
Unsupervised Anomaly Detection Based on System
Logs

Hao Chen, Ruizhi Xiao and Shuyuan Jin∗
School of Data and Computer Science, Sun Yat-sen University, Guangzhou,China
Cyberspace Security Research Center, Peng Cheng Laboratory, Shenzhen, China
{chenh529, xiaorzh3}@mail2.sysu.edu.cn, jinshuyuan@mail.sysu.edu.cn

Abstract—The anomaly detection based on rich and descriptive
system logs is critical to securing information systems. Existing
techniques rarely consider semantic information of logs in the de-
tection, resulting in their incapability to handle unseen log events,
neither further improve their detection rates. This paper proposes
a CNN and LSTM based anomaly detection approach. It utilizes
the meaning of log entries — the semantic information of logs
in the detection, where the relations among short sequences are
automatically learned. The results of comparative experiments
demonstrate the effectiveness of the proposed approach on both
stable(fixed format) and unstable(unseen, unfixed format) logs.

Index Terms—anomaly detection, log analysis, deep learning

I. INTRODUCTION

Large-scale systems, such as cloud-based online service
systems, play a core role in a various critical industries.
However, as the large-scale systems get increasingly larger
and more complex than ever before, they face more security
threats. Small system anomalies could lead to huge losses. In
order to build a secure system, accurate and timely anomaly
detection is needed.

System log is an important resource for troubleshooting
and diagnosis of systems. Since system log contains rich
and descriptive information, such as timestamp, system states
and events, engineers can examine recorded logs for anomaly
detection. Traditionally, engineers search keyword in system
logs to find indicative anomalies, such as ‘error’, ‘fail’, etc.
However, in lager-scale system, a great number of logs are
generated every day. It is impracticable and time-consuming
to diagnose problems through logs manually. Furthermore,
both normal and abnormal logs contain words such as ‘fail’
and ‘error’. Therefore, using only keywords search will cause
many false positives.

In recent years, many automated log-based anomaly detec-
tion approaches have been proposed [1]–[5] , some methods
[2], [3], [6] treat anomaly detection as a binary classification.
In general, these approaches convert logkey(log event indexes)
sequences into log count vectors, and then apply data mining
methods to detect anomalies. With the prevalence of deep
learning, those methods [1], [7] have widely used to detect
anomalies. However, the above methods ignore the semantic
meaning in the log sequences, and not consider the instability
in real-word log. In recent studies, some semantic-based

DOI reference number: 10.18293/SEKE2021-126

methods have been published [8], [8]–[10]. LogAnomaly [9]
proposes the template2vec method, which encodes log tem-
plate to a semantic vector, and utilizes LSTM to train anomaly
detection model. Even though they get good results in certain
scenarios, the performance of their methods could be further
improved.

The log based anomaly detection faces the following chal-
lenges.

1) Semantic meaning of system logs is not utilized well
in the detection. Some existing detection techniques do not
take semantic information into consideration, while others
only calculate semantic information based on all words in
the log entry, ignoring that some words have no semantic
meanings or even reduce real meanings to some extends. For
example, an entry in HDFS logs is “10.250.11.100:50010
Served block blk -3544583377289625738 to /10.250.19.10”.
It contains words ‘served block to’, where the word ‘to’ has
little meanings in fact.

2) Log is unstable in real-word [10], in other words, many
unseen logs are existing in the information systems. In the
process of software developers insert or delete certain words
to update the logging statements, lots of unseen log events
will be generated. Normally the existing techniques only use
known logkeys and ignore unseen log events, where unseen
log events is only treated as new events. Therefore, they fail to
work with unseen log events and cause many false positives.

To address the above challenges, we propose an unsuper-
vised anomaly detection method, which can detect anomalies
automatically and achieve high detection accuracy. The pro-
posed method encodes logs into fixed-length semantic vectors.
Two logs with similar meanings have similar semantic vectors.
Note that a LSTM itself cannot extract enough features to
make a good detection, the proposed method employs a CNN
and LSTM combined model to detect anomalies. It has the
advantages of automatically extracting log short sequence
relationship and log quantitative features simultaneously.

We evaluated our proposed method on stable and unstable
log dataset. The experimental results show that the proposed
approach outperforms the state-of-art techniques with 98% F-
measure and only uses 1% normal datasets for training. We
also evaluated the proposed method on unstable log dataset.
The experimental results demonstrate the effectiveness of the
proposed method.

Fig. 1. The overview of the proposed method

The main contributions of this paper are as follows:
• A novel semantic information embedding technique is

proposed to detect anomalies in system logs. The basic
idea of extracting semantic information in the detection
comes from that system administrators usually use key-
word search to find anomalies. Thus, some keywords in
the log entries may represent the meanings of the entire
log entries.

• A CNN and LSTM combined detection approach is
proposed. It has the capabilities of not only learning
semantics from system logs, but also learns the quan-
titative feature from log count vector. It can achieve high
detection rates on both stable and unstable logs.

The rest of this paper is organized as follows: Sec. II
introduces related work. Then, Sec. III describes the proposed
method, and the experiment results are discussed in section
IV. Finally, in Sec. VI we conclude our work.

II. RELATED WORK

Logs contain abundant information, such as computer status,
making them a valuable resource for anomaly detection. A
significant amount of studies have been published in log-based
anomaly detection [4], [5]. The current methods are mainly
divided into four categories: rule-based methods, data mining-
based methods, deep learning-based methods and NLP-based
methods.

Rule-based methods use keywords or regular expressions
to find anomalies in logs. Marcello [5] proposes a rule-based
methods to analyze software failures from logs. Rule-based
methods have high accuracy, but they require domain expertise
and are very time-consuming in production environment. In the
past few years, data mining and deep learning methods have
been proposed.

There are many methods based on data mining [2], [3],
[6]. These methods generally first parse log messages into
logkey. Then they convert the logkey sequences into a log
count vectors, and finally apply data mining methods to
detect anomalies. Data mining methods can be divided into
unsupervised methods and supervised methods. Compared
with unsupervised methods, supervised methods have better
results. However, supervised method requires a large quantity
of labeled data, which need massive manual effort in large
system. Furthermore, in real environments, abnormal data is
rare compared with normal datasets, which make it impractical

for supervised method training. Therefore, our method only
uses normal logs for training.

In recent years, deep learning-based methods have been
widely studied [1], [7]. Deeplog [1] uses normal datasets to
train an anomaly detection model. It uses LSTM to predict
the next logkey and compares it with the actual logekey to
detect anomalies. These methods do not consider the semantic
information in log entries, and they have poor performance
on the unseen log data. In real-word log data, logs are
unstable because the evolution of logging statements and noise
generated during log data pre-processing [10]. For example,
developers often add or delete certain words when they update
a logging statement. Many unseen log events will be produced.
Existing approaches have poor performance on this issue due
to the wrong classification. DeepLog uses a user feedback
mechanism to update anomaly detection models. However, it
needs lots of manual feedback which is infeasible in real-
time systems. We propose a method to handle with unseen
log events without the need of manual feedback.

The latest studies [8]–[10] use NLP techniques to analyze
log-based anomaly detection. LogAnoamly [9] extracts the
semantic information form log, and then use LSTM to train the
anomaly detection model. LogRobust [10] can also represent
log message as semantic vectors, and utilizes the attention-
based Bi-LSTM model to detect anomalies. However, these
methods only use LSTM to train anomaly detection models.
Our method combines CNN and LSTM, which can extract the
richer features.

III. METHOD

A. Overview

The overview of the proposed method is shown in Fig.
1, which mainly includes two parts, log vectorization and
anomaly detection model. First, we leverage Drain [11] to
parse the log into logkey and group logkey by identifiers(such
as block id in HDFS dataset). After that, the proposed method
does not rely on logkey sequences(Lsequences) for anomaly
detection like exiting methods. Instead, it encodes logkey
sequences into semantic vector sequences(Ssemantic) and log
count vector(Vcount). Then, we propose an anomaly detection
model that can detect semantic vector sequences and logkey
count vectors simultaneously. The model has the ability to
extract short sequence relationship among log entries, which
is suitable for analyzing log sequences data. In the end, an

alarm message could be sent to system administrator if an
anomaly is detected.

B. Semantic Embedding

Fig. 2. The workflow of semantic vectorization

The proposed method can extract semantic informa-
tion from log entries and encode each logkey into a
fixed-dimension vector. The design of converting logkey
into a semantic vector is based on the assumption that
some keywords in a log entry can represent the meaning
of whole log entry. For example, a log entry “081109
203521 145 INFO dfs.DataNode$DataXceiver: Receiving
block blk -3544583377289625738 src: /10.250.19.102:39325
dest: /10.250.19.102:50010” from HDFS dataset, which con-
tains rich information, such as timestamp, pid, IP address ,
block id etc. The meaning of this log entry can be represented
as two keywords “receiving block”. The manual effort to
find keywords is unpractical in large system, so we need
an automatic method to determine which words in a log
entry are keywords and how to convert the keywords to a
semantic vector. As shown in Fig. 2, the workflow of semantic
embedding consists of three phases, keyword search, word
vectorization and concatenation.

1) Keywords Search: Get keywords from the log template.
First we need pre-processing. In this step we filter non-
words(such as ‘*’ ,‘:’) in the template entry, and split the
template into individual word. Then, we use TF-IDF [12]
to calculate the importance of each word in the template
entry, which can effectively measure importance of words in a
document. For each word in template entry, its TF-IDF weight
is calculated by TF*IDF. The term frequency(TF) represents
the frequency of words in the template entry. For example, the
word ‘block’ appears multiple times in the template, which
means that word ‘block’ has a high TF weight. However,
if the word ‘block’ appears in all template entries, it means
that it can not distinguish between those template entries, so
its weight should be reduced. Therefore, we also calculate
the inverse document frequency(IDF). If the word appears
multiple times in the template entry, it has low IDF weight.
We calculate words importance by the following formula.

TF =
Nword

Nword total
(1)

IDF = log(
Ntemplate

Ntemplate toatl
) (2)

TF − IDF = TF ∗ IDF (3)

Nword represents the number of target word in the log
template. Nword total is the total number of word in a log
template. Ntemplate is total the number of log template con-
taining target words. Ntemplate toatl is the total number of log
template. After getting the TF-IDF weight of each word, we
sort the word importance according to their TF-IDF weight.
And we set the parameter g, which represents the number of
keywords used. As the Fig. 2 shows, g=3 and we can get top
3 keywords in the template.

2) Word Vectorization: In this phase, we convert each word
in log into a semantic vector. We use Glove [13] algorithm
encodes each word to a word semantic vectorwhich map
each word to a fixed dimension vector. Two words that are
semantically close have similar word semantic vector.

3) Concatenation: As we get keywords and word semantic
vector, we can convert log into a semantic vector. As the Fig.
2 shows, we convert the keywords into word vectors according
to the Glove model, and then we concatenate the word vectors
to get semantic vector. The dimension of semantic vector is
w*g, in which w is the word semantic dimension and g is the
number of keywords.

C. Model
Our anomaly detection model combines CNN and LSTM.

CNN is used for capture patterns from semantic vector se-
quences(a list of semantic vector), because our CNN model
has strong ability to extract the short sequence relationships.
As for LSTM [14], it can learn the quantitative patterns from
log count vector. The combination of CNN and LSTM model
can improve the accuracy, which is demonstrated in Sec. VI.

Due to the fact log is a kind of text, it can take a benefit of
natural language processing (NLP). Our CNN model refers to
the sentence classification model in the NLP field [15]. The
CNN neural network contains several layers. The input layer
we use semantic vector sequence as input, which is a m*n
matrix, where m represents the size of the sliding window, and
n represents the dimension of the semantic vector. The next
layer is CNN convolutional layers, which is the core layer of
CNN. It uses three different one-layer filters to convolute over
the input layer. These filters have same width but different
heights. The filters width is the same as the dimension of
semantic vector, so these filters can only move in the height
direction. And then we use 1-max-pooling layers to obtain the
maximum feature from feature vector. In this way, we get the
semantic vector sequence feature.

LSTM is a kind of recurrent neural networks that designed
for sequential data. Thus, we use LSTM neural network to
capture quantitative patterns from log count vector. The LSTM
neural network consists of an input layer, a hidden layer and
an output layer. The LSTM unit to calculates the new state
and output uses the input data and the previous unit state. A
series of LSTM unit form an LSTM neural network.

Finally we concatenate the CNN and LSTM feature map,
and add a softmax function in the output layer. The softmax
function outputs the probability of the next logkey.

D. Detection
The proposed method uses the normal execution path to

train the anomaly detection model. If the log execution path
deviates from the model prediction, we can send an alarm
message. The Logkey sequence represents the execution path
of log. Let k=(k1,k2,k3 ... kn) as the whole set of distinct
logkey and there are n different logkeys. The main idea is
using the most recent m logkey to predict the next m+1
logkey, so we treat anomaly detection as a multi-classification
problem, where each logkey is a class. We use a sliding
window of m to split the logkey sequence. A subsequence is
obtained as (kj ,kj+1 ... kj+m−1), The next logkey is kj+m. For
example, there has a logkey sequence (1,2,3,4,5). First we set a
sliding window size as 3. Dividing the log sequence according
to the sliding window, we can get logkey subsequences as
(1,2,3),(2,3,4) and their next logkey is 4,5 respectively.

The proposed method converts logkey sequence to semantic
vector sequence and log count vector. The log count vector is
wildly used in anomaly detection. It represents the number of
occurrences of each logkey in a sliding window. The entire
logkey can be expressed as k=(k1,k2,k3 ... kn) and there have
n distinct logkey. Thus, the log count vector is n dimension.
Log count vector is denoted as (c1,c2 ... cj ... cn), where cj is
the number of j-th logkey in the sliding window. Finally, the
proposed method inputs the semantic vector sequence and log
count vector into the anomaly detection model.

In anomaly detection, taking the most recent logkey as input
value, the anomaly detection model returns a prediction result,
that is, the probability of next logkey. The proposed method
select top g probabilities as candidates. If the next logkey is
not in the top g candidates, it can be considered abnormal.

IV. EXPERIMENT

A. Dataset
1) Stable Dataset: We conduct our experiment on stable

log dataset HDFS [2] and BGL [16]. Tab. I shows summary
of stable log data set.

The HDFS dataset is a benchmark dataset for log anomaly
detection. It is generated by Hadoop-based map-reduce jobs on
Amazons EC2 with more than 200 nodes. In total, 11,197,954
log messages are collected. Since HDFS data set is labeled by
block id, we use block id as identifier to group log entries and
get 558,221 normal sessions and 16,838 abnormal sessions.
The data set is unbalanced, only 2.9% of the datasets are
abnormal sessions. The proposed method only uses less than
1% normal sessions for training, which is a grouping of the
first 100,000 log entries of original dataset.

BGL is a open source dataset used in Blue Gene/L super-
computer system at Lawrence Livermore National Labs. The
BGL dataset contains 4,747,963 logs, in which each log is
labeled as abnormal or normal, and 348,460 logs are labeled
as abnormal. We use a window size of 10 to slice logs into
log sequences, and randomly take 20% for training the others
for testing.

2) Unstable Dataset: In order to evaluate the robustness of
the proposed method. We create unstable log event datasets

TABLE I
SUMMARY OF STABLE LOG DATA SET

dataset Train data Test data
HDFS 4,855 normal 553,366 normal
dataset 0 abnorma 16,838 abnormal
BGL 949,592 normal 3,7983,704 normal

dataset 0 abnormal 348,460 abnormal

Fig. 3. Synthetic log events

based on the BGL dataset, with randomly adding or deleting
words in the BGL dataset as shown in Fig. 3.

B. Parameter Setting

Our proposed method uses the following parameters: w=10,
g=8, k=(2,3,4), t=4, l=2, m=64, n=150. w is the window size,
and g is the number of candidates. If the next logkey is in the
top g of the prediction candidates, it is considered normal. k is
the convolution kernel of CNN. For example, k=(2,3,4) means
that there have three different convolution kernels and their
heights are 2, 3, 4 respectively. n and t denote the number of
feature maps of CNN and the number of keywords to represent
a log entry. l and m is the number of layers and number of
neurons in LSTM. For other methods, we use the parameters
with their best results.

C. Evaluation Metrics

In order to measure the prediction accuracy and recall rate,
we introduce four indicators: true positive (TP) is anomalous
block predicted to be anomalous , false positive (FP) is normal
block predicted to be abnormal, true negative(TN) is normal
block predicted as normal, and false negative (FN) means a
abnormal block predicted to be normal.

The calculation formulas of precision, recall and F-measure
are as follow.

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

F −measure =
2 ∗ Precision

Precision+Recall
(6)

D. Comparison

We compare the proposed method with four unsupervised
baseline methods PCA [2], LogCluster [6], DeepLog [1] and
LogAnomaly [9].

1) Compared The Proposed Method with Exiting Methods
on stable dataset: Fig. 4 shows the comparison of results

Fig. 4. Evaluation on HDFS

Fig. 5. Evaluation on BGL

of the proposed method and the other four baseline methods
on HDFS dataset. Apparently, the proposed method achieves
best result, with F-meaure 0.98. Both PCA and LogCluster
methods achieves good results on precision, with the price
of low recall. The state-of-art method LogAnomaly encodes
log template to semantic vector for anomaly detection, and
has better performance compared with DeepLog. However,
the performance of LogAnomaly could be further improved.
The proposed method gets F-measure 0.98, which higher than
LogAnomaly with F-measure 0.97.

Fig. 5 shows the performance of our method and other four
baseline method on BGL dataset. Among those methods, our
method achieves the best F-measure 0.954, and LogAnomaly
has an F-measure 0.945 as second. The reason why our
method has better performance than LogAnoamly, is as follow.
First, LogAnomaly extracts the semantic vector based on all
words in the log entry, but our method only considers the
keywords in log entry to calculate semantic vector. In addition,
LogAnomaly uses LSTM model to extract patterns from
logkey sequence, which can not extract log short sequence
relationship well. Our proposed method uses a LSTM and
CNN combined model that has ability to extract log short
sequence relationship.

2) Compared The Proposed Method with Exiting Methods
on Unstable Log Events: As the log system evolve and log
parsing error, many new log events will be produced. These

TABLE II
EXPERIMENT RESULTS ON BGL DATASET OF UNSTABLE LOG EVENT

Injection Metric LogCluster DeepLog the proposed
Ratio method

Precision 0.77 0.88 0.94
0% Recall 0.99 0.99 0.97

F-measure 0.86 0.93 0.95
Precision 0.68 0.59 0.94

5% Recall 0.99 0.97 0.97
F-measure 0.80 0.74 0.95
Precision 0.62 0.44 0.94

10% Recall 0.99 0.99 0.96
F-measure 0.76 0.61 0.95
Precision 0.63 0.38 0.94

15% Recall 0.99 0.95 0.96
F-measure 0.77 0.54 0.95
Precision 0.62 0.27 0.94

25% Recall 0.99 0.96 0.94
F-measure 0.76 0.42 0.94

methods such as DeepLog and LogCluster cannot effectively
handle these unseen log events.

Our method is based on the assumption that most of the
new logs are variants of the original logs and will not change
the meaning of the original logs, so the proposed method can
match the new logs with the original logs significantly. First
the proposed method use Drain extract the new log to the
template, then search for keywords in the log based on TF-IDF,
and finally calculate its similarity by the following formula:

similarity =
2 ∗Nsame

Nnew +Nexist
(7)

Nsame means the number of keyword both in new template
and exist template. Nnew means the number of word in new
template and Nexist means the number of word in exist
template. After obtaining the similarity between new template
and exist template, the proposed method can match new
template to an existing one.

We evaluated the proposed method on unstable BGL log
dataset. The experimental results on the unstable log event
datasets are shown in Tab. II. The injection ratio represents the
ratio of the number of randomly adding and deleting logs to the
total number of logs. Note that PCA is omitted from this table
because of its very poor performance. Clearly, our method has
achieved the best performance. As the injection ratio increases,
the performance of our method decreases slowly (F-measure
from 0.95 to 0.94). And the performance of the DeepLog
method has declined a lot (F-measure from 0.93 to 0.42).
LogCluster achieves better F-measure than DeepLog with F-
measure declined from 0.86 to 0.76 as the injection ratio
increases. The reason is that LogCluster and DeepLog treat
unseen log events as a new log events, which may cause false
alarms.

E. Discussion

1):Impact of CNN and LSTM in Proposed Method: Our
CNN and LSTM combined model can extract patterns from
semantic vector sequences and log count vectors simultane-
ously. Tab. III, demonstrates the impact of CNN and LSTM

TABLE III
THE IMPACT OF CNN AND LSTM IN PROPOSED METHOD

method Precision Recall F-measure
without (w/o) CNN 0.91 0.99 0.95
without(w/o) LSTM 0.96 0.98 0.97

CNN and LSTM 0.97 0.99 0.98

TABLE IV
THE IMPACT OF KEYWORD NUMBER

Number of keywords Precision Recall F-measure
1 0.963 0.986 0.973
2 0.965 0.991 0.978
3 0.963 0.993 0.978
4 0.966 0.993 0.980
5 0.959 0.993 0.975
6 0.960 0.990 0.975

in proposed method. We calculate the precision, recall and F-
measure of the proposed method without (w/o) LSTM, and the
proposed method without(w/o) CNN. The proposed method
without CNN has a much low F-measure, which demonstrates
semantic vector sequences are important for the anomaly
detection model. The proposed method without LSTM has a
lower F-measure. By combining CNN and LSTM model, the
proposed method obtains best results.

2):Impact of Keyword Numbers in Proposed Method: In Sec.
IV, we describe the semantic vectorization, which can capture
the semantic information from log. We want to verify the
impact of keyword numbers on the accuracy of the proposed
method. We consider 6 distinct numbers from 1 to 6. We
follow the same parameters and utilize the same training and
testing dataset.

Intuitively, we think that the more keywords are used, the
more semantic information will be captured from the log.
However, Tab. III shows as the number of keywords increases.
The value of F-measure first increases and then decreases,
the value of F-measure is the highest when the number of
keywords is 4. This is mainly because as the number of
keywords increases, some unimportant words(such as ‘of’,
‘the’) will also be converted into semantic vectors, which
may add noise to semantic vector and reduce the F-measure.

V. CONCLUSION

To address the challenges caused by unstable system logs,
this paper proposes a CNN and LSTM based anomaly de-
tection approach. The proposed approach can automatically
learn the semantic information among system log sequences
and embed the semantic information in the detection. As a
result, the proposed approach obtains high detection rates on
both stable and unstable logs, in comparison to the existing
methods in the experiments.

However, our present method has a major limitations. The
proposed approach gets better results than exiting methods,
with the price of it takes more time for anomaly detection.
One of the future directions of our work is to reduce the time
for model anomaly detection.

ACKNOWLEDGMENTS

This work is supported by the Key Research and De-
velopment Program for Guangdong Province (Grant No.
2019B010136001) and the National Natural Science Founda-
tion of China (Grant No. 61672494). The corresponding author
is Shuyuan Jin.

REFERENCES

[1] M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly detection
and diagnosis from system logs through deep learning,” in Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communica-
tions Security, 2017, pp. 1285–1298.

[2] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan, “Detecting
large-scale system problems by mining console logs,” in Proceedings
of the ACM SIGOPS 22nd symposium on Operating systems principles,
2009, pp. 117–132.

[3] J.-G. Lou, Q. Fu, S. Yang, Y. Xu, and J. Li, “Mining invariants
from console logs for system problem detection.” in USENIX Annual
Technical Conference, 2010, pp. 1–14.

[4] P. Bodik, M. Goldszmidt, A. Fox, D. B. Woodard, and H. Andersen,
“Fingerprinting the datacenter: automated classification of performance
crises,” in Proceedings of the 5th European conference on Computer
systems, 2010, pp. 111–124.

[5] M. Cinque, D. Cotroneo, and A. Pecchia, “Event logs for the analysis
of software failures: A rule-based approach,” IEEE Transactions on
Software Engineering, vol. 39, no. 6, pp. 806–821, 2012.

[6] Q. Lin, H. Zhang, J.-G. Lou, Y. Zhang, and X. Chen, “Log cluster-
ing based problem identification for online service systems,” in 2016
IEEE/ACM 38th International Conference on Software Engineering
Companion (ICSE-C). IEEE, 2016, pp. 102–111.

[7] S. Lu, X. Wei, Y. Li, and L. Wang, “Detecting anomaly in big data
system logs using convolutional neural network,” in 2018 IEEE 16th
Intl Conf on Dependable, Autonomic and Secure Computing, 16th Intl
Conf on Pervasive Intelligence and Computing, 4th Intl Conf on Big
Data Intelligence and Computing and Cyber Science and Technology
Congress (DASC/PiCom/DataCom/CyberSciTech). IEEE, 2018, pp.
151–158.

[8] S. Huang, Y. Liu, C. Fung, R. He, Y. Zhao, H. Yang, and Z. Luan,
“Hitanomaly: Hierarchical transformers for anomaly detection in system
log,” IEEE Transactions on Network and Service Management, vol. 17,
no. 4, pp. 2064–2076, 2020.

[9] W. Meng, Y. Liu, Y. Zhu, S. Zhang, D. Pei, Y. Liu, Y. Chen, R. Zhang,
S. Tao, P. Sun et al., “Loganomaly: Unsupervised detection of sequential
and quantitative anomalies in unstructured logs.” in IJCAI, vol. 7, 2019,
pp. 4739–4745.

[10] X. Zhang, Y. Xu, Q. Lin, B. Qiao, H. Zhang, Y. Dang, C. Xie, X. Yang,
Q. Cheng, Z. Li et al., “Robust log-based anomaly detection on unstable
log data,” in Proceedings of the 2019 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2019, pp. 807–817.

[11] P. He, J. Zhu, Z. Zheng, and M. R. Lyu, “Drain: An online log parsing
approach with fixed depth tree,” in 2017 IEEE International Conference
on Web Services (ICWS). IEEE, 2017, pp. 33–40.

[12] G. Salton and C. Buckley, “Term-weighting approaches in automatic
text retrieval,” Information processing & management, vol. 24, no. 5,
pp. 513–523, 1988.

[13] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” in Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP), 2014, pp.
1532–1543.

[14] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[15] Y. Zhang and B. Wallace, “A sensitivity analysis of (and practitioners’
guide to) convolutional neural networks for sentence classification,”
arXiv preprint arXiv:1510.03820, 2015.

[16] A. Oliner and J. Stearley, “What supercomputers say: A study of five
system logs,” in 37th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN’07). IEEE, 2007, pp. 575–
584.

