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Abstract—Bloom filter is an efficient technique to improve
query performance in LSM-tree-based databases, such as
RocksDB, HBase, and Cassandra. However, the original Bloom
filter uses a fixed false positive rate (FPR), which makes it ineffi-
cient for mixed queries that involve both point and range queries.
To solve this problem, in this paper, we present an improved
Bloom filter called RoBF (Range-Query-Oriented Bloom Filter),
which uses a mixture of Bloom filters and can process mixed
queries on LSM-tree efficiently. We design an efficient algorithm
for generating the solution based on the query distribution. We
compare our proposal with the trie-based filter and find out that
each has its own advantages for various scenarios. Therefore,
we propose to use different filters with varied sizes for different
levels on LSM-tree. Following this idea, we present an algorithm
to generate specific filters with a specific size for different levels
on LSM-tree to optimize the performance of mixed queries under
limited memory space. We conduct comparative experiments
and compare the proposed RoBF with various competitors, and
the results show that RoBF can improve the performance of
evaluating mixed queries by up to 6x to 30x, compared to the
original Bloom filter in RocksDB.
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I. INTRODUCTION

LSM-tree [1] has been widely used in many key-value data
stores due to its high write performance. There are many
database based on LSM-tree, for example, Cassandra [2],
HBase [3], and Rocksdb [4]. One of the main challenges
for such databases is to avoid query performance degradation
caused by the multi-level write buffers of LSM-tree [5].

To accelerate the query performance of LSM-tree, many
researchers proposed to add Bloom filters into the LSM-tree
structure. Bloom filter is an effective scheme with only false
positive errors and no false negative errors, which is ideal
for reducing the query amplification in the LSM-tree [6].
Presently, Bloom filters have been used in many index struc-
tures to accelerate query performance, such as BloomTree [7].

However, although Bloom filters can improve query perfor-
mance for point queries that aim to retrieve individual key-
value pairs, they are not efficient for evaluating range queries.
So far, researchers have proposed the Prefix Bloom filters [8]
to record a fixed-length prefix for each key to respond to range
queries. For example, if we want to know if an SST (Sorted
String Table) contains a key between [Hello, Henry], we can
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simply return false if we are certain that the SST does not
contain a string that begins with ”He”. However, the PBF
scheme will lower the accuracy of point queries.

In this paper, we study the limitations of Bloom filters in
handling mixed queries and propose a new solution. Briefly,
the contributions of this study are four-fold.

(1) First, we found that using both of these filters can
produce better results for mixed queries, and we call this
filtering scheme DBF (Double Bloom Filter). Thus, we pro-
pose an algorithm to dynamically determine the parameters of
the DBF, including the length of the prefix and the memory
usage ratio of the two filters, which achieve ideal results on a
particular query distribution.

(2) Second, to achieve high performance on a more general
query distribution, we propose RoBF (Range-Query-Oriented
Bloom Filter), which extends the number of prefix bloom
filters from one to many. We extend the previous algorithm
to be used to determine the parameters of RoBF. Similar to
DBF, RoBF supports both point and range queries, and in
most scenarios comprehensive queries are nearly twice as good
as DBF. In comparison with SuRF, a trie-based hybrid query
filter, RoBF has a significant performance advantage in small
memory.

(3) Third, we found that for the same LSM-tree and the
same query distribution, different levels of SST actually have
completely different data and query distribution, meaning that
different filters with different sizes should be applied to the
data of different levels. Based on this idea, we propose an
algorithm to determine the filter parameters for each level,
including filter types and memory consumption.

(4) Finally, we conduct comparative experiments on a
100GB dataset and compare the proposed RoBF with various
competitors, and the results show that RoBF can improve the
performance of evaluating mixed queries by up to 6x to 30x,
compared with the original Bloom filter of RocksDB.

II. RELATED WORK

There are several optimizations for range queries for Bloom
filters, such as the Prefix Bloom Filter (PBF) [8]. Compared
with Bloom Filter, PBF uses a fixed-length key prefix to query
keys, reducing the performance of point queries in exchange
for support for range query filtering. PBF has long existed
in RocksDB as an experimental function, and has officially
become one of the main functions of RocksDB in recent years.



Unlike Bloom filters, PBF hashes each prefix of key length
L in the set, rather than the entire key. PBF queries the prefix
of target key length L in the point query, which reduces the
accuracy of the point query to some extent. However, PBF
fails to support prefix queries with the prefix length greater
than L.

We compare the performance of RoBF with that of PBF
in our experiments, and find that in most cases, the filtering
performance of PBF is at least half of that of RoBF, and in
many cases even close to that of RoBF. Because PBF has
fewer parameters and is easy for database administrators to
adjust, we think it is a useful filter.

SuRF is a recently proposed filter that employs fast succinct
tries [9]. SuRF is a trie-based filter whose basic idea is
to store the exponentially expanded part of trie and other
parts separately to achieve higher compression rate. SuRF has
the highest performance of trie-based filters that I know of.
We regard SuRF as the representative of trie-based filters.
Therefore, we often compare RoBF and SuRF in experiments.

Trie-based filters generally save prefix information with
length not less than y, that is, for every key in S, the prefix with
key length L will be fully recorded in the trie-based filter. In
this way, the filter will always correctly answer interval queries
[a,b] if neither a nor b is longer than L; Even if the length of
a or b exceeds L, the filter can be replaced with the result of
[a’,b’], where a’ and b’ are prefixes for the length of a and b
not exceeding L, respectively.

The disadvantages of this filter are twofold. On the one
hand, if the filter wants to answer a prefix query with length
L, it needs to keep the L bits before each key completely,
which sometimes consumes unnecessary space. On the other
hand, trie-based filter performance is very sensitive to space,
and its accuracy will be low if the space does not reach a
certain threshold. In general, trie-based filters perform well
when space exceeds a threshold, but not all scenarios tolerate
such a high memory consumption filter.

Monkey [10] is another Optimal navigable key-value store.
Monkey discusses the need to apply memory filters of different
sizes to different levels. According to the characteristics of
Bloom Filter, Monkey provides the optimal solution for point-
only query scenarios. We extend this idea to the mixed query
scenario and select different filters for different levels to
optimize the mixed query performance.

III. DESIGN OF ROBF

A. Motivation

We have mentioned the design of two filters. The first one
is Hash-based filters, such as PBF [8], which record the hash
information of prefixes to support prefix queries with length no
less than L. This kind of filters is designed for small memory
scenarios. Another one is trie-based filters, such as SuRF [9],
which record the complete information of prefixes to support
range queries for large memory scenarios.

We show the differences between the two filters in Fig. 1(a),
which shows the distribution of mixed queries consisting of
three types of prefix queries and point queries. Each horizontal

partition represents a prefix query or a point query, and the
horizontal width represents its percentage in the query. In a
partition, the top half represents the hit rate of the query, and
the bottom half represents the miss rate, which means that a
good filter always covers as much of the lower part of the
figure as possible. Figure 1(f) shows a trie-based filter that
can accurately answers queries with a prefix length less than
L, but it has an error rate for queries with a prefix length
greater than L. Figure 1(b) shows a hash-based filter that can
answer a prefix query with length greater than L, but it cannot
answer a prefix query with length less than L.

Note that the range query filter may have three types of
errors:
(1) Trie-based filter will generate false positives when answer-

ing queries with length greater than L, but the frequency
of such false positives will decrease with the increase of
memory;

(2) Hash-based filters generate false positives due to hash con-
flicts.The frequency of such false positives also decreases
as memory increases;

(3) Hash-based filters generate false positives when replacing
interval queries with prefix queries.Such false positives are
inherent and cannot be corrected by adding more memory.
This type of errors cause hash-based filters to encounter
performance bottlenecks when memory is large enough.

B. Data Structure

Before introducing RoBF, we first explain the working
process of of hash-based filters.

Figure 1(c) shows how PBF works. It can only respond
to point queries and prefix queries with length L or greater.
Figure 1(d) shows how a DBF works, which is essentially
a hybrid filter consisting of a PBF and a BF. Range queries
need to be tested by PBF, while point queries need to pass both
PBF and BF tests. RoBF is an improved version of DBF that
contains multiple PBFs and one BF. Figure 1(e) shows how
RoBF works. RoBF can be regarded as a number of prefix hash
filters with different lengths, each of which has a prefix length
ranging from 1 to a threshold Lmax. Here, Lmax represents
the upper bound of the key length. Similar to Bloom filters,
each test uses a different hash function, and all test results are
stored in the same hash table.

In general, BF is more suitable for scenes with a large pro-
portion of point queries, and PBF is more suitable for scenes
with a fixed width of range queries. In addition, DBF can
be dynamically adjusted according to the proportion of point
queries and range queries. RoBF needs to decide the filter
parameters according to the query distribution information.
Generally, BF, PBF, and DBF can be considered as a special
case of RoBF. In practical applications, we need to choose a
right filter according to the load characteristics and determine
the parameters of the filter.

C. Algorithm of Generating RoBF

In this section, we present the algorithm of generating
RpBF, which is named RoBF-generator. Basically, the opti-



(a) Query Distribution (b) Bloom Filter (BF) (c) Prefix Bloom Filter (PBF)

(d) Double Bloom Filter (DBF) (e) RoBF (f) Trie-Based Filter

Fig. 1. Performance of different filters - Each column represents one type of query. The width of each column represents the weight of the query. The
height of the gray rectangle represents the percentage of queries that are hit, and the height of the white rectangle represents the percentage of queries that
are missed. The shaded portion represents the filtered query. Each shaded section, except for Figure 1(f), represents a hash test.

Fig. 2. Four kinds of hash-based filters with seven hash tests. Each grid
represents a test, the number represents the prefix length of the test, and L
represents the length of the key. For example, DBF contains four hash tests
for prefixes with length 13 and three hash tests for the full key.

mization of filters means that there are as few false positives as
possible, that is, the lower half of Fig. 1(e) should be covered
as much as possible. For this purpose, we need to not only
understand the distribution of the query, but also collect the
characteristics of the dataset. For the sake of efficiency, we
always assume that for any queries with prefixes whose length
is p, the total number of the prefixes with length p is always
close to the total number of the keys. Such an assumption
allows us to make a general filter parameter recommendation
without knowing the key distribution for each different SST.

We first use a simplified version of RoBF-generator to set

the parameters of the DBF. When we try to set length p as
the prefix length for DBF, we need to determine how much
memory PBF and BF use. Here, the theoretical FPR is a
convex function relative to the memory usage of a filter, and
this conclusion can be used to speed up the search speed of
the algorithm.

Furthermore, in the LSM-tree, each write buffer level actu-
ally has a separate distribution of query requests, even though
the global query is the same for each level. For example, in the
LSM-tree, it is likely that all keys in an SST of the underlying
buffer share the same 10-byte prefix, which means that prefix
queries with length less than 10 will be filtered out during
range checking. However, this case will not happen in the
upper buffer.

D. BPK-Balancer Algorithm

We present a new algorithm called BPK-balancer to search
filter parameter combinations for each write buffer level for
finding the best parameter balance. The term BPK is the
abbreviation of BitsPerKey. At the beginning of the algorithm,
we provide an optimal solution to accelerate the search speed,
and this solution is based on the conclusion in Monkey [10].



Algorithm 1: RoBFGenerator (Current, Tests, Fil-
tered)

input : Queries
output: BestSolution

1 Function Search(Current, Tests, Filtered):
2 if Current = Length then
3 X =

Solution.Set(Queries, Current, Tests);
4 if Solution > BestSolution then
5 BestSolution = Solution;
6 end
7 return X;
8 end
9 MaxCovered = 1;

10 TernarySearcher.Set(0, T ests);
11 for i ∈ TernarySearcher do
12 X = Solution.Set(Current, i);
13 Covered = X * Missed.Sum(Current,Length);
14 Rest = Search(Current+1, Test-i,

Filtered+X);
15 Covered = Covered + Rest;
16 TernarySearcher.AddSolve(i, Covered);
17 if Covered > MaxCovered then
18 MaxCovered = Covered;
19 end
20 end
21 return MaxCovered;

IV. PERFORMANCE EVALUATION

A. Workload

The workload we used in the experiment is similar to
the workload in YCSB [11], except that the queries in our
workload include half point queries and half range queries.

The maximum interval length of the range query is set t0
100 by default, and the interval length distribution is uniform.
The keys used in the database are strings with length 16,
and the values of the keys are set to no more than 1014

positive integers. All the keys follow a uniform distribution.
In addition, we set the size of the LSM-tree to contain 39

key-value pairs, with a total key size of about 50GB.
In the test of a single SST, we set the hit rate of point query

and range query at about 10%. In the test of the LSM-tree,
we set the global point query hit rate and range query hit rate
at about 10%. When testing a single SST, we set the BPK
(BitsPerKey) to 24, which is three times the default value,
because it is convenient for us to compare the characteristics
of RoBF and SuRF. For the global testing, we set the BPK to
8-16, which is 1-2 times the default value.

B. Filters Compared

We mainly compare our RoBF with the following filters in
the experiment.

• Prefix Bloom Filter (PBF) [8]. We will not use the basic
Bloom Filter as a comparison, because our test contains

Algorithm 2: BPK-Balancer (Current, Bits)
input : BitsPerKey
output: BestSolution

1 Function WaitForTest(Level, Bits):
2 if

FilterRecord.Lookup(Level, Bits) = False
OR FilterRecord.T ime(Level.Bits) >
TimeLimit then

3 for type ∈ FilterSet do
4 SetF ilter(Level, type,Bits);
5 FPR = RealWaitForTest(Level);
6 FilterRecord.Update(Level, Bits, FPR)
7 end
8 end
9 return FilterRecord.Latest(Level, Bits)

10 Function Balancer(Level, Bits):
11 if Current = 0 then
12 X = Solution.Set(Current,Bits);
13 if Solution > BestSolution then
14 BestSolution = Solution;
15 end
16 return X
17 end
18 MinFPR = 1;
19 TernarySearcher.Set(0, Bits);
20 for i ∈ TernarySearcher do
21 X = Solution.Set(Current, i);
22 FPR = WaitForTest(Current, i);
23 Rest = Balancer(Current− 1, Bits− i);
24 TernarySearcher.AddSolve(i, FPR+

Rest);
25 if FPR+Rest < MinFPR then
26 MinFPR = FPR+Rest;
27 end
28 end
29 return MinFPR

a large number of range queries, and we will use PBF
instead.

• Double Bloom Filter (DBF). We use only one PBF and
one BF to explore whether it is necessary for RoBF to
use multiple parameters.

• Perfect Prefix Filter (PPF). PPF is a filter that can theo-
retically answer any prefix query accurately. We construct
such a Filter to observe the high performance limit of the
hash-based Filter.

• SuRF-Real (SuRF) [9]. SurF is a trie-based filter based
on FST (Fast Succinct Trie). For most SST, SuRF cannot
be created at the BPK value less than 15.

C. Results

Figure 3 shows the relationship between the false positive
rate of different filters and BPK.



Fig. 3. FPR of filters under different BPK. With the exception of the
Perfect Prefix Filter (PPF), each curve represents the performance change of
a Filter as the BPK increases. PPF’s FPR is theoretically fixed because it
always answers any prefix query accurately.

As we can see, only SuRF finally surpasses the Perfect
Prefix Filter (PPF) with the increase of memory.That is to
say, in this test, when the memory size of the filter exceeds
70 BPKs, that is, the average memory allocated per key is
greater than 8.4 bytes of space, the performance of the hash-
based filter will hardly surpass that of the trie-based filter.

This is due to the third type of false positives mentioned
earlier. Since hash-based filters can only process prefix queries,
there is an inherent false positives rate. With the increase of
BPK, the performance of RoBF gradually converges to PPF,
and the false positives rate cannot be further reduced, while
trie-based does not have such a problem.

After the BPK reached 70, the false positive rate of SuRF
decreased significantly, which is also the characteristic of trie-
based filter. Such a filter must increase the length of the stored
prefix in order to effectively support a small range of queries,
rather than simply adjusting the position of the test points as
with a hash-based filter, which often means higher memory
consumption.

In practice, most filters cannot provide more than 8 bytes per
key. It can be seen from the first half of the curve that the false
positive rate of PBF/DBF/RoBF decreases obviously when
BPK increases from 8 to 20, which reflects the feature that
the hash-based filter is suitable for small memory. In contrast,
DBF has relatively close performance to PBF and relatively
poor performance relative to RoBF, which means that RoBF
has more parameters than DBF that are not redundant.

As memory increases further, the false positive rate of PBF
and DBF no longer changes significantly, but the false positive
rate of RoBF can still decrease further, because RoBF can use
memory to support a range of queries of different lengths,
rather than only reducing the false positive rate of individual
prefix queries.

As shown in Fig. 1, We can see the advantages and
disadvantages of the two types of filters: the trie-based filter

Fig. 4. The performance of filters in different levels of LSM-tree

must continuously store the prefix information of the key,
otherwise it cannot be guaranteed that there is no false negative
error, so the trie-based filter always needs some space to store
the prefix information that is of no value for the reply; On
the other hand, the hash-based filter, even if it can answer
the prefix query perfectly, does not improve the hit ratio of
the range query further, thus causing performance bottlenecks
when memory is large enough.

Figure 4 shows the results of our second experiment. We
compared the false positive rates of different filters at different
levels of LSM-tree. In order to show the characteristics of the
filter more intuitively, we randomly selected a SST from each
level and showed its FPR.

As can be seen from the figure, the false positives rate of
SuRF decreases first and then rises with the increase of Level,
which means that the trie-based filter has poor performance in
both the upper and lower levels, but the reasons are different:
in the upper level, the distribution of keys is relatively sparse,
which means that SuRF needs more space to store prefix
information that is not helpful for query; In the lower level,
the range query requires the last few characters to respond
correctly, and the trie-based filter requires a higher BPK to
better support such a small range query.

The performance of RoBF is relatively stable, but there is
a significant drop in performance in the last two levels.This
is due to the fact that as the keys become denser, there are
fewer interval queries that can be filtered by the prefix, i.e. the
proportion of type 3 errors increases.

As mentioned earlier, allocating more memory for each filter
in the upper write buffer can improve query performance. This
is due to the fact that there is less data in the upper write buffer
and more queries, and the same amount of memory can reduce
more false positives for queries.

Taking the case of BPK=12 as an example, a basic scenario
is to assign a filter of 12 BPKs to each file, in which case
the average false positive rate per file is 0.6%; But if we
map the keys in levels 0-2 directly to memory, and use SuRF
filters with BPK of 78 and 34 in levels 3-4, respectively, and
RoBF filters with BPK of 9 in level 5, the average memory



Fig. 5. The optimal filter configuration scheme under different BPK - The figure shows optimal solutions for five scenarios. For example, when BPK is
12, Level-3 is recommended to use SuRF with 78 BPKs. ”MAP” represents a full mapping strategy, while 128 represents a total key length of 16 bytes.

consumption per file still does not exceed 12 BPKs, and Fig. 5
shows that the false positives rate drops to 0.11%, a reduction
of 79.74%.

This conclusion is consistent with the law of practice. In the
case of RocksDB, when RocksDB is configured, the index of
the upper SST tends to have higher access frequency, which
means that the index of the upper SST is actually resident in
memory as long as we can provide sufficient cache space.

Since the upper-level SST filters use more memory, the
memory usage of the lower-level SST is significantly lower
than average, and the performance benefits of RoBF in small-
memory scenarios are easier to realize. It is worth noting that
SuRF is used as a middle level filter, which is consistent
with our analysis in the previous section, i.e., trie-based filters
perform poorly when the key distribution is too sparse or too
dense.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a multi-parameter filter RoBF
to improve the range queries of Bloom filters in LSM-tree.
We propose an algorithm to determine the parameters of
RoBF based on query distribution. We conducted comparative
experiments to compare RoBF with various filters, and the
results suggested the efficiency of RoBF. RoBF adopts multi-
filter strategy, because we believe that different filters should
be used in different levels of LSM-tree. Particularly, the lower
the level, the higher the BPK provided for the filter should be.
We designed an algorithm to search for the optimal solution.
The results of this algorithm confirm our conjecture that the
optimal solution generated by the algorithm can reduce the
global FPR to 20% of the static solution.

At present, we determine the type and parameters of the
filter through the data distribution and the memory size of
each level in LSM-tree, while the memory size of filter in each
level is determined by another algorithm. Two independent
algorithms will lead to the calculation of the optimal solution
takes a long time, which may affect the real-time performance
of the parameters of the filter. In the future work, we plan to
integrate the two algorithms together and adjust the param-
eters with a faster algorithm, which can also provide better
theoretical support for the experimental results of this work.
Also, we will extend RoBF to make it suitable for persistent

memory-based key-value stores [12], e.g., integrating RoBF
with the persistent memory-friendly adaptive Radix tree [13]
or B+-trees [14].
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