
A Novel Approach of CTL Model Checking Based
on Probe Machine

Dong Wang†, Jing Liu∗†, Jin Xu∗‡, Haiying Sun†, Jiexiang Kang§
† Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai, China

‡ Key Laboratory of High Confidence Software Technologies, Peking University, Beijing, China
§ China Aeronautical Radio Electronics Research Institute, Shanghai, China

Abstract—Model checking has established as an effective
method for automatic system analysis and verification. It is
making its way into many domains and methodologies. However,
the state space may be extremely large for many practical
systems, and this is a major limitation for state-space search
algorithms in model checking. We have proposed a novel com-
puting model called probe machine in 2016, which is a fully
parallel computing model. In comparison to the Turing machine,
it can solve the graph search problems efficiently, which can
overcome the existing model checking limitations. In this paper,
we propose a novel approach to perform Computation Tree Logic
(CTL) model checking based on the mathematical model of probe
machine, which can verify all CTL properties. It can greatly
reduce the verification time for systems with large state space.
We develop a model checker called CTL2PROBE based on our
approach and the experimental results show that our approach
is better than NuSMV.

Index Terms—Model Checking, Probe Machine, Graph
Search, Computation Tree Logic

I. INTRODUCTION

Model Checking is a technology that can verify whether
a system satisfies the given property automatically [1]. The
way of verification is exploring all possible system states in
a brute-force manner [2]. In this way, it is a real challenge to
examine the largest possible state spaces that can be treated
with current means, i.e. processors and memories. Therefore,
the chief limitation is the state explosion problem where the
size of the global state graph grows exponentially with the
size of the program itself [3].

In order to deal with the state explosion problem, many
approaches have been proposed. Ordered Binary Decision
Diagram (OBDD) is proposed by McMillan to represent
state space, improving the scale of verified system [4], [5].
Another successful technique for dealing with state explosion
is based on the partial order reduction [6], [7]. It exploits
the independence of concurrently executed events. Although
symbolic representations and partial order reduction have
greatly increased the size of the systems that can be verified,
many realistic systems are still too large to be handled. Thus,
some researchers have turned their attention to other novel
computation architectures like molecules and DNA to break
through the limitations of Turing machines.

∗ Corresponding author: Jing Liu, jliu@sei.ecnu.edu.cn, Jin Xu,
jxu@pku.edu.cn

DOI reference number: 10.18293/SEKE2021-139

In 2006, Turing Award winner Allen Emerson use DNA
molecules to conduct CTL model checking for the first time
[8]. In this work, he proposes a DNA-computing-based method
and designs a checking algorithm for CTL formula EFp
where Kripke structures are used to model the system and
the states and transitions of the model are encoded into DNA
strands. It permits a very compact representation of extremely
large state graphs. For example, a graph of size 1016 states
can be represented within 0.01 liter of DNA. Therefore, the
parallelism of DNA computing and the vast storage of DNA
molecules provide the opportunity to break the state space
limitation on traditional electronic computers.

Probe machine is a mathematical model proposed by Xu
in 2016 [9]. It can be implemented by using nano-DNA probe
technologies. It is a fully parallel computing model in the
sense that it can simultaneously process multiple pairs of data,
rather than sequentially process every pair of linearly adjacent
data. Many NP-complete problems, i.e., the graph coloring,
Hamilton cycle problems, traveling salesman problem [10],
and postman problem [11] have been solved based on the
probe machine. Probe machine can enumerate all solutions
to these problems by only one probe operation.

Similarly, the way of CTL model checking is exploring
all possible system states in a brute-force manner and finding
a path satisfying the given property. Therefore, we propose a
novel method to perform CTL model checking based on the
probe machine. Compared to traditional model checkers, our
approach can relieve the state explosion problem and reduce
the verification time.

In summary, this paper makes the following contributions:
• We design a mapping algorithm to transform the model

of Kripke structure into the data library and probe library
that can run directly on the probe machine.

• We develop a model checker called CTL2PROBE to
simulate the probe machine, which takes the model as
input and obtains all feasible paths or counterexamples.

• We conduct several experiments based on different num-
bers of states. Compared to NuSMV, the experiment re-
sults prove the feasibility and efficiency of our approach.

The rest of this paper is organized as follows. Section II
briefly introduces CTL model checking and the concept of
probe machine. Section III presents our approach and provides
complexity analysis. Section IV introduces the model checker

CTL2PROBE based on our approach, and the experimental
results show that our approach is better than NuSMV. Section
V concludes our work.

II. PRELIMINARIES

A. CTL Model Checking

A Kripke structure is a variation of the transition system,
originally proposed by Saul Kripke [12], used in model
checking [13] to represent the behavior of a system. It consists
of a graph whose nodes represent the reachable states of the
system and whose edges represent state transitions, together
with a labeling function which maps each node to a set of
properties that hold in the corresponding state.

A Kripke structure is defined as a four-tuple

M = {S, I,R, L}

• a finite set of states S.
• a set of initial states I ⊆ S.
• a transition relation R ⊆ S × S.
• a labeling function L : S → 2AP .

Computation Temporal Logics properties are traditionally
interpreted in terms of Kripke structures. Clarke has proved
that any CTL formula can be expressed in terms of ¬, ∨, EX,
EU and EG [13]. Thus, it is sufficient to be able to handle
six cases, depending on whether g is atomic or has one of
the following forms: ¬f1, f1 ∨ f2, EXf1, E[f1Uf2] or EGf1.
These CTL formulas describe the following properites.

M, s |= ¬f1 ⇔ M, s 6|= f1
M, s |= f1 ∨ f2 ⇔ M, s |= f1 or M, s |= f2
M, s |= EXf1 ⇔ there exists a state t such that

R(s, t) and M, t |= f1
M, s |= E[f1Uf2] ⇔ there exists an infinite path π

starting at s and there exists a
k ≥ 0 such that M, sk |= f2

and for all 0 ≥ j < k,M, sj |= f1
M, s |= EGf1 ⇔ there exists an infinite path π

starting at s such that for all
i ≥ 0,M, si |= f1

B. Probe Machine

Probe Machine (PM) is defined as a nine-tuple

PM = (X,Y, σ1, σ2, τ, λ, η,Q,C)

where the nine components denote the data library (X), probe
library (Y), data controller (σ1), probe controller (σ2), probe
operation (τ), computing platform (λ), detector (η), true solu-
tion storage (Q), and residue collector (C). The following will
introduce four main components: data library, probe library,
probe operation, and computing platform.

• The data library X is viewed as a set of n elements,
denoted by X = {x1, x2, ..., xn}. Each data xi contains
a body and p types of data fibers. Data xi is defined as

xi = {x1i , x2i , ..., x
p
i }

• The probe in the probe machine is defined as a tool to find
two data and implement some operations (e.g., connective
and transitive operations) between them. Formally, let xji
and xmt be two types of data fibers. The probe between xji
and xmt denoted as τx

j
ix

m
t . A connective probe, denoted

as xji , xmt , refers to a probe τx
j
ix

m
t connecting two target

data fibers xji and xmt , forming a high-order aggregation.
• A probe operation τ is a process of executing many probe

operations simultaneously.
• The computing platform, denoted by λ, is an environment

to conduct probe operations τ . It helps probes rapidly find
the target data fibers and then conduct probe operations.
High cohesiveness, threshold property, and uniqueness
are the fundamental functions of the computing platform.

– High cohesiveness is the rule that high-order aggre-
gation data are given higher priority than low-order
aggregation to be executed probe operation.

– Threshold property limit that the size of two aggre-
gations for probe operation must not exceed the size
of the graph itself.

– Uniqueness is the rule that there is at most one data
for each type that an aggregation contains.

III. MODEL CHECKING BASED ON PROBE MACHINE

This section is concerned with CTL model checking on the
probe machine. We first introduce the procedures of model
checking on the probe machine. Construction of the data
library and probe library are two main steps. Subsequently,
we propose the methods to construct data library and design
methods for probe library of EG and EU respectively. In
the end, we analyze the time complexity for the designed
approach.

A. Procedures of Model Checking on Probe Machine

Xu solve the graph coloring problems with connective
probes that connect two adjacent vertexes of different colors
[9]. Inspired by the previous work, we propose a graph search
mechanism for model checking. Here, we use a probe to
connect two adjacent states in the graph which satisfying the
CTL property. Each subpath is considered as data to be probed.
In this way, each subpath continuously grows after each probe
operation until the initial state is included in the path.

The procedures of model checking on the probe machine
are divided into four steps as follows

• Construction of the data library X .
• Establishment of the probe library Y according to the

CTL property.
• Implement the probe operation τ(X,Y) in the computing

platform λ, producing a large number of solutions.
• Find the true paths T of all solutions.

Specially, Clarke has proved that any CTL formula can be
expressed in terms of ¬, ∨, EX, EU and EG [13]. Thus, it
is sufficient to be able to handle six cases. We usually check
L(s) to verify M, s |= ¬f1, M, s |= f1 ∨ f2 and traverse
the successors of the state s to check M, s |= EXf1. These

s0

{ f1 }

s1

{ f1 }

s2

{ ¬f1 }

Xω01Xωω01 X1ω01

(a)

(b)

X012X0012 X2012

(c)

Xω01Xωω01 X1ω01 X012X0012 X2012

(d)

X1
ω01,X0

012

Xω[01]2Xωω01 X2012

(e)

Fig. 1. (a) A simple Kripke Structure. (b) Data xω01 with its two data fibers
xω
ω01, x1

ω01. (c) Data x012 with its two data fibers x0
012, x2

012. (d) Probe
x1
ω01, x

0
012 (e) Two-aggregation data xω[01]2.

three verifications can be solved within a short time, so we
don’t need some particular methods on the probe machine to
check them. Therefore, only two algorithms are needed for EG
and EU. And the following will respectively introduce how to
build the data library and probe library forM, s |= EGf1 and
M, s |= E[f1Uf2] respectively.

B. Construction of Data Library

Let a graph G mean a Kripke structure,M = {S, I,R, L}.
We denote V (G) and E(G) as the sets of states and transitions
of G respectively. G has a set of nodes V (G) = {v1, . . . , vn}
and a set of edges E = {e1, . . . , ep}, as well as L(vi) ∈
{f1,¬f1} holds for each vi.

In addition, we denote Pre(vi) and Suc(vi) as the sets of
predecessor nodes and successor nodes of the vertex vi. E(vi)
is defined as the set of edges out of the vertex vi. Let E2(vi)
be the set of all directed two-paths with internal vertex vi.
Formally

E2(vi) = {vlvivr , xlij |vl ∈ Pre(vi), vr ∈ Suc(vi)} (1)

Data xlij are defined according to (1). Let’s take an
example[see Fig. 1(a)], it is a simple Kripke structure with 3
states and 2 transitions. Every state is considered as data with
its transiton edge, such as E2(v1) = {x012} [see Fig. 1(c)].

Based on E2(vi), we construct the data library X of the
connective probe machine as follows:

X = ∪ni=1E
2(vi) =

= ∪ni=1{xlir , vlvivr|vl ∈ Pre(vi), vr ∈ Suc(vi)}
(2)

where xlir has exactly two types of data fibers, the left one
is xllir and the right one is xrlir. Typically, initial states have
no predecessor and final states have no successor, so we define

¬Start
¬Close
¬Heat

Start
¬Close
¬Heat

S0

S1

start oven

Start
Close
¬Heatopen door

close door

¬Start
Close
¬Heat

reset

S2

S3

Start
Close
Heat

S4
start cooking cook

done

restart

Fig. 2. Microwave oven example.

ω as empty. The data xω01 of the initial state s0 is shown in
Fig. 1(b).

In fact, each data represent a path and a n-aggregation
data represents a path of length n. For example, data x012
represents a one-length path, π = v1 [see Fig. 1(c)], and 0
and 2 respectively represent the possibe node connecting this
path. Similarly, a two-aggregation data xω[01]2 represents a
two-length path, π = v0, v1 [see Fig. 1(e)].

C. Probe Library for EGf1

The logical operator EG means that there is a path so that
all future states on it are satisfied. Based on this property, we
set a rule for the probe library Y of EGf1 as follows.

Rule 1: Let xutv and xlir be two data in X. Then there
exists a probe xvutv, xllir between them if and only if l = t, v =
i and f1 ∈ L(vt), f1 ∈ L(vi).

As shown in Fig. 1(d), f1 ∈ L(v0), f1 ∈ L(v1) and the
data xω01 is adjacent to another data x012, so there exists a
probe x1ω01, x0012 to connect the two data fibers, which forming
a two-aggregation data xω[01]2 and remaining two data fiber
xωω01 and x2012 [see Fig. 1(e)].

By taking the graph in Fig. 2 as an example, the following
steps describe the process of checkingM, s0 |=EG¬Heat by
our approach.

Step 1: Data library X can be constructed as follows:

X = E2(v0) ∪ E2(v1) ∪ E2(v2) ∪ E2(v3) ∪ E2(v4).

where, E2(v0) = {xω01}, E2(v1) = {x012, x212, x312},
E2(v2) = {x121, x123, x124, x421, x423, x424}, E2(v3) =
{x231}, and E2(v4) = {x242, x244, x442, x444}. Let ζ(x)
represent data fibers of data x. There are total 15 types of
data in X , and 30 types of data fibers has been generated as
follows:

ζ(xω01) = {xωω01, x1ω01}, ζ(x012) = {x0012, x2012}
ζ(x212) = {x2212, x2212}, ζ(x312) = {x3312, x2312}
ζ(x121) = {x1121, x1121}, ζ(x123) = {x1123, x3123}
ζ(x124) = {x1124, x4124}, ζ(x421) = {x4421, x1421}
ζ(x423) = {x4423, x3423}, ζ(x424) = {x4424, x4424}
ζ(x231) = {x2231, x1231}, ζ(x242) = {x2242, x2242}
ζ(x244) = {x2244, x4244}, ζ(x442) = {x4442, x2442}
ζ(x444) = {x4444, x4444},

Step 2: Probe library construction
Based on the data library X , we construct the correspond-

ing probe library Y according to rule 1.

Y01 = {x1ω01, x0012}
Y12 = {x2012, x1121, x2012, x1123, x2012, x1124,

x2212, x1121, x2212, x1123, x2212, x1124,

x2312, x1121, x2312, x1123, x2312, x1124}
Y21 = {x1121, x2212, x1421, x2212}
Y23 = {x3123, x2231, x3423, x2231}
Y31 = {x1231, x3312}
Y24 = Y42 = ∅

Step 3: Probe operations
In each iteration, probes connect the probeable data to form

larger data, namely, aggregations. After several rounds, each
data containing the initial state is a feasible path satisfying the
property, otherwise, the largest data is a counterexample.

Probe operation rules are based on three functions of the
computing platform: high cohesiveness, threshold, and unique-
ness. They ensure that aggregations grow quickly according to
the rules. By taking the oven example, the process of probe
operation is as follows.

Data library X and probe library Y have been constructed,
and the following Table I showing how to obtain the feasible
paths in the computing platform λ. For model checking, the
number of iterations is at most equal to dlog2ne+ 1, n is the
number of vertexes in the graph G. In this example, it takes
three steps for probe operations.

TABLE I
SOLUTIONS PROCEDURES

Computing Platform

0 xω01, x012, x212, x312 . . .

1 xω[01]2, x0[12]3, x1[21]2, x1[23]1, x2[31]2 . . .

2 xω[0123]1, x0[123]1, xω[012]3, x4[231]1 . . .

3 xω[0123]1

In the first iteration, the probe x1ω01, x0012 find the data
fiber x1ω01 of the data xω01 and x0012 of x012, connecting

them and forming a two-aggregation data xω[01]2. And the
data x1[24]4 isn’t formed for lack of probe x4124, x

2
244. Many

two-aggregations are generated in this round, but some are not
shown in the table I.

In the second iteration, some four-aggregations and three-
aggregations are generated. For example, the probe x2012, x1123
find the data fiber x2012 of the data xω[01]2 and x1123 of
x1[23]1, connecting them and forming a four-aggregation data
xω[0123]1.

In the third iteration, no larger aggregation is produced, so
the iteration stops.

It is clear that xω[0123]1 contians the initial node s0
and a cycle π = s1s2s3s1s2s3 . . . , so it can be concluded
that M, s0 |= EG¬Heat and an available path is π =
s0s1s2s3s1s2s3

For the problem of EGf1, all true solutions are the aggre-
gations including the initial state s0 and a cycle, and feasible
paths are recorded by aggregations themselves. Otherwise, it
means M, s0 6|= f1. Furthermore, the largest aggregation can
be the counterexample, since it represents the path closest to
true solutions.

D. Probe Library for E[f1Uf2]
The logic operator EU means that there is a path keeping

a state before another certain state appears. Based on this
property, two rules are set as follows to establish probe library
Y of E[f1Uf2].

Rule 1: Let xutv and xlir be two data in X. Then there
exists a probe xvutv, xllir between them if and only if l = t, v =
i and {¬f2, f1} ∈ L(vt), f2 ∈ L(vi).

Rule 2: Let xutv and xlir be two data in X. Then there
exists a probe xvutv, xllir between them if and only if l = t, v =
i and {¬f2, f1} ∈ L(vt), f1 ∈ L(vi).

Rule 1 and rule 2 ensure that only one state on the path
satisfies f2 and lies at the endpoint. By taking the graph in
Fig. 2 as an example, the following steps describe the process
of checking M, s0 |= E[¬Heat U Close] on probe machine.

Based on the two rules, we construct the corresponding
probe library Y as follows.

Y01 = {x1ω01, x0012}
Y12 = {x2012, x1121, x2012, x1123, x2012, x1124,

x2212, x1121, x2212, x1123, x2212, x1124,

x2312, x1121, x2312, x1123, x2312, x1124}
Y21 = Y23 = Y24 = Y31 = Y42 = ∅

And the following Table II showing how probe operation
τ is executed to obtain solutions in the computing platform
λ. After three iterations, the aggregation xω[012]3 and xω[012]4

contian the initial node s0, it can be concluded that M, s0 |=
E[¬Heat U Close] and an available path is π = s0s1s2

E. Complexity Analysis

We analyze the time complexity in terms of three steps
proposed in Section III-A.

TABLE II
SOLUTIONS PROCEDURES

Computing Platform

0 xω01, x012, x212, x312 . . .

1 xω[01]2, x0[12]3, x0[12]4 . . .

2 xω[012]3, xω[012]4, . . .

3 xω[012]3, xω[012]4

Theorem 1: The time complexity of data library X is at
most O(V × E2).

For each vertex, outgoing and incoming edges need to be
visited. Thus, the time complexity of constructing the data
library X is O(V × E2).

Theorem 2: The time complexity of probe library Y is at
most O(V × E).

We construct the probe library Y by traversing every
vertex with its predecessor nodes and its time complexity is
O(e1), and e1 is the number of its predecessor. The total time
complexity of this process is at most O(V × E).

For model checking, the number of iterations is at most
equal to dlog2ne+1, n is the number of vertexes in the graph
G. Thanks to the underlying parallelism of the probe machine,
the processing ability of one probe operation τ is 2q , q is
the number of all possible edges to probe [9]. Therefore, our
approach of CTL model checking based on the probe machine
can greatly reduce the verification time for systems with large
state space.

IV. PROTOTYPE TOOL

This section is concerned with the framework of our
tool CTL2PROBE and simulation of CTL model checking
on probe machine. First, we will introduce a model checker
called CTL2PROBE based on our approach. And then, some
simulations are conducted, which prove the feasibility and
efficiency of our approach.

A. CTL2PROBE

To simulate automatic verification of the CTL model
checking on the probe machine, we develop a model
checker called CTL2PROBE. Fig. 3 shows the framework of
CTL2PROBE. It consists of three functional modules: Parsing,
Modeling, and Computing. The specific design is as follows:

Parsing: This module mainly parses a JSON file into
a model and CTL formula. In this process, the transitions
between states are recorded in a HashMap structure and the
CTL formula is transformed into a parse tree. It takes a
particular format JSON file as input. We define this special
format to effectively simplify the parsing process. It is a
structured markup language similar to XML that users can
quickly obtain or change the contents of elements. As shown
in Fig. 4, it is a JSON file that describing the state s0 of oven
example at Section III. The file includes the label, predecessor,

Model

CTL
Property

Verification System

Parsing

Parse
Tree

Data
Library X

Probe
Library Y

Mapping Computing

Algorithms Probe
Operation

Avaliable
Paths

Counter-
example

JSON
File

Fig. 3. The Framework Design of Verification System

Fig. 4. The JSON file of the oven example

and successor of each state and provides the CTL formula for
verification. In the module, CTL formula will be transformed
into the formula in terms of ¬, ∨, EX, EU and EG, and stored
in the data structure based on parse tree [see Fig. 5]. It is a
bottom-up solving process and the given formula is satisfied
when the top node contains the initial node.

Mapping: This module is responsible for mapping ele-
ments into the data library and probe library. The rule of
mapping is the described in Section III. Data library and probe
library are provided for the computing module to verify CTL
property.

Computing: This module is used to implement probe
operations according to the data library and probe library. The
rule of computing is based on three functions of the computing
platform: high cohesiveness, threshold, and uniqueness. We
realize them according to the following rules.

• High cohesiveness: High-order aggregation data are given
higher priority than low-order aggregation to be executed
probe operation.

• Threshold: The size of two data for probe operation must
not exceed the size of the graph itself.

Operator

States
Left

Branch
Right
Branch

Operator

States
Left

Branch
Right
Branch

Operator

States
Left

Branch
Right
Branch

Fig. 5. The data structure of parse tree nodes

Fig. 6. The process of verification

• Uniqueness: There is at most one data for each type that
an aggregation contains.

B. Simulation

To verify the effectiveness and efficiency of the pro-
posed algorithm, we have carried out several experiments on
CTL2PROBE.

As shown in the Fig. 6, it is the result of verification of
EG¬Heat in the oven example. It takes a JSON file as the
input of the program and the output consists of four parts: data
library, probe library, the process of verification, and result.
The result part consists of all available paths, modeling time,
and verification time. The total time of this verification is
1240 × 10−6s, but NuSMV takes 15313 × 10−6s to verify
the oven example. It is powerful proof of the efficiency of our
tool.

To further prove the efficiency of verifying the model
with more states, we have carried out several experiments.
We randomly generate multiple graphs with 5, 10, 50 states.
Each of the instances runs independently 10 consecutive
times to measure the average runtime. The experiment is
programmed by Python and executed on a computer system
with specifications of Intel Core i-7 at 2.2 GHz CPU and 16
GB RAM under macOS operating system.

The experimental results are shown in Table III. The
results show that CTL2PROBE is better than NuSMV in
some cases. However, the verification time by CTL2PROBE
will increase significantly as the number of nodes increases.
Because CTL2PROBE is a tool to simulate probe machine
for probe operation and the properties of huge capacity and
total parallel are difficult to realize on CTL2PROBE. It is
definite that model checking on the probe machine is much
faster than traditional model checkers. Our experiment proves
the feasibility and efficiency of model checking on the probe
machine.

V. CONCLUSION

In this paper, a novel CTL model checking approach
based on the probe machine is proposed, which can solve the

TABLE III
COMPARISON OF CTL2PROBE WITH NUSMV ON SOME CASES

Nodes
CTL2PROBE(10−6)

NuSMV(10−6)
Modeling Computing Total Time

5 426 301 727 13291

10 1127 957 2084 21532

50 17402 1574 18976 30804

limitation for state-space explosion and reduce the verification
time for systems with large state space. We design a mapping
algorithm to transform the model of Kripke structure into the
data library and probe library that can run directly on the probe
machine. We develop a model checker called CTL2PROBE to
simulate the probe machine, which takes the model as input
and obtains all feasible paths or counterexamples. Compared to
NuSMV, our approach is more efficient by several comparison
experiments.

VI. ACKNOWLEDGEMENT

This work was supported in part by the National Key
Research and Development under Project 2019YFA0706404,
in part by the NSFC under Project 61972150, and in part by the
Shanghai Knowledge Service Platform under Project ZF1213.

REFERENCES

[1] E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic verification
of finite-state concurrent systems using temporal logic specifications,”
ACM Transactions on Programming Languages and Systems (TOPLAS),
vol. 8, no. 2, pp. 244–263, 1986.

[2] C. Baier and J.-P. Katoen, Principles of model checking. MIT press,
2008.

[3] Y. Kwon and E. Kim, “A design of gpu-based quantitative model
checking,” in International Conference on Verification, Model Checking,
and Abstract Interpretation, pp. 441–463, Springer, 2021.

[4] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L.-J. Hwang,
“Symbolic model checking: 1020 states and beyond,” Information and
computation, vol. 98, no. 2, pp. 142–170, 1992.

[5] E. M. Clarke, O. Grumberg, K. L. McMillan, and X. Zhao, “Efficient
generation of counterexamples and witnesses in symbolic model check-
ing,” in Proceedings of the 32nd annual ACM/IEEE Design Automation
Conference, pp. 427–432, 1995.

[6] P. Godefroid, “Using partial orders to improve automatic verification
methods,” in International Conference on Computer Aided Verification,
pp. 176–185, Springer, 1990.

[7] C. Flanagan and P. Godefroid, “Dynamic partial-order reduction for
model checking software,” ACM Sigplan Notices, vol. 40, no. 1, pp. 110–
121, 2005.

[8] E. A. Emerson, K. D. Hager, and J. H. Konieczka, “Molecular model
checking,” International Journal of Foundations of Computer Science,
vol. 17, no. 04, pp. 733–741, 2006.

[9] J. Xu, “Probe machine,” IEEE transactions on neural networks and
learning systems, vol. 27, no. 7, pp. 1405–1416, 2016.

[10] M. A. Rahman and J. Ma, “Solving symmetric and asymmetric trav-
eling salesman problems through probe machine with local search,” in
International Conference on Intelligent Computing, pp. 1–13, Springer,
2019.

[11] J. Yang, Z. Yin, J. Cui, Q. Zhang, and Z. Tang, “The chinese postman
problem based on the probe machine model,” in International Confer-
ence on Bio-Inspired Computing: Theories and Applications, pp. 55–62,
Springer, 2018.

[12] S. A. Kripke, “Semantical consideration on modal logic.,” Acta Philo-
sophica Fennica, vol. 16, 1963.

[13] E. M. Clarke Jr, O. Grumberg, D. Kroening, D. Peled, and H. Veith,
Model checking. MIT press, 2018.

