
HHML: A Hierarchical Hybrid Modeling Language
for Mode-based Periodic Controllers

Zhiming Hu1, Zheng Wang2, 3, Hongjian Jiang1, Yuyuan Zhang2 and Yongxin Zhao1∗
1 Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai, China

2 Beijing Sunwiseinfo Technology Ltd, China
3 Beijing Institute of Control Engineering, China

Abstract—In cyber-physical systems, the controllers are widely
designed into mode-based periodic modules, which are used to
control physical plants. Such a system can be modeled as a
hybrid one, i.e., one of the real-time controller programs and
interactive continuous plants that obey dynamical laws. In this
work, to facilitate the modeling and analysis of periodic hybrid
control systems in the field of aerospace and smart cities, a
hierarchical hybrid modeling language (HHML) is proposed,
which contains a two-hierarchy structure, i.e., mode-hierarchy
and module-hierarchy. The former supports modeling a hybrid
system at the abstraction level, while the latter is used to
describe the behavior of the modules. The operational semantics
is investigated for formal analysis, and the translation rules to
hybrid automaton are explored for formal verification. A case
study is conducted with the lunar lander to demonstrate the
effectiveness of the approach.

Index Terms—Hybrid systems, Cyber-physical system, Formal
semantics, Model verification

I. INTRODUCTION

A hybrid system [1] is an interactive system of real-time
controllers programs and continuous plants that obey dynamical
laws. Such systems are pervasively applied in aerospace, smart
cities, and automotive industry, etc. In cyber-physical systems
[2], the embedded software and its operating environment have
the characteristics of high complexity, uncertainty and high
real-time requirements. In general, the controllers are designed
into mode-based periodic modules to monitor and control the
evolution of physical plants. Formal analysis for such mode-
based periodic controllers is still an enormous challenge due
to very complicated combinations of computation and control,
and high safety requirements of system designs.

Recently, there are a number of formal methods developed
for hybrid systems, which can be divided into three main
categories: automata [3], process algebra [4] and state diagrams
[5]. In automata model, each state contains a large number of
differential equations, invariants, and transitions with reset
operations. However, the automata model cannot achieve
good scalability and composability. In cyber-physical systems,
however, a practical model may have hundreds of controllers
and sensors. Therefore, automata may not be the suitable choice.
As a theoretical basis of formal analysis, process algebra
is difficult to be accepted by a wide range of practitioners
due its complicated symbols and mathematical logic. The

*Corresponding author: yxzhao@sei.ecnu.edu.cn
DOI reference number: 10.18293/SEKE2021-149

lack of good readability causes even simple controllers to
require the help and guidance from experts in the formal
field. Hence, the method based on process algebra still needs
more improvements. State diagram is a commonly modeling
method in the industry of which the typical representative is
Simulink/Stateflow. In general, it has the characteristics of a
high-level programming language. With the support of tools,
the modeling, simulation, verification of hybrid systems can be
effectively achieved. However, there are few related researches
on its formal semantics.

In this paper, we are motivated by the above methods to
put forward a hierarchical hybrid modeling language HHML
for the mode-based periodic controllers, which contains
mode-hierarchy and module-hierarchy to make the model more
scalable and composable. Mode-hierarchy supports modeling
a hybrid system at the abstraction level and facilitates the
graphical representation of the model that is easy to understand.
Module-hierarchy is used to describe the behaviors of the
modules, which contains the time predicates unique to the
period model. The operational semantics is investigated for
formal analysis, and the translation rules to hybrid automaton
are explored for formal verification. The contributions of this
work are the followings:
• Hierarchical hybrid modeling language. The language

provides hierarchy model to support the hybrid systems.
The discrete mode has periodicity and supports nesting
to describe the control system. The continuous mode
represents the physical world by ordinary differential
equations. Furthermore, the operational semantics in
the mode-hierarchy and module-hierarchy are explored
respectively, which helps developers to understand and
ensures the correctness of the model built.

• End-to-end translation. Several translation rules of trans-
formation from HHML models to hybrid automata are
provided to support property verification in tool Flow*.
An illustrative example of a lunar lander is used to
demonstrate the feasibility of translation rules.

The rest of the paper is organised as follows. Related work
of hybrid system modeling and verification is introduced in
Section II. A modeling language HHML is proposed in Section
III. In Section IV, the operational semantics is presented. The
hybrid automatic translation rules are given in Section V. An
example of lunar lander is shown in Section VI. Section VII
concludes the paper and introduces the future work.

II. RELATED WORK

This section mainly gives some brief introduction to typical
hybrid system modeling methods and common verification
tools, which provides a reference for this work.

A. Hybrid system modeling methods
Formal methods to model hybrid systems are in progress for

many years. The two which have most influenced our language
are hybrid action system [6] and Zélus [7].

Hybrid action system was proposed by Mauno et al. It
maps continuous-time events to model variables in the form
of data flows, so that the overall system behavior can be split
into independent differential equations. However, hybrid action
system does not support the stepped refinement development
methods in action systems, which limits the types of modeling
systems. Our discrete mode is hierarchical, so it is suitable for
modeling large-scale hybrid systems.

Zélus was a synchronous language with ordinary differential
equations proposed by Benveniste et al. It reuses the principles
and compilation techniques developed for synchronous lan-
guages, extending them to deal with models that mix discrete
and continuous-time. However, it uses the type systems to
separate discrete and continuous calculations, while we use
a clearer discrete mode and continuous mode to distinguish,
which makes the interaction between the controller and physical
world easier. On the other hand, our language is aimed
at periodic controllers, and each discrete mode can have
periodicity and use periodicity-related predicates.

B. Hybrid system verification tools
There are many tools that can model and verify specific

types of hybrid systems nowadays. Traditional tools include
d/dt [8], HyTech, etc., and newer tools contain Flow* [9],
SpaceEx [10], etc. They mainly use hybrid automata as the
underlying semantic model of hybrid systems. In order to
enable the proposed hybrid modeling method to complete the
verification of the property in these verification tools, there are
many researches on translating from hybrid modeling languages
to hybrid automata. For example, in [11], a subset of Simulink
language was proposed to translate into hybrid automata. In
[12], the conversion rule from ECML to SpaceEx model was
proposed. Its essence is the translation of part of ECML to
linear hybrid automata.

The HHML model was translated into the above four tools
respectively, with requirements being satisfied potentially, to
verify the common examples of hybrid system. Taking the
running time, running scale and supported operation format
into consideration, Flow* is finally chosen.

III. HYBRID DESCRIPTION LANGUAGE

This section proposes the hybrid description language HHML
to provide the rich control logic, and events that can drive the
conversion among different modes. HHML is a two-hierarchy
structure containing mode-hierarchy and module-hierarchy. The
former one supports to model a hybrid system at the abstraction
level, while the latter one describes the detailed behavior of
modes.

A. Mode-hierarchy syntax
The following syntax elements are in support of the modeling

of the hybrid system architecture at an abstract level:

HModel ::= (Dictionary,Modes)
Dictionary ::= {var | var = (name, attri, type, initval)}
Modes ::= (dModes, cModes)
dMode ::= (name, period, (dflow | dModes), dTrans)
cMode ::= (name, cflow, cTrans)
dTran ::= (dm, priority, dguard, dm′)
cTran ::= (cm, priority, cguard, cm′)
dguard ::= cond | Duration(cond, c) | After(cond, c)
cguard ::= When(cond)

HModel indicates the hybrid model which is composed of
Dictionary and Modes. Dictionary is the set of four-tuple
variables var, where, name is the label of the variable, attri
is the attribute which can be continuous, discrete and constant,
type is the basis type such as Boolean, int, float, and intval
means the initial value.
Modes illustrates the behavior of the hybrid system which

is made up of discrete modes dModes and continuous modes
cModes. A discrete mode dMode is used to describe the
control system which consists of label name, period, discrete
control flow dflow or sub-modes dModes, and discrete
transitions dTrans. A continuous mode cMode denotes the
changes in the physical world with the differential equations,
which consists of name, continuous statements cflow and
continuous transitions cTrans.
dTran is the transfer relationship between discrete modes

including the source mode dm, priority, guarded conditions
dguard, and target mode dm′. Duration and After are
HHML’s special time predicates in dguard to express the
property of periodicity based on the basic Boolean expression
cond and constant c. Duration(cond, c) is true in a period
p if the first c periods within the current period meet cond.
After(cond, c) is true in a period p if there is another period
p′ such that cond can be satisfied in period p′ and it travels c
periods from p′ to p.
cTran is similar to dTrans, where cguard denotes the

continuous guarded condition, cm and cm′ denote the source
and target continuous mode. cguard uses When(cond) to
mean that the system will always wait for cond to be satisfied.
The difference between dTrans and cTrans is that cTrans
is not controlled by the period. Therefore the transition occurs
immediately when cguard is met, and time predicates are
missing in cguard.

B. Module-hierarchy syntax
Module-hierarchy is divided into discrete flow dflow and

continuous flow cflow, which denotes the calculation process
of the hybrid model, and the following elements are used to
specify the behavior of the hybrid system.

dflow ::= declare | stmts | dflow; dflow
stmts ::= pstmt | cstmt
pstmt ::= x := stmt | x← cv | call func | skip | ⊥
cstmt ::= stmt; stmt | while cond do stmts |

if cond then stmts else stmts
cflow ::= eq until cond
eq ::= der v = expr | eq ‖ eq | Idle

dflow represents the execution task and calculation process
of the discrete mode, including local declarations declare,
control statements stmts and the combinations of dflow. The
control statements stmts consist of primitive statements pstmt
and compound statements cstmt. pstmt has the following
types: assignment x := stmt, sampling of continuous variables
x ← cv, function call call func, nil statement skip and
divergence ⊥. cstmt contains three basic control structures,
namely sequential composition, iteration and conditional.
cflow describes changing laws of the physical world in

continuous modes, which is constructed by until operator
inserted between differential equation eq and termination
conditions cond. eq uses explicit ordinary differential equations
der v = expr to express the changing laws. Furthermore, eq
can be a combination of multiple equations, where Idle is
a special case denoting that the continuous variables remain
unchanged.

IV. OPERATIONAL SEMANTICS OF HHML

This section displays the operational semantics of HHML
according to the transition system. They are divided into
two semantics based on the mode-hierarchy and the module-
hierarchy respectively.

A. Operational semantics of the mode-hierarchy

HHML supports periodic modeling of hybrid systems where
the discrete mode will be executed at a specific point in time,
and the continuous mode will change with time. It is assumed
that there is an operating system that supports a hybrid system’s
modes to be executed. The semantics of the mode-hierarchy
can be described into a five-tuple shown as below:

mode config ::= (cm, dm, l, per, T r)

where:
- cm represents the continuous mode of the system.
- dm stands for the discrete mode of the system.
- l ∈ {Begin,Execute, End} indicates the stage of the

discrete mode which the system is in. Begin means the
beginning of the period which is mainly used for data
sampling. Execute expresses the preparation to perform
periodic tasks, and End determines whether a transition
occurs at the end of the period.

- per denotes the counter of period.
- Tr represents the historical value sequence of the variable

in the discrete mode, which is used to judge the guarded
condition of the transition.

State transition rules of the mode-hierarchy are listed in
TABLE I.

(Sample) indicates that in the initial stage of each period
of the discrete mode, the system will sample the continuous
variables required in the mode and Tr is updated to Tr′. Then
system phase will change from Begin to Execute.

(Enter sub) means that if the discrete mode contains sub-
modes, the system will immediately enter the sub-modes from
the current mode.

TABLE I: State Transition Rules at the Mode-Hierarchy

(Sample)
dflow(dm) 6= empty

(cm, dm,Begin, per, T r)→ (cm, dm,Execute, per, T r′)

(Enter Sub)
dflow(dm) = empty

(cm, dm,Begin, per, T r)→ (cm, dm′, Begin, per, T r)

(Excute)
execute(dm.dflow, Tr) = Tr′

(cm, dm,Exceute, per, T r)→ (cm, dm,End, per, T r′)

(no dTran)
∀tran ∈ dTrans · ¬(Tr |= tran.dguard)

(cm, dm,End, per, T r)→ (cm, dm,Begin, per + 1, T r)

(dTran)
∃tran ∈ dTrans · ((Tr |= tran.dguard) ∧Hpri(tran))

(cm, dm,End, per, T r)→ (cm, dm′, Begin, 1, T r)

(cTran)
∃tran ∈ cTrans · ((Tr |= tran.cguard) ∧Hpri(tran))

(cm, dm, l, per, T r)→ (cm′, dm, l, per, Tr)

(Execute) describes that when the discrete mode enters the
execution phase, the system processes the variables according
to the discrete control flow and then changes from the Execute
phase to the End phase. execute(dm.dflow, Tr) = Tr′

means the result of the execution.
(no dTran) indicates that when none of the discrete tran-

sition conditions can be met, the discrete mode which the
system is in remains unchanged, and the phase of the system
is updated from End to Begin. Then the period is increased
by 1.

(dTran) shows that when at least one discrete transition
condition is met, the system will select the highest priority for
transition. The current discrete mode dm will transfer to the
target discrete mode dm′, and the operating period will be reset
to 1. Hpri(tran) = ∀tran′ ∈ dTrans·(tran′ 6= tran∧Tr |=
tran′.dguard ∧ tran′.priority > tran.priority) is defined
to denote the highest priority for transition.

(cTran) expresses that the continuous mode will only
transfer to the target continuous mode cm′ with the highest
priority Hrpi(tran) when the transfer conditions are met. The
transition will occur immediately when the cguard is met,
because the cguard is always in a wait state.

B. Operational semantics of the module-hierarchy

A triple module config is used to represent the semantics
of the module-hierarchy as shown below.

module config ::= (σ, stmts, status)

where:

- σ stands for the set of variables.
- stmts represents the statements to be executed.
- status denotes the states of the module layer, and it

includes three states: term, wait and div. State term
expresses that the previous statement runs successfully
and you can continue to execute the current statement.
State wait indicates that the previous statement is blocked
and a guard event is needed to activate the system. State
div means that the system has an error and cannot execute
subsequent programs.

TABLE II: State Transition Rules of the Module-Hierarchy

(Assign)
(σ, x := stmt, term)→ (σ[stmt/x], ε, term)

(Sample)
(σ, x← v, term)→ (σ[v/x], ε, term)

(Div)
(σ,⊥, term/wait)→ (σ,⊥, div)

(Loop1)
σ |= cond

(σ,while cond do stmts, term)→ (σ, stmts;while cond do stmts, term)

(Func)
excute(func)(σ) = σ′

(σ, call func, term)→ (σ′, ε, term)
(Loop2)

σ 2 cond
(σ,while cond do stmts, term)→ (σ, ε, term)

(Skip)
(σ, skip, term)→ (σ, ε, term)

(Cond1)
σ |= cond

(σ, if cond then stmt1 else stmt2, term)→ (σ, stmt1, term)

(Seq)
(σ, stmt1)→ (σ′, stmt′1)

(σ, stmt1; stmt2, term)→ (σ′, stmt′1; stmt2, term)
(Cond2)

σ 2 cond
(σ, if cond then stmt1 else stmt2, term)→ (σ, stmt2, term)

(EQ1)
σ |= cond

(σ, eq until cond,wait)→ (σ, ε, term)
(EQ2)

σ 2 cond
(σ[v(t)], eq until cond, term/wait)→ (σ[v(t+ δ)], eq until cond,wait)

The state transition rules of the Module-Hierarchy are given
in Table II.

(Assign) and (Sample) respectively denote the assignment
of discrete variables and the sampling of continuous variables.
If the current state is term, the operation can be performed, and
the variables in the variable set σ are modified. (Func) means
that calling the function func which makes the current variable
set σ become σ′ and sets the currently executed statement to
empty. (Skip) means doing nothing. (Div) indicates that the
system lies in a divergent state when ⊥ holds.

(Seq) describes the systems executing the sequential state-
ments. (Loop1) and (Loop2) respectively represent that the
loop statement holds or not. (Loop1) denotes that the statements
are in the loop and the entire loop will be executed as sequential
statements, while (Loop2) denotes the termination of loop.

(Cond1) and (Cond2) are two transition rules to denote the
if statement, where the former holds when the condition is true
and the latter holds with false condition.

(EQ1) denotes the condition is meet and the until statement
is executed. While the condition is unsatisfied, (EQ2) denotes
the system must wait for δ periods till the condition holds.

V. TRANSLATIONS OF HHML

This section introduces the modeling essence of Flow*
and proposes some translation rules to translate the model
established by HHML into a hybrid automaton. According
to the generated automaton, formal verification of safety and
reachability has been successfully implemented by the tool
Flow*.

A. Hybrid automata

Flow* [9] works on systems that can be modeled by hybrid
automata. Hybrid automata can be expressed as:

(loc, var, inv, flow, trans, guards, resets, init)

where:
- loc is a finite set of continuous states, also called modes.
- var consists of several real-valued variables.
- inv means the invariant of each mode.
- flow represents the continuous dynamics defined by

ordinary differential equations of each mode.

- trans is the set of possible transition between modes.
- guards is the set of transition conditions between modes.
- resets assigns a reset map to a jump. After a jump occurs,

the values of the continuous variables will be updated
according to the reset mapping.

- init denotes the initial of the automaton.

B. Translation rules

To simplify the expression of hybrid automata, we use the
jumps set to denote the union set of guards, resets and
trans. jump represents an execution of system resets.

jumps ::= {jump | jump = {lbegin, lend, guard, reset}}

Therefore, hybrid automata can be expressed as a six-tuple .

(loc, var, inv, flow, jumps, init)

Now, the translation rules containing the variables, discrete
modes, continuous modes and some flows in module-hierarchy
are shown in turn.

1) Variables: Variables v are translated by the below rule
where using ”−” to denote the unchanged elements.

Tr(v) = (−, var ∪ v,−,−,−, init ∪ v.inival)

The variables in HHML are divided into continuous, discrete
and constant. The types include integer, floating-point and
Boolean. The variables in Flow* are unified as floating-point
continuous state variables. Therefore, the Boolean variables
are transformed to 1/0 and other variables are converted into
floating-point. Then these variables can be converted into
state variables in the hybrid automaton directly. To reduce the
number of translated variables, we will change the constants to
values. Assigning initial values inival to variables in HHML is
corresponding to the initial variables init in hybrid automata.

Since there is no discrete modes in hybrid automata, the
names of discrete modes are added as variables into var. We
use flag 1/0 to distinguish whether the system lies in the discrete
mode. Finally, time term t is added to record the period in
automata whose initial value is set to 0.

2) Discrete modes: The discrete mode supports mode
nesting in HHML which may contain several sub-modes. So
before translating, the discrete mode has to be flattened, i.e.,

all discrete modes after simplification do not contain sub-
modes, and keep the semantic consistency during the translation.
Flattened discrete modes can be described as below.

dmodes′ = {dm | dm.dflow 6= empty ∧ dm ∈ dmodes}

Since loc is a set of states in the hybrid automata, the discrete
modes need to be translated into each state. A certain state
l ∈ loc is used in the translation rules and other states are
the same. The following rule is about when the discrete mode
transfers.

Tr(dm) = (−,−,−, f low ∪ t′ = 1, jumps ∪ jps,−)
where jps = {jp | jp = (l, l, (t ≥ dm.period; dm.name
== 1; dguard), (dm.name = 0; dm′.name = 1; dm′.dflow;
t = 0)) ∧ (dm,−, dguard, dm′) ∈ dm.dTrans}

In order to translate dm.period, t′ = 1 is added to each flow
to represent the periodic process. Condition t ≥ dm.period is
attached to guard, and t will be set to 0 in resets to indicate
the end of the period. dguard is converted into guards to
translate the conditions of discrete transfer process. Once the
transition occurs, the discrete control flow of the target mode
df.dflow is executed, and the current mode is modified to dm′.
There is no transition between continuous modes, hence the
target state is still the source state l.

The following rule is about when the discrete mode does
not transfer.

Tr(dm) = (−,−,−, f low ∪ t′ = 1, jumps ∪ jps,−)
where jps = {jp | jp = (l, l, t ≥ dm.period;

dm.name == 1, dm.dflow; t = 0)}
The rule indicates that when the discrete mode does not

transfer, it will execute dm.dflow and then enter the next
period at the end of the period.

3) Continuous modes: Continuous modes are translated by
the rule as follows.

Tr(cm) = (loc ∪ cm.name,−, inv ∪ cm.cond,
flow ∪ cm.eq, jumps ∪ cm.cguards,−)

As mentioned above, the continuous mode is a triple in
HHML. The corresponding translation is performed between
the hybrid automata and the continuous mode. The continuous
modes’ name, differential equation eq and termination condi-
tion cond will be translated to loc, flow and inv in hybrid
automata respectively. The transfer between continuous modes
is equivalent to the jumps behavior in the hybrid automaton,
while resets in jumps does nothing during the transfer.

4) Some flows in module-hierarchy: Since Flow* only
supports part of the discrete control flow, conditional statement
along with the time predicates Duration and After is
translated to enable expressive models to be verified.

First, the translation rule of conditional statement if cond
then stmt1 else stmt2 in dflow can be expressed as:

Tr(dflow.cd) = (−,−,−,−, jumps ∪ jps,−)
where jps = (l, l, cond, stmt1) ∪ (l, l,¬cond, stmt2)
dflow that contains the conditional statement will be split

into two, and conditional statements will be replaced with

stmt1 and stmt2 and set to the reset respectively. The
corresponding cond and ¬cond are added to the guards.

Next, rules of time predicates Duration and After nec-
essary for modeling periodic hybrid systems are introduced.
They only focus on changing the guards and resets in the
jumps behavior.

Tr(dflow.Duration(cond, c)) = (−, var ∪ cnt,−,−,
jumps ∪ jps, init ∪ cnt = 0)
where jps = (−,−, cond, cnt = cnt+ 1) ∪ (−,−,

¬cond, cnt = 0) ∪ (−,−, cnt ≥ c,−)

Tr(dflow.After(cond, c)) = (−, var ∪ cnt,−,−,
jumps ∪ jps, init ∪ cnt = 0)
where jps = (−,−, cond, cnt = cnt+ 1) ∪ (−,−,

cnt > 0, cnt = cnt+ 1) ∪ (−,−, cnt ≥ c,−)
An additional count variable cnt is introduced here. For

Duration, when a period of the discrete mode ends, if cond
is true, cnt will increase by 1, otherwise it will be reset to 0.
When cnt ≥ c, the expression of Duration(cond, c) is true.
Similarly, for After(cond, c), when cond is true or cnt > 0,
cnt will increase by 1 at the end of the period, and when
cnt ≥ c, the expression is true.

VI. CASE STUDY

In this section, the process of lunar lander’s slow descent is
modeled into the hybrid system by HHML. Then, the model
is translated into a hybrid automaton and Flow* carries out
the reachability analysis towards it.

A. Model

The model analyzed in this case study is taken from the
descent guidance control program of a lunar lander in [13]. In
brief, it is a sampled data control system composed of physical
devices and control programs. The thrust exerted on the lander
is constantly adjusted by the system to ensure that the lander
remains stable during the slow descent phase. So that it enters
the free fall phase smoothly and completes the landing. For
the specific meaning and value of each parameter, please refer
to [13]. This paper only models from the parameter level.

The hybrid system is divided into the current stage of the
guidance program and the lander dynamics. The guidance
program (i.e. discrete mode) modeled by HHML is shown in
top half of Figure 1. The slow descent phase of the guidance
program is executed periodically in a sampling period. At each
sampling point, various sensors will sample the current state
of the lander. The sampled values will be calculated in the
guidance program, and the control command will be output,
which will then affect the dynamics of the lander. When more
than 10 seconds have passed during the slow descent phase
(approximately 80 periods), and the height of the lander is less
than 6 meters, the system will switch from the slow descent
phase to the free fall phase and send out the signal.

Furthermore, the lander dynamic (i.e. continuous mode)
modeled by HHML is shown in bottom half of Figure 1 which
is considered only in the vertical direction. dynamic 1 and
dynamic 2 indicate the change of the lander under different

thrusts. After receiving the signal to change to free fall, the
dynamics will change to dynamic 3 to indicate free fall.

Fig. 1: Lunar Lander Modeled in HHML

B. Translation and verification

The translated model shown as Fig.2 will be verified with
regard to three properties [13] in the following.

First, the speed fluctuation of model is supposed to satisfy
|v − vlsw| < 0.05. Then, the lander will eventually reach the
surface of the moon. Finally, the speed of the lander should
not exceed vMax when arriving at the destination.

Fig. 2: Translated Mode in Hybrid Automata

The computation costs 9 minutes on the platform with 2.4
GHz Intel Core i5 CPU and 16GB RAM running macOS. The
reachable sets of the translated model are given in Figure 3.

VII. CONCLUSION AND FUTURE WORK

This paper has introduced a hierarchical hybrid modeling
language (HHML) for periodic controllers. The language uses
periodic and hierarchical discrete modes to formalize the
control system, and continuous modes to model the physical
environment. In addition, translation rules help translate the

(a) T v plot (b) T r plot

Fig. 3: Reachable Sets Given by Flow*

model into hybrid automata, and implement verification of
the properties on the verification tool Flow*. The verification
results show that the lander can finally reach the lunar surface
smoothly and safely.

In the future, we plan to apply HHML to more cases in
smart cities, and support more verification tools.

ACKNOWLEDGEMENTS

This work is supported by National Key Research and Devel-
opment Program (2019YFB2102600), Lab of High Confidence
Embedded Software Engineering Technology, Beijing Insititue
of Control Engineering, No: HCESET-2019-1.

REFERENCES

[1] L. P. Carloni, R. Passerone, and A. Pinto, Languages and tools for hybrid
systems design. now Publishers Inc, 2006, vol. 1.

[2] K. Ghorbal, J.-B. Jeannin, E. Zawadzki, A. Platzer, G. J. Gordon, and
P. Capell, “Hybrid theorem proving of aerospace systems: Applications
and challenges,” Journal of Aerospace Information Systems, vol. 11,
no. 10, pp. 702–713, 2014.

[3] R. Alur, C. Courcoubetis, T. A. Henzinger, and P.-H. Ho, “Hybrid
automata: An algorithmic approach to the specification and verification
of hybrid systems,” in Hybrid systems. Springer, 1992, pp. 209–229.

[4] F. Wang, Z. Cao, L. Tan, and Z. Li, “Formal modeling and performance
evaluation for hybrid systems: a probabilistic hybrid process algebra-
based approach,” arXiv preprint arXiv:2012.12716, 2020.

[5] J. B. Dabney and T. L. Harman, Mastering simulink. Pearson, 2004.
[6] M. Rönkkö, A. P. Ravn, and K. Sere, “Hybrid action systems,” Theoretical

Computer Science, vol. 290, no. 1, pp. 937–973, 2003.
[7] T. Bourke and M. Pouzet, “Zélus: A synchronous language with odes,”

in Proceedings of the 16th international conference on Hybrid systems:
computation and control, 2013, pp. 113–118.

[8] E. Asarin, T. Dang, and O. Maler, “The d/dt tool for verification of hybrid
systems,” in International Conference on Computer Aided Verification.
Springer, 2002, pp. 365–370.

[9] X. Chen, E. Ábrahám, and S. Sankaranarayanan, “Flow*: An analyzer
for non-linear hybrid systems,” in International Conference on Computer
Aided Verification. Springer, 2013, pp. 258–263.

[10] G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel,
R. Ripado, A. Girard, T. Dang, and O. Maler, “Spaceex: Scalable
verification of hybrid systems,” in International Conference on Computer
Aided Verification. Springer, 2011, pp. 379–395.

[11] A. Agrawal, G. Simon, and G. Karsai, “Semantic translation of
simulink/stateflow models to hybrid automata using graph transforma-
tions,” Electronic Notes in Theoretical Computer Science, vol. 109, pp.
43–56, 2004.

[12] S. Yoon and J. Yoo, “Formal verification of ecml hybrid models with
spaceex,” Information and Software Technology, vol. 92, pp. 121–144,
2017.

[13] H. Zhao, M. Yang, N. Zhan, B. Gu, L. Zou, and Y. Chen, “Formal
verification of a descent guidance control program of a lunar lander,”
in International Symposium on Formal Methods. Springer, 2014, pp.
733–748.

