that on average
each Java method contains 0.05 error handling statements
(catch block), whereas it is 0.88 in Go. Besides, Go does
not support generics for increasing simplicity and making
code more readable. However, this also makes the code more
verbose compared to other languages and results in longer files
and methods [2].

TABLE II
RESULT OF WILCOXON RANK-SUM TEST

Metric Mean (Go) Mean (Java) P-value
Too Long Files 25.61 18.99 0.39

Too Long Method 17.59 5.69 0.00
Nesting Depth 3.78 4.49 0.00

Lack of Cohesive Comments 18.47 25.69 0.00
Duplicate Comments 2.89 5.43 0.00

1 The significance level is 0.05

In terms of Nesting Depth, Go code have fewer nesting
than Java. The reason again lies in the way how errors are
handled in these languages. In Java, try blocks are used to
handle code that may throw an error. When a try block is
added in a method, it increases the nesting depth, as shown
in Listing 5. Results reveal that around 33.14% deeply nested
method in Java contains at least one try catch block. To find the
association between deeply nested method and the presence
of try catch block, Chi-square Test [20] is conducted since
both of these are categorical variables. The result shows a
significant association between deeply nested method and the
presence of try catch block (p-value < 0.05). However, there
is no concept of try catch blocks in Go [8]. Rather, errors are

handled by adding if statement inside the caller function. The
if statement checks the error and return values accordingly, as
presented in Listing 4. Since the if statement exist in the same
nesting depth as it’s neighbouring code, it does not increase
the nesting depth of the function. As a result, functions in Go
are less nested than Java.

func (s *Store) PreparedQueryResolve()
(uint64,*structs.PreparedQuery, error) s{

if queryIDOrName == "" {
return 0, nil, ErrMissingQueryID

}
}

Listing 3. Returning error in Go

func (p *PreparedQuery) Explain() error {
_, query, err :=

state.PreparedQueryResolve()
if err != nil {

return err
}

}

Listing 4. Handling error using if statement in Go

@Override public void run(){
while (!__isClosed) {

try {
if ((ch=__read(true)) < 0) {

break;
}

}
catch (InterruptedIOException e) {

synchronized (__queue) {
__ioException=e;
__queue.notifyAll();

}
}

}
}

Listing 5. Handing error using try catch blocks in Java

Go shows better results in Lack of Cohesive Comments and
Duplicate Comments as well. This can be due to the difference
in documentation generation process from the source code
comments [21]. Java and Go use different comment structures
and separate tools to generate documentation. In Java, doc-
umentation is generated through the Javadoc tool [21]. It is
necessary for comments in Java to be annotated with Javadoc
tags (e.g., @param, @return, @author) to produce meaningful
documentation. In Go, documentation is generated through the
Godoc tool [8]. Unlike Javadoc, Godoc does not require tags
in comments for generating meaningful documentation. It only
needs a comment preceding a code and its description in plain
words. Godoc then uses the comment and as much information
it can get from the code to generate documentation. This
makes the process of documenting Go code much easier than
Java. Additionally, the community considers that the process
of generating documentation from comments is simpler and

easier in Go than in other languages2. Such advantages may
motivate developers to write better comments that are more
cohesive and not duplicates of other comments.

V. THREATS TO VALIDITY

This section presents potential aspects that may threaten the
validity of the study:

• Threats to external validity: The analysis is conducted
on 50 Go and 50 Java projects which are selected using
several criteria such as availability of readme file or
having at least 10,000 lines of code. Although the project
selection criteria are based on an existing study [9], the
obtained results may not generalize to other projects.
However, to mitigate the threat of generalizability, diverse
and popular projects are selected, as followed in [17],
[22].

• Threats to internal validity: Threats to internal validity
include errors in the implementation and experimentation.
The first threat to internal validity lies in measuring
program comprehension. Although research on program
comprehension started more than 30 years ago, till now
there is no well-defined metric to measure it [23]. This
study uses five static code metrics namely Too Long Files,
Too Long Methods, Nesting Depth, Lack of Cohesive
Comments and Duplicate Comments to measure program
comprehensibility. An existing study found that these
metrics are language-independent and a good indicator
of program comprehensibility [9]. However, changing
the metrics (e.g., psychological factors, dynamic metrics
[23]) may impact the obtained results. The second threat
to internal validity comes from setting the thresholds of
the comprehensibility metrics. This study set the thresh-
old for Too Long Files, Too Long Methods and Nesting
Depth to 750, 75 and 5 respectively. These thresholds may
vary depending on the context. However, these thresholds
are adopted by a previous study [9] as well.

VI. RELATED WORK

Existing work related to this paper can be broadly classified
into two categories - studies related to program comprehension
and studies related to Go, which are discussed in the following
subsections.

A. Studies Related to Program Comprehension

Although research on program comprehension started more
than 30 years ago, there are still no well-defined metrics
to measure it [23]. However, various researches [5], [9],
[24] have been conducted in this regard. Scalabrino et al.
used 121 metrics to investigate their correlation with program
comprehension [5]. These metrics are related to code (e.g.,
cyclomatic complexity), documentation (e.g., methods internal
documentation quality) and developer experience (e.g., years
of programming experience in any language). However, the
study found that none of the metrics show a significant
correlation with program comprehension.

2https://blog.golang.org/godoc-documenting-go-code

Trockman et al. reanalyzed the data from the study of
Scalabrino et al. [5] using principal component analysis and
stepwise selection [24]. They did not find a specific principal
component that explains most of the variance. Stepwise selec-
tion revealed that an increase in methods internal documen-
tation quality, max. line length and larger number of periods
per line correlate with lower understandability. However, the
authors pointed out that the dataset is not large enough (only
324 observations from 46 developers) to draw any conclusion.

Roehm et al. studied 10 conventional wisdom related to
software maintainability more specifically program compre-
hension [9]. For example, C code has more too long methods
than code written in other languages. They used 5 metrics -
Clone Coverage, Comment Incompleteness, Too Long Files,
Too Long Methods and Nesting Depth for measuring program
comprehension. However, another study countered that code
clones are helpful for program comprehension [25]. In addi-
tion, writing comments are not enough if they convey unrelated
or inconsistent information [14]. Therefore, this paper uses
Lack of Cohesive Comment and Duplicate Comments instead
of Comment Incompleteness. Furthermore, unlike this study,
their analysis does not consider Go programming language.

B. Studies Related to Go

Prior studies related to Go can be divided into two cate-
gories. The first category [3], [22] includes Go projects as
a part of their dataset. Ray et al. compared 17 programming
languages including Go to find whether the choice of language
affects software quality [22]. Their analysis confirms that
language has a small yet statistically significant impact on code
quality. Besides, classifying bugs into several categories (e.g.,
Memory or Concurrency error), the paper examined whether
language influences the type of bug that occurs in software.
The result revealed that defect types are strongly associated
with languages. For example, languages with managed mem-
ory systems (e.g., Java) naturally had fewer memory errors or
leaks compared to unmanaged languages (e.g., C).

Another study conducted by He et al. explored differences
in commenting practices across different languages [3]. They
analyzed the comment density of 5 popular programming
languages namely Python, Java, Go, JavaScript and C++. Their
study revealed that Python and Java projects have significantly
higher comment density than C++, JavaScript and Go projects.
In addition, the purpose of a project (e.g., reuse, application,
education) impacts its comment density. For example, educa-
tional projects have the highest comment density.

The second category [1], [2] conducts research on Go from
various perspectives. Schmager et al. analyzed the design
patterns of Go [2]. They implemented all the 23 Gangs of Four
(GoF) design patterns and compared these with Java. They
found that Go’s language features have not replaced design
patterns. Implementing the adapter pattern is easier in Go. On
the other hand, implementing the template pattern is difficult
since there is no abstract class in Go. Furthermore, although
Go syntax is an improvement over C++ or Java, it is more
verbose than Python or Haskell.

Another study by Yasir et al. proposed a tool named God-
Expo to detect God Structures (a structure that threatens the
maintainability and understandability of code by performing
most of the work alone) in Go programs [1]. GodExpo
uses three metrics namely Weighted Method Count (WMC),
Tight Class Cohesion (TCC) and Access To Foreign Data
(ATFD) for detecting God Structures. Besides, it can provide
version wise result to observe the evolution of God Structures.
By executing GodExpo on Go projects, the authors showed
that it can detect God Structs in all versions of a project.
Additionally, it was found that number of God Structures in a
project gradually increases as a project evolves.

The above discussion indicates that various studies have
been conducted on Go. However, none of these studies focuses
on the maintainability or comprehensibility of Go. Therefore,
this paper aims at analyzing the comprehensibility of Go. In
addition, it proposes a tool CompreGo to help developers in
tracking the comprehensibility of Go projects.

VII. CONCLUSION AND FUTURE WORK

This paper examines the comprehensibility of Go projects
by comparing it with Java projects. For measuring program
comprehensibility, five static code metrics namely Too Long
Files, Too Long Methods, Nesting Depth, Lack of Cohesive
Comments and Duplicate Comments are used. Based on these
metrics, 50 popular, diverse, open-source Go and Java projects
are compared using Wilcoxon Rank-Sum Test. Results demon-
strate that Go code has significantly higher comprehensibility
than Java in terms of Nesting Depth, Lack of Cohesive
Comments and Duplicate Comments. Conversely, Java has
significantly better comprehensibility than Go in terms of
Too Long Methods. Regarding Too Long Files, no significant
difference is observed between these two languages. In future,
the comprehensibility of Go projects will be analyzed from
other perspectives such as dynamic analysis or psychological
aspect. In addition, refactoring suggestion will be developed
for improving comprehensibility of Go projects.

REFERENCES

[1] Rafed Muhammad Yasir, Moumita Asad, Asadullah Hill Galib, Kis-
han Kumar Ganguly, and Md Saeed Siddik. Godexpo: an automated
god structure detection tool for golang. In Proceedings of the 3rd
International Workshop on Refactoring, pages 47–50. IEEE Press, 2019.

[2] Frank Schmager, Nicholas Cameron, and James Noble. Gohotdraw:
Evaluating the go programming language with design patterns. In Eval-
uation and Usability of Programming Languages and Tools, page 10.
ACM, 2010.

[3] Hao He. Understanding source code comments at large-scale. In
Proceedings of the 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, pages 1217–1219. ACM, 2019.

[4] Gerard K Rambally. The influence of color on program readability
and comprehensibility. In Proceedings of the 17th SIGCSE Technical
Symposium on Computer Science Education, pages 173–181, 1986.

[5] Simone Scalabrino, Gabriele Bavota, Christopher Vendome, Mario
Linares-Vásquez, Denys Poshyvanyk, and Rocco Oliveto. Automatically
assessing code understandability: How far are we? In Proceedings of
the 32nd International Conference on Automated Software Engineering,
pages 417–427. IEEE Press, 2017.

[6] Xin Xia, Lingfeng Bao, David Lo, Zhenchang Xing, Ahmed E Hassan,
and Shanping Li. Measuring program comprehension: A large-scale field
study with professionals. IEEE Transactions on Software Engineering,
44(10):951–976, 2017.

[7] Rob Pike. Go at google: Language design in the service of software
engineering, 2012. URL http://talks.golang. org/2012/splash.article,
2012.

[8] Ivo Balbaert. The way to Go: A thorough introduction to the Go
programming language. IUniverse, 2012.

[9] Tobias Roehm, Daniel Veihelmann, Stefan Wagner, and Elmar Juergens.
Evaluating maintainability prejudices with a large-scale study of open-
source projects. In Proceedings of the International Conference on
Software Quality, pages 151–171. Springer, 2019.

[10] Daniela Steidl, Benjamin Hummel, and Elmar Juergens. Quality analysis
of source code comments. In Proceedings of the 21st International
Conference on Program Comprehension, pages 83–92. IEEE, 2013.

[11] William Cyrus Navidi. Statistics for engineers and scientists. McGraw-
Hill Higher Education New York, NY, USA, 2008.

[12] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer,
Daniel M German, and Daniela Damian. The promises and perils of
mining github. In Proceedings of the 11th Working Conference on
Mining Software Repositories, pages 92–101, 2014.

[13] Jan-Peter Ostberg and Stefan Wagner. On automatically collectable
metrics for software maintainability evaluation. In Proceedings of the
Joint Conference of the International Workshop on Software Measure-
ment and the International Conference on Software Process and Product
Measurement, pages 32–37. IEEE, 2014.

[14] Anna Corazza, Valerio Maggio, and Giuseppe Scanniello. Coherence
of comments and method implementations: a dataset and an empirical
investigation. Software Quality Journal, 26(2):751–777, 2018.

[15] Li Yujian and Liu Bo. A normalized levenshtein distance metric. IEEE
transactions on pattern analysis and machine intelligence, 29(6):1091–
1095, 2007.

[16] Arianna Blasi and Alessandra Gorla. Replicomment: identifying clones
in code comments. In Proceedings of the 26th Conference on Program
Comprehension, pages 320–323. ACM, 2018.

[17] Joao P Diniz, Daniel Cruz, Fabio Ferreira, Cleiton Tavares, and Ed-
uardo Figueiredo. Github label embeddings. In Proceedings of the
20th International Working Conference on Source Code Analysis and
Manipulation, pages 249–253. IEEE, 2020.

[18] Jailton Coelho, Marco Tulio Valente, Luciana L Silva, and Emad Shihab.
Identifying unmaintained projects in github. In Proceedings of the
12th International Symposium on Empirical Software Engineering and
Measurement, pages 1–10, 2018.

[19] Gustavo Vale, Angelika Schmid, Alcemir Rodrigues Santos, Ed-
uardo Santana De Almeida, and Sven Apel. On the relation between
github communication activity and merge conflicts. Empirical Software
Engineering, 25(1):402–433, 2020.

[20] Mary L McHugh. The chi-square test of independence. Biochemia
medica, 23(2):143–149, 2013.

[21] Douglas Kramer. Api documentation from source code comments: a
case study of javadoc. In Proceedings of the 17th annual international
conference on Computer documentation, pages 147–153, 1999.

[22] Baishakhi Ray, Daryl Posnett, Vladimir Filkov, and Premkumar De-
vanbu. A large scale study of programming languages and code quality
in github. In Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pages 155–165.
ACM, 2014.

[23] Janet Siegmund. Program comprehension: Past, present, and future. In
Proceedings of the 23rd International Conference on Software Analysis,
Evolution, and Reengineering, volume 5, pages 13–20. IEEE, 2016.

[24] Asher Trockman, Keenen Cates, Mark Mozina, Tuan Nguyen, Christian
Kästner, and Bogdan Vasilescu. Automatically assessing code under-
standability reanalyzed: combined metrics matter. In Proceedings of the
15th International Conference on Mining Software Repositories, pages
314–318. ACM, 2018.

[25] Miryung Kim, Lawrence Bergman, Tessa Lau, and David Notkin. An
ethnographic study of copy and paste programming practices in oopl.
In Proceedings of the International Symposium on Empirical Software
Engineering, pages 83–92. IEEE, 2004.

