
NVMSorting: Efficient Sorting on Non-Volatile
Memory

Zhaole Chu, Yongping Luo, Peiquan Jin, Shouhong Wan
1School of Computer Science and Technology, University of Science and Technology of China, Hefei, China

2Key Lab. of Electromagnetic Space Information, Chinese Academy of Sciences, Hefei, China
jpq@ustc.edu.cn

Abstract—Non-volatile memory (NVM) as a new type of stor-
age technology has many advantages such as non-volatility, byte
addressability, high storage-density, and low energy consumption.
Meanwhile, NVM has some limitations, e.g., asymmetric read
and write latency, limited write endurance, and high price.
Therefore, at present, it is not realistic to completely replace
DRAM with NVM in computer systems. A more feasible scheme
is to adopt the hybrid memory architecture composed of NVM
and DRAM. Following the assumption of hybrid memory archi-
tecture, this paper proposes an NVM-friendly sorting algorithm
called NVMSorting. Particularly, we introduce a new concept
called natural runs to improve the existing MONTRES algorithm
and present the cost analysis of the algorithm in the hybrid
memory architecture. In order to verify the performance of
our proposal, we implement six existing sorting algorithms as
baselines, including the MONTRES algorithm, and conduct
comparative experiments on an unsorted dataset and a partially
sorted dataset. The experimental results suggest the efficiency
of NVMsorting in terms of execution time and NVM writes.
Especially, on the partially sorted dataset, NVMSorting has
6.2% improvement on time performance and 5.7% reduction on
NVM writes compared to MONTRES, and 13.0% performance
improvement and 27.1% NVM-write reduction compared to the
traditional merge sorting algorithm.

Keywords—Non-Volatile Memory, Hybrid Memory, Sorting
Algorithm

I. INTRODUCTION

Non-volatile memory (NVM) such as Phase Change Mem-
ory (PCM) is one of the research hotspots in recent years, and
is also considered as a hot candidate for the next generation of
storage technology. NVM has some special properties [1]–[3].
First of all, differing from DRAM, it is non-volatile, meaning
that all data written into NVM will not be lost when the
host computer is shut down. Second, differing from magnetic
disks or solid-state drives (SSD) that only support block-based
data accesses, NVM is byte addressable, which is similar to
DRAM. Third, the density of NVM is generally higher than
that of DRAM and is comparable to that of SSD. To this
end, NVM has the advantages of both disks and DRAM.
However, NVM also has some limitations compared to DRAM
and disks. Firstly, the read and write latency of NVM is not
balanced. Particularly, NVM has the similar read latency as
DRAM, but its write latency is higher than that of DRAM.

DOI reference number: 10.18293/SEKE2021-141

TABLE I
COMPARISON OF SSD, DRAM, AND NVM

SSD DRAM NVM
Read Latency 25µs 20− 50ns 50ns

Write Latency 500µs 20− 50ns 1µs

Endurance 105 ∞ 108

Density High Low High
Non-Volatile Yes No Yes

Byte-Addressable No Yes Yes

In addition, the endurance of NVM is limited, meaning that
after a certain number of writes (108 at present), NVM will
become unstable. Thus, algorithms running on NVM have to
be write-friendly. In summary, we list the main features of
SSD, DRAM, and NVM in Table I.

Due to the limitations of NVM, currently it is not realistic
to completely replace DRAM with NVM. A more feasible
scheme is to adopt the hybrid memory architecture composed
of NVM and DRAM.There are two kinds of hybrid memory
architectures. The first type is the hierarchical architecture [2],
which takes DRAM as the cache of NVM. In this architecture,
only the DRAM space is recognized by the operating system
as main memory and does not utilize the high density of NVM.
In addition, it will introduce additional cost of data migration
and consistency. The second type is parallel architecture [3], in
which NVM and DRAM are both used as the main memory.
In this way, we can make good use of the advantages of NVM,
such as byte addressability and persistence. In addition, we can
reduce the write operations to NVM by devising appropriate
algorithms. Therefore, so far, the parallel architecture has
received much attention in NVM-related research. In this
study, we also adopt the parallel architecture.

Because of the emergence of NVM with high storage
density, we can use NVM to replace the traditional disk as the
persistent storage device and build a hybrid memory system
without disk. Based on this inference, this paper studies the
sorting algorithm in hybrid memory. At the same time, due
to the read/write asymmetry of NVM, we need to reduce the
writing operations of sorting as much as possible. Briefly, we
make the following contributions in this study:

(1) We improve the existing MONTRES algorithm to make
it suitable for NVM. MONTRES was designed as an external
sorting algorithm on SSD. In this paper, we propose a new

concept of natural runs and devise a new NVM-friendly
memory sorting algorithm called NVMSorting. Compared to
the original MONTRES algorithm, the proposed NVMSorting
can detect partially ordered runs and reduce the sorting cost.

(2) We present cost analysis of the NVMSorting algorithm
to theoretically demonstrate that NVMSorting has a lower cost
than existing sorting algorithms.

(3) We experimentally compare the time performance and
the number of NVM writes of the NVMSorting algorithm
with six existing sorting algorithms. The experimental results
show that NVMSorting has better time performance and less
NVM writes than existing sorting algorithms. In addition,
NVMSorting achieves better performance on the partially
ordered dataset, indicating that it can effectively detect the
partially ordered runs.

II. RELATED WORK

To the best of our knowledge, few studies have been focused
on the improvement of fundamental sorting algorithms on
NVM.

The first study [4] presented a write-limited sorting al-
gorithm within the context of database query processing.
It proposed three write limited sorting algorithms, namely
segment sort, hybrid sort and lazy sort. These algorithms are
all based on trading writes for reads to achieve an optimal
NVM memory cost. They either offer a knob to adjust the
read and write ratio of an algorithm, or use a lazy mechanism
to delay result materializing until the penalty outweighs the
gains.

The second work [5] proposed a cost model for sorting on
storage devices with asymmetric read and write latency. In
this literature, the authors presented three sorting algorithms
(merge sort, sample sort, and heap sort using buffer trees) for
the asymmetric external memory model and gave a detailed
cost analysis. However, this work is toward page-based storage
devices, such as flash-memory-based SSDs. Although flash
memory also has limited write endurance and low write
latency, it is much different from NVM, because NVM can
be used as main memory while flash memory can only be
used as secondary storage.

In the literaure [6], the authors proposed a write-once sort-
ing algorithm, named B*-sort. Differing from previous work,
this work focused on pure NVM-based embedded system.
Unlike the commonly used array-based sorting algorithms,
the B*-sort adopts a new concept, tree-based sort which is
inspired by the binary search tree that has the write-once
property during tree construction. The algorithm can guarantee
O(n) writes. Because of the tunnel-list structure proposed
by the author, B*-sort can also guarantee O(n

√
n) reads.

Although the pure NVM memory system could be realistic in
the future, many studies have reported that the hybrid memory
architecture will be more realistic in next years. This is mainly
because that the DRAM’s speed is higher than that of NVM.
Our study is also towards the hybrid memory architecture.
Therefore, we will not compare the B*-sort algorithm in the
experiment.

Recently, Luo et al. [7] proposed an optimal data placement
model for solving the data placement issue on DRAM-NVM-
based hybrid memory. They also developed a new sorting
algorithm that adopted heap structures to accelerate the sorting
process. However, this sorting algorithm was an in-memory
sorting one that ran on the parallel memory architecture
composed of DRAM and NVM, which is different from the
memory architecture of this study.

III. DESIGN OF NVMSORTING

A. Motivation

NVM and flash memory have similar defects, which is
the read/write asymmetry and the limitation of endurance .
Based on this observation, we can infer that a write efficient
algorithm designed for SSD may have the same effect when
it is transplanted to NVM. At present, the research of sorting
algorithms for SSD has made great progress, and a state-of-art
sorting algorithm for SSD is called MONTRES [8]. Therefore,
this study aims to improve MONTRES to make it suitable for
NVM-based hybrid memory architecture.

MONTRES was designed as an external sorting algorithm
on SSD. Its main idea is to persist data to SSD as early as
possible so that we need not partially write data to intermediate
runs. To achieve this, they proposed the merge-on-the-fly
mechanism and the run-expansion mechanism to generate runs
as large as possible. MONTRES has been demonstrated to be
helpful for accelerating the phase of merging runs. However,
MONTRES was designed for paginated SSDs and is not
suitable for byte-addressable NVM.

In the literature [9], researchers proposed the MONTRES-
NVM algorithm to optimize MONTRES for NVM, which
offers to detect all the sorted pieces in the original data set.
Each sorted piece is treated as a sorted run and it is ignored
in the run generation phase, to reduce useless NVM writes.
However, in real world applications, sorted pieces tend to be
short at length, which will lead to many tiny sorted runs and
then end up with poor performance.

B. Natural run

To address the problem mentioned above, we introduce a
new concept of natural run, which is defined in definition
1. A natural run is composed of several blocks (items in
a block need not to be sorted , while any two items in
consecutive blocks are ordered). Figure 1 shows an example
of a natural run. In this figure, 3 blocks of items which have
no overlap value range are grouped together to be a natural
run. A natural run can be treated as a sorted run in the merge
phase but the actual sort procedure of each block is delayed
until the last block is drained at merging. The concept of
natural run exploits much longer pieces that can be ignored in
run generation phase, so it can significantly reduce the NVM
writes and improve overall performance.

Following this idea, we propose the NVMSorting algorithm
leveraging natural runs. We will show that our NVMSorting

5 1 2 10 7 11 19 25 14

5 1 28 4 1910 7 11 19 25 14 3 15 10

natural run

Fig. 1. Example of a natural run

can achieve better sorting performance than the MONTRES-
NVM algorithm theoretically.

Definition 1: (Natural Run) A natural run is a sequence
of blocks S = {b1, b2, ...bx}. Each block b contains identical
number of items in value range [bmin, bmax]. For ∀i, j that
have i < j, it must hold that bimax < bjmin.

C. The NVMSorting Algorithm

The basic idea of NVMSorting algorithm is to detect natural
runs first and then perform merge sort for the natural runs and
normal runs. NVMSorting consists of three phases: (1) natural
run detection, (2) run generation, and (3) run merge. Below,
we will detail these phases.

(1) Natural Run Detection. This phase is designed to find
the natural runs in the input data. This can avoid loading all
input data into DRAM for sorting and then writing them back
to NVM. As writes to NVM are much costly, the detection of
natural runs help to reduce loading and writing back blocks
into NVM. The definition of natural run indicates that an
actual run tends to be longer than already sorted pieces used
in MONTRES-NVM. So we can infer that natural runs are
more common and useful than MONTRES-NVM.

Differing from the MONTRES algorithm that scans the
data to build a Min-Index before generating runs, we record
both the maximum and minimum values of each block when
scanning the data to build a MinMax-Index. Each element of
the MinMax-Index consists of the minimum and maximum
value of one data block, and elements are sorted in ascending
order. This index is then used to detect natural runs. The
algorithm of detecting natural runs is shown in Algorithm 1.
Specially, we detect the natural run with the first n elements
as the starting point, and select the longest run as the result.

(2) Run Generation. In the run generation phase, we also
use the merge-on-the-fly mechanism and the run expansion
mechanism. Due to the existence of natural run, this phase is
different from that of MONTRES. Here, we set block size to
M, the size of the whole memory work space of N · M, and
divide the DRAM memory into two areas, namely Wn and
Ws, where Wn is the work space for loading the natural run
whose size is M and Ws is the work space for loading other
data whose size is (N-1) · M. Algorithm 2 shows the process
of run generation.

Before run generation phase, we have scanned the data to
get the MinMax-Index and natural run index. The algorithm
loads the data into the work space in the order of the
smallest elements until the data block in the MinMax-Index
is exhausted (line 1). Only one block will be loaded to Wn

Algorithm 1: FindNaturalRun
input : MinMax-Index
output: NaturalRun-Index

1 for i← 1 to n do
2 s=MinMax-Index[i];
3 TempResult={};
4 while s 6= NULL do
5 TempResult.insert(s);
6 Locate the first t holds t.min > s.max;
7 s ← t;
8 end
9 if TempResult.size > NaturalRun-Index.size then

10 NaturalRun-Index ← TempResult;
11 end
12 end
13 delete elements which were inserted to

NaturalRun-Index from MinMax-Index;

Algorithm 2: Run Generation
input : original data S, MinMax-Index,

NaturalRun-Index

1 while Not Empty(MinMax-Index) do
2 if Wn is empty or the element in Wn is exhausted

then
3 Load data from natural run to Wn and sort;
4 end
5 Load data to Ws and sort;
6 next-min ←next min value from MinMax-Index;
7 Merge on fly with Wn,Ws and already generated

runs;
8 Write the rest element in Ws to the current run;
9 Expand the current run;

10 end

at a time for sorting. When the element is exhausted, the next
block will be loaded(line 2). Figure 2 illustrates the process
of the merge on-the-fly mechanism. During the process, Wn,
Ws, and all the previously generated runs are involved in the
merge process (line 7). After merging, we will expand the
current run. Because of the existence of natural run, we will
use one block of DRAM memory as natural run work space,
which leads to the shorter length of the generated run, while
the run expansion will reduce this effect and avoid generating
too many runs.

(3) Merging Runs. In the run merge phase, we will exploit
the byte addressable feature of the NVM to merge the runs.
Unlike MONTRES and the traditional external sorting algo-
rithm, which require loading a block of data into memory each
time, we can load only one value from each run.

We assume that there are k generated runs. Due to the
existence of natural run, in the merge phase, we use a min-
heap containing each run’s minimum element with size of k+1.

Fig. 2. Example of the merge-on-the-fly mechanism

TABLE II
SYMBOLS USED IN COST ANALYSIS

Symbol Definition
N Number of the elements to be sorted
Nn Size of the natural run
Nnl Number of the elements that are loaded into the work

space from natural run during run generation phase
Ns Number of the elements that are directly written into

the final result
r Cost of one read operation
w Cost of one write operation
λ r/s

Pr Additional reads during the merge on-the-fly
Pw Additional writes during the merge on-the-fly

On each iteration, we write the minimum value in the min-
heap into the final result and delete it. Then, we extract the
next value from the run containing the lowest value. When a
run is exhausted, we will reduce the size of the min-heap by
1 and continue the merge until all the runs are exhausted.

D. Cost Analysis

Table II gives the symbols used in cost analysis. In the run
generation phase, first we need scan the input data to build the
MinMax-Index, so the read/write cost of the scanning process
is: N · r.

After the scanning, we begin to generate runs. All data that
is not in the natural run will be loaded into DRAM memory,
sorted, and written back to NVM. Some of the data will be
written back directly to the result. We assume that the total
amount of this part of data is Nn. The read and write cost
of this section is (N −Nn) · (r + w). While a portion of
the data in the natural run is loaded into DRAM memory,
we assume that the total amount of data loaded into DRAM

memory at this stage is Nnl, resulting in a read-write cost of
Nnl · r. Due to the existence of merge on-the-fly mechanism,
during the run generation phase, we will also read the runs
that have been written back before and the qualified data will
be written back to the final result. The data that participates in
the merge process in the natural run and the qualified data will
also be written back to NVM. We assume that the additional
reading operation generated in this process is Pr, resulting
in an additional write operation of Pw. For the convenience
of later calculation, Pw is divided into two parts: The first
part is created by writing back natural run data, set to Pw1;
the second part is created by writing back other data, set to
Pw2, Pw = Pw1 + Pw2.The resulting read and write cost is
(Pw · w + Pr · r). To sum up, we can get the total cost of
reading and writing in the run generation phase by Eq.1:

Crg = N · r + (N −Nn) · (r + w) +Nnl · r
+Pw · w + Pr · r

= (2 ·N +Nnl + Pr −Nn) · r + (N + Pw −Nn) · w
= ((2 + λ) ·N +Nnl + λ · Pw + Pr − (1 + λ) ·Nn)

·r (1)

During the run merge phase, all the data not loaded in the
natural run will be loaded into DRAM for merging and then
written back to NVM. The resulting read-write cost is (Nn −
Nnl) · (r+w). The elements in the natural run that have been
loaded into DRAM memory but have not been written back
in the process of run generation also need to be written back
to NVM. The total number of data in this part is Nnl − Pw1.
Thus, the read and write cost of this part is (Nnl−Pw1)·w. At
the same time, the remaining elements in the generated runs
will also be loaded into DRAM memory for merging and then
written back to NVM. The total number of remaining elements
is N −Nn−Ns−Pw2. Therefore, the read-write cost of this
part is (N −Nn −Ns − Pw2) · (r + w). To sum up, we can
get the total read-write cost in the run merge phase by Eq. 2.

Crm = (Nn −Nnl) · (r + w) + (Nnl − Pw1) · w
+(N −Nn −Ns − Pw2) · (r + w)

= (N −Nn1 −Ns − Pw2) · r
+(N − Pw1 −Ns − Pw2) · w

= ((1 + λ) ·N −Nn1 − (1 + λ) ·Ns − Pw2 − λ · Pw)

·r (2)

Based on Eq. 1 and Eq. 2, we can get the total cost of the
algorithm by Eq.3. In Eq. 3, Pw2 approximately equals Pr.
Eq. 3 shows that the cost of NVMSorting is associated with
the size of natural run and the data that can be written into
the result directly.

Cm = Crg + Crm

= ((3 + 2 · λ) ·N − (1 + λ) · (Nn +Ns)− Pw2 + Pr)

·r (3)

For the traditional external merge sort algorithm, it is easy
to get the total read-write cost by Eq.4.

Ce = 2 ·N · (r + w)

= (2 + 2 · λ) ·N · r (4)

Therefore, we can get the cost reduction of our NVMSorting
compared with traditional external merge sort by Eq.5.

Cdec = Ce − Cm

= ((1 + λ) · (Nn +Ns) + Pw2 − Pr −N) · r (5)

Eq. 5 shows that NVMSorting has lower cost than the
external sort when the value of Nn and Ns is larger, which is
consistent with the experimental results that will be discussed
in Section IV.

IV. PERFORMANCE EVALUATION

In this section, we report the experimental results of NVM-
Sorting. As sorting algorithms are fundamental in computer
science and there are a number of existing sorting algorithms,
we will compare NVMSorting with several representatives of
sorting algorithms. Below, we first introduce the experimental
settings in Section IV-A, then we present the results in Section
IV-B.

A. Settings

So far, there is one industrial NVM module supplied by
Intel in 2019, which is called the Intel Optane DC Persistent
Memory [10]. However, in this paper, we still use a simulation
way to simulate the hybrid memory using DRAM. There are
two reasons for the simulation. First, it is hard to use the Intel
DC Persistent Memory to construct various kinds of hybrid
memory architecture. Thus, we will not be able to conduct
experiments on different configurations of DRAM and NVM.
Although it is possible to build multiple servers with different
NVM and DRAM capacities, it is too costly because of the
high price of the Intel Optane DC Persistent Memory . Second,
we mainly focus on the count of NVM writing operations
in the experiments. Such a metric can be measured correctly
in the simulation environment. In other words, the count of
NVM writes of a sorting algorithm will not be impacted by
the underlying hardware.

In order to simulate the hybrid memory, we use the same
method as [4] to simulate NVM. In particular, We insert delays
after cacheline reads and writes. In the experiment, we add
20ns latency for a cacheline read operation and 500ns for a
cacheline write to simulate NVM reads and writes.

All algorithms are run on a PC with an Intel CPU i5
8265U@1.6GHz. The CPU has 6MB of L3 cache associated
with 12-way groups, and each core has 256KB of L2 cache
associated with 4-way groups. The cacheline size is 64 bytes.
The memory device is 4 GB LPDDR Sumsung memory. We
use C++ on Ubuntu 18.04 to implement all sorting algorithms.

The Intel Optane DC Persistent Memory of 512GB costs over ten thousand
U.S. dollars.

Fig. 3. Time performance (MNS is our NVMSorting algorithm, the others
are MONTRES (MS), Hybrid Sort (HyS), External Sort (ExS), Segment Sort
(SegS), Heap Sort (HS) and Quick Sort (QS)).

TABLE III

TIME-PERFORMANCE IMPROVEMENT OF NVMSORTING

MS HyS ExS SegS HS QS

Random 1.1% N/A N/A 42.4% 66.6% 84.1%

Partially sorted 6.2% 2.5% 13.0% 43.5% 68.9% 89.1%

The source code was compiled using g++ version 8.3.0 with
the -O3 optimization.

We use two datasets, including an unsorted random dataset
(denoted as random in the results) and a partially sorted
dataset (denoted as partial). In general, we expect that our
NVMSorting algorithm will perform better on the partial
dataset than on the random dataset.

The performance metrics include execution time t and the
number of NVM writes w. Also, We compare NVMSorting
it with six existing sorting algorithms, including quick sort,
heap sort, external merge sort, hybrid sort [4], segment sort
[4], and MONTRES [8]. And we focus on the comparison of
execution time and the number of NVM writes.

B. Results

In the experiment, we set the available DRAM memory size
to 10% of the total size of the data, and six sorting algorithms
are compared with NVMSorting.

Figure 3 shows the execution time of all sorting algorithms
, where MNS, MS, HyS, ExS, SegS, HS, and QS represent
NVMSorting, MONTRES, Hybrid sort, External sort, Segment
sort, Heap sort, and Quick sort, respectively. We can see
that the time performance of NVMSorting is far better than
that of SegS, HS and QS in both case. Table III shows
the time performance improvement ratio of the NVMSorting
algorithm compared with other algorithms. It can be seen
that in the case of completely random data, our algorithm
has little improvement in time performance compared with
MONTRES, even weaker than Hybrid sort and External sort.
While in the case of partially sorted data, the time performance

Fig. 4. NVM writes (MNS is our NVMSorting algorithm)

TABLE IV

REDUCTION OF NVM WRITES OF NVMSORTING

MS HyS ExS SegS HS QS

Random 0.1% 0.3% 0.4% 23.4% 60.4% 91.9%

Partially sorted 5.7% 27.1% 27.1% 43.9% 74.1% 94.3%

improvement of the NVMSorting algorithm compared with the
MONTRES and the External sort is relatively obvious, with
the improvement ratio reaching 6.2% and 13.0% respectively.

Figure 3 shows the number of NVM writes for all sorting
algorithms. We can see that NVMSorting has the least number
of NVM writes. Table IV shows the reduction ratio of NVM
writes of the NVMSorting algorithm compared with other
algorithms. As shown in Table IV, for the completely random
data, NVMSorting has slight improvement in terms of NVM
writes, but when running on the partially sorted data, NVM-
Sorting has reduced 27.1% more NVM writes than Hybrid
sort and External sort, and 5.7% more NVM writes than
MONTRES. This indicates that NVMSorting is particularly
suitable for partially sorted data.

We can see from the experimental results that when run-
ning on the partially sorted dataset, NVMSorting achieves
significant improvement over other sorting algorithms in terms
of time performance and NVM writes. When the dataset is
completely randomly unsorted, NVMSorting has comparable
performance with MONTRES, hybrid sort, and external sort.
This implies that NVMSorting is more efficient for partially
sorted datasets. For partially sorted datasets, there is high
probability of the occurrence of natural run, meaning that Nn

in Eq. 3 is large. At the same time, there are a large proportion
of elements in one data block that are less than the minimum
value in the next data block. Thus, there will be more elements
that can be written into the final result directly, i.e., Ns in Eq.
3 is large. When the data is completely random, the probability
of the occurrence of natural run becomes low, and the merge-
on-the-fly mechanism does not work effectively, resulting in
little performance improvement. To sum up, NVMSorting is
more suitable for partially sorted datasets.

V. CONCLUSIONS

In this paper, we studied the optimization of sorting al-
gorithms for NVM-based hybrid memory architecture and
presented a new NVM-friendly sorting algorithm called NVM-
Sorting. NVMSorting is motivated by the MONTRES algo-
rithm that was designed for flash memory. Differing from the
original MONTRES algorithm, NVMSorting proposed a new
technique called natural run. We developed efficient algorithms
for detecting the natural runs in a dataset and sorting data
items according to natural runs. We theoretically analzyed the
sorting cost of NVMSorting and demonstrated its superiority
over the external sorting algorithm. Finally, we verified the
performance of NVMSorting on two kinds of datasets and
compared NVMSorting to six existing sorting algorithms.
The experimental results showed that NVMSorting had higher
time performance and fewer NVM writes than MONTRES
and other sorting algorithms. In particular, it achieved better
performance when running on the partially sorted dataset than
on the randomly unsorted dataset.

In the future, we will integrate NVMSorting into database
join algorithms [11] to develop efficient sort-join algorithms
for NVM-based DBMSs.

ACKNOWLEDGEMENTS

This work was supported by the National Science Founda-
tion of China (No. 62072419). Peiquan Jin is the correspond-
ing author.

REFERENCES

[1] Z. Wu, P. Jin, C. Yang, and L. Yue, “APP-LRU: A new page replacement
method for pcm/dram-based hybrid memory systems,” in Proc. of NPC,
2014, pp. 84–95.

[2] K. Chen, P. Jin, and L. Yue, “A novel page replacement algorithm for
the hybrid memory architecture involving PCM and DRAM,” in Proc.
of NPC, 2014.

[3] R. Liu, P. Jin, Z. Wu, X. Wang, S. Wan, and B. Hua, “Efficient wear
leveling for pcm/dram-based hybrid memory,” in Proc. of HPCC, 2019,
pp. 1979–1986.

[4] S. D. Viglas, “Write-limited sorts and joins for persistent memory,”
Proceedings of the VLDB Endowment, vol. 7, no. 5, pp. 413–424, 2014.

[5] G. E. Blelloch, J. T. Fineman, P. B. Gibbons, Y. Gu, and J. Shun,
“Sorting with asymmetric read and write costs,” in Proc. of SPAA, 2015,
pp. 1–12.

[6] Y.-P. Liang, T.-Y. Chen, Y.-H. Chang, S.-H. Chen, H.-W. Wei, and W.-
K. Shih, “B*-sort: Enabling write-once sorting for nonvolatile memory,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 39, no. 12, pp. 4549–4562, 2020.

[7] Y. Luo, Z. Chu, P. Jin, and S. Wan, “Efficient sorting and join on nvm-
based hybrid memory,” in Proc. of ICA3PP, 2020, pp. 15–30.

[8] A. Laga, J. Boukhobza, F. Singhoff, and M. Koskas, “Montres: merge
on-the-run external sorting algorithm for large data volumes on ssd based
storage systems,” IEEE Transactions on Computers, vol. 66, no. 10, pp.
1689–1702, 2017.

[9] M. B. A. Khernache, A. Laga, and J. Boukhobza, “Montres-nvm: An
external sorting algorithm for hybrid memory,” in Proc. of NVMSA.
IEEE, 2018, pp. 49–54.

[10] H. Bu, M. Dong, J. Yi, B. Zang, and H. Chen, “Revisiting persistent
indexing structures on intel optane DC persistent memory,” Journal of
Computer Science and Technology, vol. 36, no. 1, pp. 140–157, 2021.

[11] L. Yang, P. Jin, and S. Wan, “Bf-join: An efficient hash join algorithm
for dram-nvm-based hybrid memory systems,” in Proc. of ISPA, 2019,
pp. 875–882.

