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Abstract— Since last year, COVID-19 has become a global
issue and brings crisis in nearly every aspect. At the end of last
year, COVID-19 vaccines finished developing and began to be
large-scale administered. However, the impact of vaccination on
COVID-19 is not clear yet. The current vaccine manufacturing
capacity is highly insufficient, thus, it is urgent to implement an
optimized vaccine prioritization strategy. To shed light on these
vaccination issues in our study, we used a fluid model checking
method to track the trends of COVID-19 dynamically. First, we
proposed a vaccine-related epidemiological model, the SEIHRV
model, to investigate the vaccine’s impact on the pandemic based
on previous studies. Then we embraced a fluid model checking
approach to evaluate this SEIHRV model. Compared with the
compartmental and agent-based model methods, our approach
made a trade-off between speed and accuracy. Lastly, we took
several exceptional scenarios into account based on the current
COVID-19 situations, including the individual’s daily activities,
hospital capacity, vaccine prioritization strategy, the variant
virus. Our work applied this fluid model checking method to
COVID-19 studies, which demonstrates the up-to-date computing
method can combine with social concerns and deal with practical
problems from an innovative perspective.

Index Terms—COVID-19; Vaccine; SEIHRV model; Fluid
model checking; Continuous-time Markov-chain

I. INTRODUCTION

In the past year of 2020, coronavirus disease 2019 (COVID-
19) pandemic which is caused by a severe acute respiratory
syndrome coronavirus type 2 (SARS-CoV-2) has swept the
world, seriously affected and even threatened all aspects of
people’s lives. As of March 9, 2021, more than 117 million
COVID-19 cases have been reported worldwide, of which
death cases exceeded 2.6 million (data from Center for Sys-
tems Science and Engineering at Johns Hopkins University
[1]). In order to reduce the infection rate and mortality rate
of COVID-19, governments all around the world have imple-
mented a series of lockdown policies. Researchers in different
domains from different countries also actively participate in
the COVID-19 studies, especially, in developing the COVID-
19 vaccine.

Many COVID-19 vaccine projects started since the begin-
ning of 2020, vaccine developed by BioNTech/Pfizer first
obtained the emergency use authorization by FDA (U.S. Food
and Drug Administration) and European Union on December
of 2020. Subsequently,another vaccine developed by Oxford
and AstraZeneca [2] was also approved by several European
countries. The emergence of vaccines brings the hope of
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defeating COVID-19 to people. Ideally, if the majority of
the population obtain protection from vaccines, COVID-19
reproduction rate would decrease, and it would disappear or
be inactivated in the end.

However, there are still some challenges in achieving herd
immunity through vaccination. The first challenge is the man-
ufacturing capability. Although vaccine manufacturers have
accelerated the large-scale production of vaccines, so far, there
are only 300 million doses have been administered worldwide
[3]. Due to this situation, countries have to implement various
priority strategies to ensure that priority groups (such as the
elderly, medical staff, etc.) can be first administered. Neverthe-
less, these strategies might not be the most efficient one [4].
Second, vaccine efficacy is not completely clear. According
to statistics, BioNTech/Pfizer vaccines have an efficacy rate
close to 95 percent [5], while Oxford-AstraZeneca vaccines
have 82.4 percent for two doses separated by 12 weeks [6].
Third, newly emerged variants SARS-CoV-2 called B.1.1.7
(from the United Kingdom) and B.1.351 (from South Africa)
induce increased risk of death and infection, but how they
affect vaccine efficacy is still an open question.

Since various factors have brought great uncertainty to
the COVID-19 pandemic and the vaccine efficacy, a method
that can dynamically monitor the vaccine efficacy is urgently
required. Jensen and colleagues used the UPPAAL SMC tool
to not only simulate the overall trend of COVID-19 pandemic,
but also dynamically track the individual’s infection rate and
other COVID-19 indicators [7]. Based on their work, we also
applied UPPAAL here to check how the Susceptible-Exposed-
Infected-Hospitalized-Recovered Model (SEIHR model [8])
simulates the COVID-19 pandemic after the large-scale vac-
cine administration. Here, we considered the latest COVID
situations, including the vaccine prioritization strategy [4], the
age distribution of COVID cases [9], vaccine efficacy, and
vaccine performance against variant viruses. In this way, we
can get a comprehensive understanding of how this SEIHR
model simulating this pandemic in various situations.

The contributions of this paper are as follows:

e« We proposed a vaccine-related epidemiological model
to investigate the vaccine’s effects on the COVID-19
pandemic.

e We embraced the fluid model checking to analyze the
infectious disease model. Compared with the compart-
mental and the agent-based model method, our approach



makes a balance between speed and accuracy.

+ We demonstrated some complicated situations could be
efficiently simulated by our model, such as the individual
case situations, hospital capacity, and vaccine prioritiza-
tion strategy. This approach bridges the gaps between up-
to-date computing methods and social concerns.

This paper is organized into five sections: Section II in-
troduces the background of epidemiological models and a
stochastic model checking method, while Section III describes
the widely-used basic reproduction number and our SEIHRV
model. Section IV emphasizes our experiment and discussion.
Section V draws the conclusion.

II. BACKGROUND
A. The Compartmental Model in Epidemiology

In epidemiology, Kermack and McKendrick proposed a
dynamic compartmental SIR model to simulate the influences
of an infectious disease [8]. The original SIR model divided
individuals into three groups depending on their physical states
(compartments): susceptible (S), infectious(I), and recovered
(R) group. It assumes that all individuals are initially suscep-
tible, while all recovered individuals will have antibodies and
will not be re-infected again. The dynamical flow of this SIR
model can be represented as follows:
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The SIR model updates the variables for every time point.
N denotes total number of the population, /3 is the fraction of
susceptible persons get infected, and 1/ implies the infectious
period. The model with transmission is:
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The establishment of this dynamical model sheds light on
theoretical and quantitative analysis of infectious diseases
[10]. It is based on the disease’s occurrence, the spread,
the transmission rules, and related social factors. Through
qualitative, quantitative analysis, and numerical simulation, it
is possible to track where the disease comes from, monitor
some key elements, and even predict the disease trends.
Using the continuous-time ordinary differential equation

(ODE) method, this traditional compartmental model can eas-
ily simulate the general population’s epidemic development.
Nevertheless, it does not allow the prediction for individu-
als, how compartment changed with individuals’ activities.
Moreover, it is impossible to describe some exceptional cases,
like the variant COVID-19 virus and the super spreaders. To
simulate these complicated cases, a fluid model checking is
necessary.

B. Stochastic Model Checking

Stochastic model checking is an extension of classical
model checking theory, serves as an automatic model-based
formal verification of stochastic systems [11]. In recent years,
stochastic model testing has attracted a lot of attention in the

formal verification domain and has made significant progress.
It has been applied to the verification of probabilistic pro-
grams, system performance analyses, communication protocol
reliability analyses, service quality optimization of service
processes, and even computational biology [12]. Typically,
the continuous-time Markov chain (CTMC) [13] is used to
represent models in stochastic model checking, CTMC is a
tuple (S, R, o) where:

¢ S is the set of states,

e R:5 x5 — R >0 is the transition rate matrix, and

e T is the initial distribution.

We defined the exit rate of s state s € S as

E(s)= Y R(s,s)

s'esS
The embedded DTMC coincides on S and 7y but has the
transition probability matrix . It can be defined as:

/ B05) if E(s)>0
E(s,s") =14 0 if E(s)=0As# s and
1 if E(s)=0As=5¢".

The probability measure for a CTMC (S, R, ) is induced
by the measure for cylinder sets P (C (so/o-..Sn)) defined
as:
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The stochastic model checking algorithm combines the
classical model checking algorithm and linear equation system
solution or linear programming algorithm. Its operation deals
with the probability vector about the state instead of the
bit vector in the classical model checking. However, the
stochastic model checking is faced with a more challenging
problem,the state-space explosion problem. It is still not clear
how to mitigate the state explosion problem for large-scale
stochastic systems and apply stochastic model testing to the
quantitative verification and analysis of such systems, even
Turing Award winner Clarke listed this as a crucial direction
for future research in model testing in his Turing Lecture
[14]. Researchers recently found that fluid model checking,
a combination of ODE and CTMC, can efficiently mitigate
the state-space explosion [15].

III. BASIC REPRODUCTION NUMBER AND SEIHRV
MODEL

MacDonald and colleagues established a mathematical
model on the spread of an epidemic based on malaria studies
[16]. There is a crucial indicator in their model, the basic
reproduction number Rj. Ry that greater than O indicates this
epidemic will continue to spread; otherwise, this epidemic
will eventually be eliminated. The reproduction number has
been widely used in the epidemiological domain, and now
it becomes one of the most valuable indicator in COVID-19
studies [17].



In our paper, a variant of the SIR model: the SEIHRV model
was defined. We also assumed all individuals are initially
susceptible (S), they become exposed (E) once they contact
with an infectious people, the transition rate can be denoted
as \. After a latency period (dg days), the exposed individual
will transition to an infectious individual (I). Those infectious
people with severe symptoms for few days (djr) are accepted
to the hospital (H) (HR: hospitalization rate), the majority of
them will recover (R) after several days (dy) treatment, a
small proportion (IFR: infection fatality rate) would die even
been treated. Meanwhile, most infectious people will spend
some days (d;g) to eventually recover (R) by relying on their
self-immunity. In this model, X is obtained by:

1
J

where u is the probability of a successful transmission from
an infectious contact and the c; is the number of individuals
that a susceptible individual contacts per day. I/(N — Q)
refers to the probability that a random individual is infectious,
where NV is the total population number, I, € is the infectious
number and death number, respectively. A can also predict
basic reproduction number R.

di (1 — HR)
A\ :
dir' (1~ IFR) vaccinated &
@ @ \y diF(HR) Q — @ protected
. . 1-s test -
]u ») Iu[sm /1\ dj(1 - HR) a( se) serotes!
A dpt(1 - IFR
S /E\ \I/ IR H ( ) unvaccinated
" \ LIFR)
ot ot dig (1= HR) a(se)  serotest+
/l\ no vaccinated:

sero +
refused
unprotected

d'(1 - IFR)
U mam dH arn)

Fig. 1. Schematic diagram of a dynamic SEIHRV model with vaccination.

To evaluate the development of the COVID-19 pandemic
after large-scale vaccine administration, we added vaccination
effect in the original SETHR model and named the new model
as SETHRV model. We divided the whole population into three
groups as previous work did [4]: people were vaccinated and
effectively protected by the vaccine, unvaccinated people (can
be vaccinated), and people ineligible for vaccination, which
includes vaccine-hesitant people, people with positive serotest
result or vaccinated people without protection. The schematic
diagram is shown in Fig. 1. Whether an individual can be
administrated or whether a vaccinated person is perfectly pro-
tected largely depend on the serological test results. However,
the serological test is not entirely accurate. To illustrate this
constraint, we also took the sensitivity (se) and the specificity
(sp) of the serological test into consideration. « in this model
represents the vaccine rollout rate in susceptible and exposed
populations, and o = ny.y /[(S + E)sp + R(1 — se)], where
nyax 1ndicates the amount of vaccines to be rolled out in a
single day. v, denotes the vaccine efficacy. A small proportion

of the susceptible people and the exposed population with
negative serotest results can be vaccinated («(sp)) per day.
Some of them are well protected by the vaccine and will be
members of V' or E, group, the rest of the people who are
ineligible for vaccination or without vaccine protection will
be grouped into S, and F,. The following equations describe
the compartment-to-compartment relationships:

Nvax ( )
(S+ E)sp+ R(1 — se)
Nvax

(S+ E)sp+ R(1 — se) E(sp)

R — R, (S+E)sp+R(1 )R(l—se)

S — S, =

E— E, =

Tlvax

S Sz = S(1 —
- (S+ E)sp+ R(1 — se) ( sp)
ESE Thvax E(1 — sp)
= —s
v (S+E)sp+R(1 — se) P
Tvax
R— R, = R(se)

(S+ E)sp+ R(1 — se)

IV. EXPERIMENT AND DISCUSSION

In this section, we first built a continuous-time ordinary
differential equation model of SEIHRYV, and simulated the 365-
day dynamic model corresponding to the first-year vaccina-
tion phase. Then we used the continuous-time Markov chain
models since they have better performance than ODE if we
take individuals’ behaviors and decisions into consideration,
such as staying at home or wearing a mask. Usually, such
models require a large volume of individual activity data and
a considerable amount of computational resources.

To improve these, we got the inspirations from the fluid
model checking method, combined the ODE and CTMC, to
simulate the COVID-19 epidemic. By doing this, the system
required less time in performing verification significantly.
Thus, we can not only use ODE to describe the population
epidemic development, but also use CTMC to describe the
individuals® status. Our simulations indicate lockdown and
conditional lockdown are the best options for reducing infec-
tion fatality rate and virus transmission rate.

Additionally, we simulated the emerging cases caused by
the variant and emphasized how the variant affects hospital
capacity. Lastly, we focused on the current vaccine prioritiza-
tion strategy and predicted the trends of COVID-19 after vac-
cination. These simulations and models can provide beneficial
assistance to COVID-19 researches and policy formulation.

A. Ordinary differential equation models

In the first part, we established the ODE model of SEIHRV
in UPPAAL SMC [18]. All individuals in this model are
initially susceptible unless they have been effectively vacci-
nated or have already got natural immunity. The recovered
individuals are no longer infectious in the simulation period
(up to 365 days) and cannot be re-infected. Details of SEIHRV
model can be found in Section III.

As shown in Fig. 2, only one state was required for
one individual to build the above ODE model system in
UPPAAL SMC, and all of the populations were represented
by using the variable CLOCK in UPPAAL SMC.



S' == -(1.0-u)*beta*(I+Iv+x)*S/(N-D)-S*vrc &&

E' == (1.0-u)*beta*(I+Iv+Ix)*S/(N-D) - alpha’E - E*vrc &&
I'==alpha’E - (gamma-+kappa)*l &&

H' == kappa*| - tau*H - H*IFR &&

R' == gamma*l + tau*H -R*vrc &&
V' ==8*vrc*sp*ve &&

Sx' == -(1.0-u)*beta*(I+Iv+Ix)*Sx/(N-D) + S*vrc*(1-sp)+S*vrc*sp*(1-ve) &&
Ev' == E*vrc*sp*ve - alpha*Ev  &&
Ex' == (1.0-u)*beta*(I+Iv+Ix)*Sx/(N-D) + E*vrc*(1-sp)+E*vrc*sp*(1-ve)-alpha*Ex &&

Iv' == alpha*Ev -(gamma+kappa)‘lv. = &&

Ix' == alpha*Ex -(gamma+kappa)*lx ~ &&

Hv' == kappa*lv - tau*Hv - HV'IFR = &&

Hx' == kappa*lx - tau*Hx - HX*IFR = &&

Rv' == gamma*lv + tau*Hv + R*vrc*(1-se) &&

Rx' == gamma’*Ix + tau*Hx + R*vrc*se &&

D' == (H+Hv+Hx)*IFR

Fig. 2. ODE model of SEIHRV
We hypothesized a town with a 10,000 population in our

simulation, the basic reproduction number of this town is
1.3, and 1% people have been infected. Other demographic
data, such as infection and fatality rate, were obtained from
CDC [1]. Meanwhile, we assumed the vaccine rollout rate is
0.2% per day, and the vaccine efficacy is 95%, which means
vaccines are not one hundred percent efficient. The specificity

and sensitivity value of a serological test is 0.97 and 0.99.

TABLE I
QUERY OF EPIDEMIC TREND

Purpose Query

simulate [<=365]{S,E,I,H,R,V,D}

Epidemic trend

Next, a query was described in UPPAAL SMC. As shown
in TABLE I, we counted the susceptible, exposed, infectious,
hospitalized, recovered, and dead people within 365 days and
analyzed COVID-19 trends.
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Fig. 3. Evolution of the epidemic with vaccine

Simulation results indicate this epidemic is hard to control at
the very beginning of the vaccination. However, the situation
will become better once the number of vaccinated population
increases, the transmission rate will simultaneously decrease
(Fig. 3). Around 60 days after vaccination, the susceptible line
and the recovered line will intersect, the inflection point of
the epidemic appear, which means the epidemic is gradually
under-controlled.
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(a) Lockdown mechanism

(b) Health conditions of 30 persons
Fig. 4. Model and Result

B. Continuous-time Markov chain models and Fluid model
checking

Although the ODE model in the previous section can
describe the epidemic trends at the population level, it cannot
describe individuals’ behavior and incorporate some other
details, like the age-dependent infection rate and fatality rate,
the lockdown, etc. Therefore, we built the CTMC model of
SEIHRV here to involve detailed information (Fig. 5):

In this model, each location has one corresponding ex-
ponential distribution function, and different weights were
given to different edges. For example, in Fig. 5, location [
has different probabilities to location H or L. Initially, we
assumed a CTMC could describe an individual’s status, and
used the 10,000 population case to test it. However, we found
this operation occupied massive computing resources, since
10,000 CTMC models are required to generate based on the
template and simultaneously run. Moreover, the state-space of
the system increased exponentially as the number of people
increased, and the state-space explosion problem appeared.

Therefore, in order to efficiently model these data with
individual information, we adopted the fluid model checking
method in our experiment, abstracted the population epidemic
situation, and only focused on the target groups. Combination
of the ODE model and the CTMC model in UPPAAL SMC
can significantly reduce the memory and time required for
simulation and verification.

We simulated a lockdown scenario here and found transmis-
sion significantly decreased in the lockdown period (Fig. 4(a)).
Furthermore, we selected 30 specific individuals in this model
and analyzed their health conditions (Fig. 4(b)). If their health
conditions varied largely, their personal curves would also
be fluctuating. The above simulation took a long time if
we only used the CTMC model. However, the simulation
time shortened to one-tenth if the CTMC model was used
to represent 30 target individuals and others are modeled by
ODE. Thus, the fluid model checking significantly reduced the
memory and time required for simulation and verification.



Ev alpha Iv kappa+gamma RV
Y e )y s
v Q —exposedV, T —infectiousV
! ! ++infectiousV | ++ecoveredV fint(1e
' |  fint(1e6*gamma } . '
| | —infectiousV, | = | fini | _recovered
fint(1e spve) | T T—— ++hospitalizedV| hospitalizedV, | i
Tnt(1e sprve) | Int(1e sprve)) ! —-hospitalizedV, 1 | ++recoveredy
1 | fini(1e6kappa) | +irecoveredy —hospitalizedV, 1
| —susceptible | —exposed Hy Y+ +dead H
| ++vaccinated | +rexposedy \ O @ oo T
1 I tau+lFR 1 |
1 | 1 i
S H E | | kappa+gamma R fint(1e6"FR) | !
O~ O |
[Piptetriviainbey () m © Shle bbbl (1) Bt © ek Selhebletet |
beta JNFvre —susceplible alpha+vre | —infectious vrc ! |
I ++exposed ! I ++recovered ! i ! |
fint( » o 1 | fint(1e6*gamma) | H !
' I - ' I '
| | Infectious, | —hospitalized! fin 1 1
H 1 +thospitalized | ! H |
I
H | fint(1e6*kappay H y
L-susceptible | —exposed Hey A _"__),¢ D
ILHsusnept\h\ex : ++exposedX . —nospitalized :
fint(1e6(vre-vrc*spve))! | au+FR !
nt(1e cviespe)y . ++dead I
ému eB"(vre-vre*sp’ vj/i\ X kappa+gamma Rx ——recover’edd\:
++recoveredX !
— O — @y @
beta * (infectious+nfectiousV+infectiousxyN . ~USCEPUDIEX. o alpha —-exposedx  —infectiousx . .
++exposedx +tinfectiousX ! +Hrecoveredx ! i R)
y fini(le6*gamma) |
1

—infectiousX, |
++hospitalizedX !
fint(1e6*kappa) y 1
- S S
—hospitalizedX

fau+FR ++dead

|
~-hospitalizedX, | fint(1e6"1au)
+irecoveredX !

Fig. 5. CTMC model of SEIHRV

C. Hospital capacity and Variant of SARS-CoV-2

A variant of the SARS-CoV-2 was first identified in UK
in September 2020, and then it spreads around the world in
the next few months. Studies show this variant has a 40-70%
higher transmission rate than the original virus [19]. By far, it
has been found in more than 100 countries and takes Germany
as an example, the variant infected nearly 55% of the cases.
Studies demonstrated this variant could also induce a 30-100%
higher infection fatality rate than previous viruses.
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Fig. 6. Evolution of hospitalized
To include this variant in our model, we accordingly mod-

ified our parameters. In the updated model, 55% of patients
were infected by the new variant. Furthermore, due to the
high infection rate and fatality rate caused by this variant, we
addressed hospital capacity here. Once the number of patients
with severe symptoms exceeds hospitals’ capacity, the fatality
rate would rise rapidly. So we had the following query in
TABLE II, the query “Hospitalized trend” can be explained as
to how the number of hospitalized population changes.

One hundred hospitalized cases were simulated here, data
shows hospitalization peak occurs at around 40 days after
vaccination, and the number of hospitalized patients is about
60 (Fig. 6). Those simulation data can help medical institu-

TABLE I
QUERY OF HOSPITALIZED

Purpose Query

simulate [<=365;100]{H}
Pr[<=365](<> H >= 60)

Hospitalized trend
Hospital capacity

tions monitor the hospitalization load dynamically and make
complete preparations in advance.

To get more details, we used the query “Hospital capacity”
to calculate the probability of hospitalized cases exceed 60.
As shown in Fig. 7, the range is [0.0125218,0.112309] with
confidence 0.95. Thus, we suggest medical institutions to pay
sufficient attention to this variant, it could bring vast pressure
on the medical system.
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Mean from displayed sample: 45.81 * 5.63 (95% CI)

Fig. 7. Probability Distribution
D. Vaccine prioritization strategy

At the beginning of large-scale vaccination, vaccines’ man-
ufacturing capability is limited and it is still hard to achieve
herd immunity, optimizing the vaccine prioritization strategy
has become a crucial issue. Most prioritization strategy is age-
dependent since infection rate and infection fatality rate are
closely associated with ages. In this section, we applied the



fluid checking model to analyze various vaccine prioritization
strategies.

Here, three different vaccines were used: Pfizer-BioNTech,
Moderna, and Oxford/AstraZeneca. Their efficacies are 95%
and 94.1% and 82.4%, respectively. We used the age demo-
graphic data from UN [20] to estimate the age distribution,
and grouped individuals by their ages with 10-year increment
steps. Some other age-stratified values from previous literature
[9] served as model parameters here, which include infection
rate, fatality rate, hospitalization rate, and recovery period.

Four age-dependent vaccine prioritization strategies: young
people under 20 years old, middle-aged and young adults
between 20 and 49 years old, old people over 60 years old,
and all people over 20 years old, were simulated by using our
previous approach.

We assumed all remaining individuals have equal priority
once the vaccination for the priority group has been completed.
Here we present simulations of 20-49 (Fig. 8(b)) and 60+
(Fig. 8 (a)) prioritization strategy (Pfizer-BioNTech).

[N
LI

(a) Adults 60+ first (b) Adults 20-49 first
Fig. 8. Simulation results

20-49 vaccine prioritization strategy effectively lowers down
the infection rate and transmission rate (Fig. 8(b)). Those
results are reasonable because individuals at that age tend to
have more social activities, most of them work everyday and
are more likely to contact infectious individuals. Meanwhile,
60+ strategy can effective reduce the fatality rate (Fig. 8 (a))
mainly because old people usually have higher hospitalization
rates and fatality rates once they are infected. Since every
vaccine prioritization strategy has its own benefits, it is crucial
to make a trade-off between different COVID-19 vaccine
prioritization strategies.

V. CONCLUSION

In this paper, we used a fluid model checking method to con-
duct a series of studies on the current COVID-19 pandemic.
First, we proposed a vaccine-related epidemiological model:
the SETHRV model. With this model, we are able to investigate
the vaccination impact on the current pandemic more rapidly,
efficiently, and flexibly. Second, the fluid model checking
method was embraced to model, simulate, verify, and analyze
this SEIHRV model. We elaborated this method in detail and
compared it with the traditional compartmental model method.
Results show it performed better in complicated scenario
simulations. Moreover, this method is adjustable on different
individual’s specific conditions and can provide more detailed
information. In comparison with the agent-based method, fluid
model checking can effectively reduce computing resources’

requirements and lessen the state space explosion. Finally,
based on the true-to-life situations, we simulated the cases
individually, also how the hospital capacity, variant virus, and
vaccine prioritization strategy affect the COVID-19 trends. In
conclusion, this approach provide a more practical and effi-
cient way to simulate COVID-19 development in complicated
scenarios, especially after the large-scale vaccine administra-
tion. Correspondingly, its simulation results can provide more
comprehensive and detailed information on COVID-19.
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