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Abstract—Formula retrieval is an important research topic in
Mathematical Information Retrieval (MIR). Most studies have
focused on comparing formulae to determine the similarity be-
tween mathematical documents. However, two similar formulae
may appear in completely different knowledge domains and
have different meanings. Based on N-ary Tree-based Formula
Embedding Model (NTFEM), we introduce a new hybrid
retrieval model combining formula with its surrounding text for
more accurate retrieval. Using keywords extraction technology,
we extract keywords from text around the formula which can
supplement the semantic information of formula. Then we get
the representation vectors of keywords by FastText N-gram
embedding model, and the representation vectors of formulae
by NTFEM. Finally, documents are first sorted according to
the similarity of keywords, and then the ranking results are
optimized by formula similarity. Experimental results show that
the accuracy of top-10 results is at least 20% higher than that
of NTFEM and can be 50% in some specific topics.

Index Terms—Mathematical Information Retrieval, Formula
Similarity, Formula Embedding, Word Embedding, Keywords
Extraction.

I. INTRODUCTION

Nowadays, the retrieval methods for linear sequence text
are widely developed and used, such as Google, Baidu,
Bing and other search engines [1]. However, these methods
do not work well for complex formulae that frequently ap-
pear in mathematical documents. In this case, formula-based
embedding models are proposed for solving the retrieval
problem of formulae with two-dimensional structures. The
models can capture the structural features of mathematical
formulae, but may lack semantic interpretation. Namely,
formulae with similar structure may appear in completely
different knowledge domains and have different meanings.
Therefore, the retrieval results may be unsatisfactory. It is a
difficult problem that need to be tracked.

Generally, the text around the formula is typically a very
good indication of what domain application the formula is
used for. In text-based retrieval methods, documents are rep-
resented by a group of keywords, as keywords can summarize
the information of text [2]. Then the similarity between two
documents is calculated by keyword matching algorithms.
More specifically, using keywords instead of long text as
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the retrieval units, can not only reduce the storage, but
also improve the retrieval accuracy. Therefore, the additional
semantic information of the formula can be supplemented
through the keywords of the text around the formula.

In this paper, we present a hybrid retrieval model combin-
ing the formula with its surrounding text for more accurate
Mathematical Information Retrieval (MIR). We first use
Rapid Automatic Keyword Extraction (RAKE) algorithm [3]
to extract the keywords from text around the formula, and
the representation vectors of the keywords are then obtained
by FastText N-gram embedding model [4]. Meanwhile, we
get the representation vectors of formulae by NTFEM [5].
Finally, the mathematical documents are first sorted based
on the similarity of the keyword vectors, then the retrieval
results are reordered according to the formulae similarity.
Experimental results on the dataset provided by TopicEq
[2] show our model has achieved more accurate retrieval
results than other retrieval models and can effectively capture
semantic features of formulae.

The remainder of this paper is organized as follows. We
first introduce the preliminaries and challenges of formula
retrieval in Section II. In Section III, we then present the
hybrid retrieval model combining the formula with its sur-
rounding text. In Section IV, we evaluate our model on
the dataset provided by TopicEq and compare with other
retrieval models. Section V reviews related work on formula
retrieval methods and keyword extraction methods. Finally,
we conclude this paper in Section VI.

II. FORMULA RETRIEVAL

A. Definition of Formula Retrieval

Most present information retrieval systems usually do not
consider mathematical notations and formulae in documents
because they cannot build effective indexes for them. Search
engines like Google mostly treat user inputs of symbols,
equations and formulae as normal text without understanding
their mathematical semantics [6]. They may be able to
find similar text, but are very often fail to find the exact
match. Given a query formula, the system should be able to
parse its structure and semantics and then find the matching
documents with similar formula. For instance, given an
incomplete equation enπ + 1, the formula retrieval system



should match to the Euler’s Identity formula: eiπ + 1 = 0.
The key issue is how to measure the similarity between two
formulae which is different from the text similarity. We need
extract features of math formulae so that we can distinguish
from different formulae, then get similar formulae.

B. Challenges of Formula Retrieval

Formulae are generally displayed in two-dimensions. How-
ever, the current representation ways, such as LATEX and
MathML, cannot reflect the structural characteristics of for-
mulae. Besides, formulae are highly abstract. Two similar
formulae may appear in completely different knowledge
domains and have different meanings, and this lead to un-
expected match [2]. Therefore, both structural and semantic
features of formulae should be considered in retrieval pro-
cess.

Fig. 1. Formulae and text snippets from Physics.

An interesting observation is, with text around the for-
mula, the meaning of the formula is determined more clearly.
As shown in Fig. 1, the highlighted words are keywords
extracted by keywords extraction algorithms, and the word
relativity and term gravitational clearly show the formula
is intended for Physics. This example shows that keywords
can greatly help formula retrieval, and the combination of
formula retrieval and context analysis can better capture the
semantics of documents and lead to more accurate match.

III. METHOD

The process of our hybrid retrieval model is shown in Fig. 2.
And the detail of process is explained as follows:

1) Processing of mathematical information: Formulae are
parsed into n-ary trees, and keywords are extracted from text
around the formula.

2) The representation vectors of formulae and keywords:
The representation vectors of keywords are obtained by an
n-gram word embedding model, while the representation
vectors of the formulae by NTFEM.

3) Processing of queries: In the same way, the represen-
tation vectors of keywords and formulae from input queries
are calculated respectively by above models.

4) Optimization for retrieval results: The mathematical
documents in the database are sorted based on the similarity
of the keywords vectors first, after that, the retrieval results
are sorted again on the basis of formulae similarity.
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Fig. 2. Our hybrid retrieval model

A. Formula Embedding Model

NTFEM first transforms the mathematical formula from a
two-dimensional structure to a one-dimensional linear se-
quence. The transformation steps are listed as follows:

• Convert a formula (MathML) into an n-ary tree.
• Generate the tuple sequences and tokenize the tuples.

Fig. 3 shows the process of the formula a+ b× c+2× b× c
being converted from MathML notation to tree structures, in
which (b) is the binary tree, and (c) is the n-ary tree.

Fig. 3. Example of formula conversion

Then NTFEM sets labels for symbols in the formulae,
where these labels fall into the following categories:

• Numbers “N”.
• Identifiers such as variable symbols “V”.
• Commutative operators “U”.
• Non-commutative operators “O”.

As shown in the Table I, NTFEM uses a pair-based
method [7] to define "words" and generate "sentences" by
breadth-first traversal which is the input of the embedding
model.

In order to better represent the features of formulae,
NTFEM uses the weighting strategy based on FastText N-
gram embedding model [4].



TABLE I
TUPLES GENERATED FROM THE FORMULA REPRESENTED IN FIG. 3(C).

ID symbol pairs tree tuples

1 (+ , a) (U:ADD,V:a)
2 (+ , ×) (U:ADD,U:times)
3 (+ , ×) (U:ADD,U:times)
4 (× , b) (U:times,V:b)
5 (× , c) (U:times,V:c)
6 (× , 2) (U:times,N:2)
7 (× , b) (U:times,V:b)
8 (× , x) (U:times,V:x)

1) Level Weight: Taking depth and complexity into con-
sideration, the weight of tuple t can be expressed in the
formula sequence f with

Wf [t] =
(depth−D(t))

depth
× α+

L(D(t))∑depth
i L(i)

× β, (1)

where depth is the depth of the n-ary tree of f , D(t) is the
level of tuple t in the n-ary formula tree, and L(i) is the
number of tuples at the i-th level, and α, β are two tuning
parameters. Here we set α + β = 1, and adjust these two
parameters to get better results.

2) Frequency Weight: With consideration of tuple fre-
quency in the corpus, NTFEM combines SIF [8] with level
weight to get the final formula embedding vf :

vf =
1

|f |
∑
t∈f

γ

γ + pt
vtwt, (2)

where γ is hyperparameters, pt is the frequency of tuple t in
corpus, and vt is the formula tuple embedding.

B. Extract and Train the Keywords

In this paper, we use RAKE algorithm [3] to extract the
keywords from text around the formula. Contrary to other
methods that rely on Natural Language Processing (NLP)
technologies, RAKE can automatically extract keywords
from text with only one traversal. Moreover, it can extract
key phrases from mathematical text, especially longer tech-
nical terms, which is in line with the task scenario of this
paper. The algorithm first uses punctuation marks to break a
document into clauses, and then, for each clause, uses stop
words as delimiters to divide the clauses into phrases that
serve as candidates for the final extracted keywords. Next,
each phrase can be divided into several words by space. And
each phrase can be scored by the sum of its word scores.
The score of word w is calculated as follows:

WordScore(w) =
Degree(w)

Frequency(w)
, (3)

where Degree(w) is the degree of the word (a concept in
the network) and Frequency(w) is the frequency of the
word. Finally, the top third of candidate phrases are identified
as keywords, after the phrases are sorted by their scores in
descending order.

Like processing in NTFEM, FastText is also used for
keywords training in this paper. In order to better capture

the semantic features of keywords, we make the following
improvements to the training process:

1) Stop words adjustment: Stop words such as by,
allows, almost and everywhere appear frequently in docu-
ments and have little effect on reflecting useful information.
In most models, these words would be removed in order to
improve training efficiency. But for mathematical text corpus,
stop words may appear in the definition of mathematical
formula, the description of the mathematical theory, and other
text which is important for reflecting mathematical semantics.
Therefore, we have adjusted the stop words and preserved
some of them that may affect the mathematical semantics.

2) Negative Sampling: In the CBOW model, a word w is
predicted by its context. Namely, for a given Context(w),
the word w is a positive sample and the others are negative
samples. Generally, 5 negative sample words will be selected
for each Context(w). The probability that the sample wi is
selected is:

P (wi) =
f (wi)∑n

j=0 (f (wj))
. (4)

Then positive and negative samples are represented with 1
and 0 respectively. In this case, the results of the output layer
can be normalized between [0, 1]. Compared with a group of
negative samples obtained by random sampling, the objective
function of the model is listed as follows:

F =

N∑
n=1

log (1 + e−γ(sn,cj)
)
+

∑
m∈Mcj

log
(
1 + eγ(m,Cj)

) ,
(5)

where Mc represents a group of negative samples obtained
by negative sampling. And γ (S,C) is the evaluation function
related to the word S and its context C, it can be calculated
as follows:

γ(S,C) =
1

|C|
∑
s′∈C

us′vs. (6)

Here vs represents the word vector of the word S, and us′

is the word vector of the word s′ in the Context(S).

C. Similarity of Mathematical Documents

After obtaining the representation vectors of the formulae
and the surrounding text, we use cosine similarity of vectors
as the basic ranking. The documents is first sorted according
to the similarity between the keywords in the database and
the user input. For the query document q and a document p
in the database, with their text vector Vq and Vp respectively,
the similarity is measured as follows:

Sim(p,q) =
∑n
i=1(Vqi × Vpi)√∑n

i=1 (Vqi)
2 ×

√∑n
i=1 (Vpi)

2
. (7)

Then, top-k results are reordered according to the cosine
similarity of the formulae. The final results are the similar
candidate documents of the user input.



IV. EXPERIMENTS AND RESULTS

A. Dataset

For evaluation of our hybrid model, we use the dataset
provided by TopicEq [2], which includes nearly 100, 000
scientific and technological articles published in arXiv.org in
the past five years and generate 400, 000 pieces of data. Each
data consists of a formula in LATEX notation and ten sentences
around the formula, where five before the formula and the
rest after it. The dataset covers 10 topics and labels them with
T1, T2, . . . , T10, including astrophysics (T1), relativity (T2),
graph theory (T3), linear algebra (T4), machine learning (T5),
quantum physics (T6), particle physics (T7), number theory
(T8), optimization (T9) and probability (T10). We randomly
select 93, 051 pieces of data from 5 categories and used 90%
of the data as the training set and the rest as the test set. The
distribution of the data is listed as follows:

TABLE II
THE DISTRIBUTION OF DATA

Topic Training Set Test Set Total
astrophysics 18, 401 1, 816 20, 217

relativity 18, 826 1, 823 20, 649
graph theory 17, 469 1, 678 19, 147
linear algebra 16, 522 1, 652 18, 174

machine learning 13, 048 1, 240 14, 828

Note that we have made a tool to convert the formula with
notation from LATEX to MathML. In this case, we can obtain
the representation vectors of formulae through NTFEM.

B. Retrieval Results and Evaluation Standards

In this paper, we used P@k to calculate the accuracy of
retrieval results. For a query, P@k represents the proportion
of results related to user input among the top-k retrieval
results, and the calculation formula is:

P@k =
true positives@k

true positives@k + false positives@k
. (8)

Experimental results shows that the retrieval accuracies
after enhanced through the incorporation of surrounding
text are greatly improved, compared with pure formula
retrieval methods. As shown in Table III, for the topic of
astrophysics, the accuracy of top-10 retrieval results of
NTFEM-K is improved by 50% compared with NTFEM. Fur-
thermore, retrieval accuray in the topic of machine learning
is much lower than others of NTFEM retrieval model.This
may be because the field of machine learning intersects

TABLE IV
RETRIEVAL RESULTS OF NTFEM-T

Topic P@10 P@50 P@100 P@200 P@500
astrophysics 0.400 0.320 0.300 0.315 0.324

relativity 0.300 0.300 0.260 0.285 0.286
graph theory 0.300 0.300 0.310 0.260 0.262
linear algebra 0.300 0.220 0.250 0.180 0.188

machine learning 0.700 0.500 0.430 0.310 0.250

with other fields, and NTFEM has difficulty in distinguishing
formulae with similar structures, which can be solved through
the incorporation of the surrounding text.

(a) Precission

(b) MaxF

Fig. 4. Precison and MaxF indicators of the above three models

TABLE III
RETRIEVAL RESULTS OF NTFEM AND NTFEM-K

Topic P@10 P@50 P@100 P@200 P@500

NTFEM NTFEM-K NTFEM NTFEM-K NTFEM NTFEM-K NTFEM NTFEM-K NTFEM NTFEM-K

astrophysics 0.300 0.800 0.260 0.780 0.280 0.770 0.325 0.630 0.310 0.454
relativity 0.300 0.500 0.280 0.400 0.230 0.430 0.255 0.415 0.278 0.354

graph theory 0.300 0.500 0.240 0.480 0.250 0.400 0.225 0.345 0.228 0.316
linear algebra 0.200 0.900 0.220 0.740 0.170 0.680 0.165 0.675 0.158 0.598

machine learning 0.100 0.900 0.180 0.560 0.150 0.510 0.215 0.420 0.202 0.294



(a) Classification results of NTFEM (b) Classification results of NTFEM-K

Fig. 5. Confusion matrix heat map

In this paper, we also study the effect of embedding all
surrounding text without extracting keywords, which is called
NTFEM-T model. We find that the overall performance of
NTFEM-T is also better than NTFEM on retrieval accuracy.
As shown in Table IV, the retrieval accuracies of NTFEM-
K and NTFEM-T are much higher than that of NTFEM
for the machine learning topic. This means that the text
around the formula can supplement the semantics of the
formula. In addition, for retrieval tasks on topics relativity
and graph theory, the retrieval accuracies of NTFEM-T are
about 20% lower than those of NTFEM-K, which shows that
the keywords extraction method can efficiently capture the
semantic features of the formula.

We use two indicators Precision and MaxF to compare the
performance of the above models. As shown in Fig. 4, the
precision of NTFEM-K is much higher than other models,
especially in retrieval tasks of T1, T3 and T4 topics. MaxF is
the harmonic value of precision and recall, which can reflect
the overall performance of the model. It is easily observed
that the NTFEM-K model has best performance.

Finally, we evaluate the above models on the task of
document clustering. A heat map of confusion matrix (Fig. 5)
is used to visualize the clustering results. The diagonal
elements of the heat map indicate the number of documents
which are correctly labelled. According to the experiment
results, NTFEM-K has also achieved better performance on
the classification task compared to the NTFEM model.

V. RELATED WORK

The research on Math Information Retrieval has been a hot
topic in the fields of information retrieval and knowledge
engineering. In the early stage, formula-based methods used
various transformation algorithms to convert the formulae
into special notations, which are suitable for indexing and
retrieved by matching algorithms. Later, the text around the

formula were incorporated to supplement the information of
the formula.

A. Formula-based Retrieval

For pure formula retrieval, most previous studies can be
roughly categorized into text-based and tree-based mod-
els [9], [10]. In text-based methods, formulae are converted
to ordered strings, which can be considered as inputs with
the same processing in the traditional text retrieval mod-
els. Math Indexer and Searcher (MIAS) [11] implemented
formulae matching in three steps: ordering commutative
operations, variables unification and constants unification.
DLMF project [12] implemented the textualization of math
formulae through flattening and normalization process, in
which each formula generates a unique form for all possible
orders of operator symbols. Kumar et al. [13] applied the
largest common sub-string algorithm to calculate the sim-
ilarity between documents. Unfortunately, most text-based
methods are inefficient, and the retrieval accuracy is low
due to the inability to extract the two-dimensional structural
features of the formula.

In tree-based methods, the formulae are transformed into
trees and the partial matching methods are usually used for
retrieval tasks. For example, MathWebSearch (MWS) [14],
a model based on the substitution tree index, used term
indexing to minimize access time and storage. Moreover,
different representation trees of formulae also affect re-
trieval performance. Zanibbi et al. compared the performance
based on two hierarchical representations, Symbol Layout
Trees (SLTs) and Operator Trees (OPTs), and designed a
series of mathematical retrieval systems [15].

In recent years, some embedded models have been applied
to the field of mathematical information retrieval. Thanda et
al. [16] first used the Doc2Vec model on mathematical for-
mulae by representing the formula tree as a 100-dimensional



vector. Gao et al. [1] proposed symbol2vec and formula2vec,
where symbol2vec simply learns the symbols of formulae
in LATEX based on CBOW by using negative sampling, and
formula2vec treats the formulae as sentences and uses the
PV-DM to learn the characteristics of formulae.

B. Combination of Formula and Its Surrounding Text

Compared to the pure formula retrieval, we believe that the
retrieval model combining formula with text can learn more
useful features by extracting the mathematical semantics of
the text around the formula. Krstovski and Blei [6] proposed
a word embedding model for mathematical expressions. They
treated the entire equation as a word through the distributed
representation of the formula, and embeded it in conjunction
with the surrounding text. However, they ignored the internal
structure and symbolic semantics of formula. Yasunaga and
Laferty [2] designed a topic model for scientific documents
containing formulae. In this model, they used long and short-
term memory models (LSTM) [17] to learn the characteristics
of the formula sequence. Through a series of verifications,
the effect of the topic model that combines formula and the
surrounding text is better than that of a simple text topic
model. Most previous hybrid models handle formulae in a
rough way, so that they cannot capture the characteristics of
formulae well. Moreover, the research on the combination of
formula and the surrounding text is still in its early stage and
cannot be effectively applied to specific retrieval tasks.

C. Keywords Extraction

Keywords use a set of words to define the content of the text,
which can reduce storage space and streamline the calculation
of document similarity. Generally speaking, there are two
ways to generate keywords:
• Keyword allocation technique selects multiple words in

a given thesaurus as keywords to label a document.
• Keyword extraction technique extracts some words from

a document as keywords to label it.
At present, the more prevalent method is keyword extraction
technique, which can be mainly divided into two categories:

1) Supervised learning algorithm: A supervised learning
algorithm transforms the process of keyword selection into a
binary classification problem. The specific method is to set
a boolean label on the extracted candidate words to indicate
whether the candidate word is a keyword, and then train the
keyword classifier with a certain amount of datasets with
labels. For a document, all candidate words can be extracted
first, and then the trained keyword classifier is used to label
and classify, and finally all the keywords are obtained.

2) Unsupervised learning algorithm: An supervised
learning algorithm first extracts candidate words from the
document, and scores the candidate words according to
certain rules. Different scoring strategies focus on the features
of different dimensions of a text, and then output top-k
candidate words with the highest scores as the final keywords.
The common algorithms are TF-IDF, RAKE, LDA, and etc.

VI. CONCLUSION

In this paper, we present a hybrid model NTFEM-K in
corporation of surrounding text for mathematical information
retrieval. We use NTFEM to produce formula embeddings
and obtain the representation vectors of keywords by FastText
that captures mathematical semantics. Then we use quadratic
sorting method to obtain the retrieval results. Experiments
show that our model achieves higher retrieval accuracy than
previous models of formula retrieval.
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