
Using the Normalized Levenshtein Distance to Analyze Relationship between
Faults and Local Variables with Confusing Names: A further Investigation

Carmine GravinoH Alessandra OrsiH Michele RisiH

H Department of Computer Science
University of Salerno, Italy
{gravino, mrisi}@unisa.it

Abstract

This paper exploits further uses of NLD (Normalized
Levenshtein Distance), proposed in a recent study, to quan-
tify the level of confusion of variables with the aim of ver-
ifying if they can provide indications about the presence
of faults. We provide further evidence that fault prediction
models based on the considered NLD measures can provide
accurate estimations.

1 Introduction

This paper presents a further investigation about the use
of the Normalized Levenshtein Distance (NLD) proposed
by Tashima et al [1]. NLD allows to quantify the string
similarity between local variables by exploiting the Leven-
shtein distance. In particular, it determines the minimum
number of modifications in the characters to change one
string to another string. NLD allows to quantify the con-
fusion of local variables [1] and verify if the presence of
not easily distinguishable variables in a method can sug-
gest that the method is fault prone. In addition, we propose
further uses of NLD: NLD1, which represents the sum of
all the NLD values calculated for each pair of variables de-
clared in a method; NLD2, which represents the average
of all the NLD values for each pair of local variables; and
NLD3, which is defined as the sum of all the NLD values
for each pair of local variables multiplied by the number of
LOCs of the method.

To assess all the considered confusing measures, we have
performed an empirical study by considering the same soft-
ware systems employed in [1]. The results confirm and ex-
tend the ones of previous study about the relationships be-
tween the presence of faults and local variables with con-
fusing names and how fault prediction models (built using
the Random Forest) based on the considered distances can
provide accurate estimations.

Organization of the paper: In Section 2 we summa-
rize related work and recall the definition of NLD [1]. The
design and the results of the performed empirical study are
presented in Section 3 and Section 4, respectively. Conclu-
sion concludes the paper.

2 Background
2.1 Related work

Software fault prediction has been widely investigated,
aiming at identifying source code information that can help
to accurately predict the presence of faults (e.g., [2] [3]). A
few papers have investigated how the choices of develop-
ers when naming local variables can impact software qual-
ity. We can start mentioning the indications provided by
Kernighan and Pike [4], who state that local variables have
restricted role being used in a limited scope, thus it is un-
necessary to use long and descriptive names for these iden-
tifiers. Some years later, Lawrie et al. [5] have performed a
quantitative survey to investigate the impact of the variable
composition on software comprehension. In their analysis
they take into account three types of identifiers: a fully-
word, abbreviated word, and a single character. The anal-
ysis of results reveals that understandability of identifiers
decreases from full-words to single-character words. How-
ever, no significant difference can be highlighted between
the use of full-words and abbreviated identifiers in terms of
source code comprehension. More recently, a large-scale
experiment performed by Scanniello et al. [6] has achieved
similar results. They conducted a qualitative study to under-
stand how identifier names either abbreviated or full-word
the values, impact on fault fixing. Furthermore, it seems
that even if variables with long names can help to better un-
derstand their use, the overall source code readability can
be reduced [7]. Another study by Aman et al. [8] has also
revealed that long local variable names are change-prone.

Binkley et al. [9] performed a study to compare the
impact on the program comprehension when programmers
use different naming styles. They compared the use of the
camel case against the use of the snake case. The results
show that the camel case improves the source code compre-
hension for developers at the beginning of their career while
there is no significant difference for expert developers.

Regarding the relationship between the naming style and
the presence of faults, the findings of a study performed by
Kawamoto and Mizuno [10] reveal that the source code re-
sults to be fault-prone when classes contain long identifier
names. With the aim of showing good practices when nam-
ing the identifiers, Butler et al. [11] have defined and as-

DOI reference number: 10.18293/SEKE2021-124



sessed 12 naming rules. The results of the performed anal-
ysis show that the use of identifiers not following the pro-
posed rules increases the presence of faults.

Differently from the above mentioned contributions,
Tashima et al. [1] have recently focused their attention on
pairs of local variables with similar and confusing names.
The aim of their investigation is to verify the relationships
between the presence of such confusing variables and the
fault-proneness at method level.

2.2 Normalized Levenshtein Distance

The motivation of Tashima et al. [1] is that the pres-
ence of local variables with high similarity names implies
the possibility to confuse their use in the source code. To
this aim, the Levenshtein distance is used to evaluate how
much two names are confusing. The Levenshtein string edit
Distance (LD) algorithm is one of most important models
for string matching [12]. This edit distance is defined as the
minimum number of insert, delete, and replace operations
required to transform a source string x into a target string
y. The approach assumes that insert and delete operations
have cost 1, while the replacement has cost 2 (it is equiva-
lent to a sequence of delete and insert operations). However,
to evaluate more precisely the degree of confusion between
two strings (local variables’ names) s1 and s2, Tashima et
al. propose a normalized LD, which is computed by divid-
ing the distance by a factor that depends on the length of the
considered local variables:

NLD(s1, s2) =
LD(s1, s2)

max{λ(s1), λ(s2)}

where LD(s1, s2) is the Levenshtein distance between the
two strings s1 and s2, and the function λ computes the
length of the corresponding string. In particular, Tashima
et al. adopted the following definition:

NLDT (s1, s2) = min
∀s1,s2∈M,s1 6=s2

(NLD(s1, s2))

3 Study design
We have formulated the following research question:

RQ Can information on variables with confusing names
help to predict the presence of faults?

To answer RQ we have built different prediction mod-
els based on the considered distance measures and assessed
their accuracy in prediction. We also decided to build a pre-
diction model exploiting the Line of Code (LOC) metric
as independent variable, to verify whether the predictions
achieved with NLD based measures are better than those
obtained using only LOC.

3.1 Exploited NLD based measures

We considered further uses of NLD proposed in [1],
starting from two considerations: Why lower confusion val-
ues are excluded? Can the use of other software size mea-
sures (like the size of the module being analyzed) improve
the effectiveness of NLD? To this aim, we consider three
further NLD based measures:

• NLD1: is a “cumulative” measure computed by simply
adding all the values of NLD for each pair of variables
(i.e., we performed all the possible permutations of the
identifiers defined in a method):

NLD1 =
∑

∀s1,s2∈M,s1 6=s2

NLD(s1, s2)

where s1 and s2 can be all the local variables defined
in a method M of the analyzed software class.

• NLD2: it is based on NLD1. In particular, the cumu-
lative value of all the obtained distances is normalized
by a factor depending on the number of all the local
variables in the method M : NLD1/n, where n is the
overall number of local variables defined in M .

• NLD3: it is obtained by multiplying the NLD2 value
by the number of LOCs present in the method under
consideration (i.e., LOCM ): NLD2 * LOCM

3.2 Datasets

We considered the same five open source projects em-
ployed by Tashima et al. [1] for different reasons. We were
interested in analyzing software implemented in Java and
managed with Git in order to identify useful information
such as the presence of faults. And more important, we se-
lected the same software since our aim was to further assess
the accuracy of NLD based measures (including NLDT )
given that NLDT provided good results on these software
as reported in the original work of Tashima et al. [1]. In
particular, the systems are: Apache Tomcat v. 9.0.12, Birt
v. 4.8.0, Eclipse JDT User Interface v. 4.10.0, Eclipse Plat-
form User Interface v. 4.10.0, Eclipse SWT v. 4.9.

In order to conduct the study, it was necessary to col-
lect data from different sources. In particular, the collec-
tion of information to calculate the confusing measures,
i.e., NLDT , NLD1, NLD2, and NLD3, was computed by
analyzing the local variables of the methods of the source
code of the considered projects. To this aim, we exploited
a parser written in Java that makes use of the Eclipse JDT
core library to extract information on methods and their lo-
cal variables. We computed the values for NLD for each
pair of local variables and then the values of each NLDi

(i ∈ {T, 1, 2, 3}) as described above. Then, we add data
about the presence of faults for each method by exploit-
ing information from Promise repository [13], also used by



Tashima et al. but for different versions of the software
projects, and by manually analyzing information provided
in Git. This was the only strategy to adopt since the ver-
sions of the five projects we considered are among the most
recents and are not the same as in the previous study by
Tashima et al. [1]. Thus, the fault recovery was made
by making an intersection at method and class levels be-
tween the datasets used by Tashima et al., containing also
the faults, and those used in our study. Whenever there was
a correspondence of modules between the old and the new
versions of a given project, the fault related to that module
in our dataset for the project was added. In particular, in
our analysis NLDT , NLD1, NLD2, NLD3 have been used
as independent variable while Fault (the presence of fault,
i.e., 1, or not, i.e., 0) as dependent variable.

3.3 Prediction models and accuracy evaluation

To build our fault prediction models, we employed the
Random Forest that is a popular method for various ma-
chine learning tasks. It exploits a classifier as specified
above, however it constructs more classification trees in-
stead of a single tree [14]. As for its implementation, we
exploited the tool Weka that offers widely used estimation
techniques [15]. In particular, for our analysis we used the
Classify module by selecting: i) all the parameters neces-
sary for the construction of the model, ii) the Random Forest
algorithm, iii) the independent variable (i.e., a measure of
confusion), iv) the dependent variable (Fault) and the type
of the validation method to be used.

To verify whether or not the obtained fault estimations
are useful predictions of the actual faults we exploited 10-
fold cross validation [16] with k = 10, which requires the
splitting of the dataset in k−1 training sets and 1 validation
test for k times. Each time the training set is employed to
define the estimation models, with the selected estimation
techniques, while the corresponding validation test is used
to validate the predictions obtained with the built models.

To evaluate the accuracy of the fault predictions, we em-
ployed F-measure defined as the weighted harmonic mean
of the Precision and Recall [17]. Since the fault estimations
have been computed on a dependent variable representing
two classes with a very different number of observations,
the Matthews correlation coefficient (MCC) can be gener-
ally adopted to measure the quality of a binary classifier.
MCC represents a correlation coefficient between the ob-
served and predicted binary classifications [18]. The MCC
measure ranges from +1 for a perfect classifier through 0
for a random classifier to -1 for a weak classifier.

3.4 Threats to Validity

Some threats could affect the validity of our analysis.
We considered five software projects developed in Java, and
so the number and type of software can introduce a bias
with respect to external validity. Thus, further investiga-

Table 1. Prediction accuracy achieved by the
built fault estimation models

System
Employed Correctly Incorrectly

F-measure MCCmeasure classified classified
instances (%) instances (%)

Apache Tomcat

NLD1 75 25 0.75 0.503
NLD2 77.5 22.5 0.77 0.548
NLD3 72.5 27.5 0.72 0.441
NLDT 85 15 0.85 0.698
LOC 52.5 47.5 0.53 0.055

Birt

NLD1 74.97 25.03 0.71 0.153
NLD2 76.28 23.72 0.76 0.033
NLD3 73.7 26.3 0.72 0.179
NLDT 76.70 23.30 0.68 0.118
LOC 76.2 23.8 0.69 0.115

JDT ui

NLD1 65.77 34.23 0.60 0.148
NLD2 65.94 34.06 0.57 0.127
NLD3 67.01 32.99 0.64 0.206
NLDT 65.83 34.17 0.61 0.159
LOC 64.1 35.9 0.51 0.043

Platform ui

NLD1 62.1 37.9 0.51 0.041
NLD2 62.91 37.09 0.50 0.034
NLD3 66.7 33.3 0.66 0.266
NLDT 64 36 0.55 0.122
LOC 66.1 33.9 0.63 0.214

SWT

NLD1 69.6 30.4 0.7 0.392
NLD2 56.65 43.35 0.56 0.118
NLD3 72.2 27.8 0.72 0.440
NLDT 54.9 45.1 0.52 0.071
LOC 62.9 37.1 0.63 0.251

tions with different type of software projects and a greater
number of projects should be carried out. However, to mit-
igate this threat we considered software projects whose in-
formation are publicly available and employed in previous
investigations. Regarding the collection of information we
employed Eclipse JDT to analyze source files to calculate
the confusing measures, by analyzing the local variables of
the methods of the source code of the considered projects.
Eclipse JDT is a widely used tool for accomplishing such
kind of work. As for the collection of fault data, possible
threat is related to the fact that the fault recovery was made
by making a intersection at method and class level between
the datasets of the Promise used by Tashima et al. [1], con-
taining also the faults, and those used in our study.

Other threats can regard the data analysis performed. As
for the technique applied to obtain the prediction model we
exploited Random Forrest since it is widely used for classi-
fication problems similar to ours. Furthermore, it was also
used in the original work by Tashima et al. [1]. As for
the assessment of the achieved fault predictions, other mea-
sures could be used, such as accuracy, however F-measure
and MCC are widely employed in studies similar to ours.

4 Results
First of all, for two of the confusing measures, i.e., NLD1

and NLD3, we have observed a specific relationship be-
tween the presence of faults and local variables with con-
fusing names, namely, as the value of confusing measures
increases (i.e., the distance between local variables increase
and so they are less confusing) the value of the fault rate



increases as well. For the other two considered confusing
measures we cannot provide a clear trend.

Table 1 reports the results in terms of Correctly classi-
fied instances (%), Incorrectly classified instances (%), F-
measure, and MCC for each software systems and the built
estimation models (i.e., based on NLD1, NLD2, NLD3,
NLDT , and LOC) obtained by averaging the results of the
10-fold cross validation as designed in Section 3.3.

We can note that F-measure values range from 0.5 to
0.85. The greatest values were obtained with Apache Tom-
cat (which is smaller in size with respect to the others) while
the worst values were obtained with Platform ui. A similar
consideration can be provided for MCC values.

The NLD based measures used as independent variables
in fault prediction models built with the Random Forest that
allowed to obtain better predictions are NLD1 and NLD3.
NLDT provided results similar to NLD1 and in one case
(i.e., Apache Tomcat) provided better predictions than the
others. For the other 4 systems the measure that allowed
to obtain better predictions is NLD3. Let us remember that
NLD1 is the sum up NLDs of all the pairs, thus as a long
method or a complicated method tends to have more vari-
ables its NLD1 tends to be larger. NLD3 is NLD2 multiplied
by LOC, so greater LOC greater NLD3. So, both NLD1

and NLD3 are influenced by the source code size and one
can image that the size measure has a large influence on
the defect prediction performance. However, we can note
from Table 1 that the good results in terms of NLD3 for the
systems JDT ui and Apache Tomcat are mainly due to the
contribution of NLD2, which is not related to size, or to the
interaction between size and the confusion of variable (i.e.,
NLD2). In two cases (i.e., Birt and Platform ui) LOC seems
to have contribute more to the results achieved in terms of
NLD3. Moreover, it is important to note that NLD3 allowed
to obtain better results than LOC for all the software sys-
tems. In particular, for JDT ui, SWT, and Apache Tomcat
the predictions achieved with NLD1 and NLD3 are partic-
ularly better than those obtained with LOC. Thus, we can
positively answer RQ2 because information on variables
with confusing names can help to predict the presence of
faults. However, given that the our study is conducted on
source code developed in open-source projects, our answer
is cautious though. Indeed, observe that predictions are
more accurate on some systems (i.e., Apache Tomcat) than
on others independently from the confusing measures used.

5 Conclusions and Future Work
Our results and those of the original work by Tashima et

al [1] can provide evidence of the usefulness of knowledge
of variables with confusing names to improve the quality of
the source code. In the future we intend to further investi-
gate the relationship between faults and local variables with
confusing names by considering different datasets and other

combinations of NLD based and source code measures.

Acknowledgment
The authors would like to thank Hirohisa Aman [1] for

the suggestions provided for the identification of the case
studies used in the empirical analysis.
References
[1] K. Tashima, H. Aman, S. Amasaki, T. Yokogawa, and M. Kawahara,

“Fault-prone java method analysis focusing on pair of local variables
with confusing names,” in Procs. of the Euromicro Conf. on Softw.
Eng. and Adv. Applications (SEAA), 2018, pp. 154–158.

[2] T. Menzies, A. Butcher, D. R. Cok, A. Marcus, L. Layman, F. Shull,
B. Turhan, and T. Zimmermann, “Local versus global lessons for
defect prediction and effort estimation,” IEEE Trans. on Softw. Eng.,
vol. 39, no. 6, pp. 822–834, 2013.

[3] G. Scanniello, C. Gravino, A. Marcus, and T. Menzies, “Class level
fault prediction using software clustering,” in Procs. of Intl. Conf. on
Automated Softw. Eng. (ASE), 2013, pp. 640–645.

[4] B. W. Kernighan and R. Pike, The Practice of Programming.
Addison-Wesley, 1999.

[5] D. Lawrie, C. Morrell, H. Feild, and D. Binkley, “What’s in a name?
a study of identifiers,” in Procs of the IEEE Intl. Conf. on Program
Compreh. (ICPC), 2006, pp. 3–12.

[6] G. Scanniello, M. Risi, P. Tramontana, and S. Romano, “Fixing
faults in c and java source code: Abbreviated vs. full-word identi-
fier names,” ACM Trans. on Softw. Eng. Meth., vol. 26, no. 2, pp.
6:1–6:43, 2017.

[7] D. Binkley, D. Lawrie, S. Maex, and C. Morrell, “Identifier length
and limited programmer memory,” Science of Computer Program-
ming, vol. 74, no. 7, pp. 430–445, 2009.

[8] H. Aman, S. Amasaki, T. Sasaki, and M. Kawahara, “Empirical anal-
ysis of change-proneness in methods having local variables with long
names and comments,” in Procs. of the ACM/IEEE Intl. Symp. on
Emp. Softw. Eng. and Measurement (ESEM), 2015, pp. 1–4.

[9] D. Binkley, M. Davis, D. Lawrie, J. I. Maletic, C. Morrell, and
B. Sharif, “The impact of identifier style on effort and comprehen-
sion,” Emp. Softw. Eng., vol. 18, no. 2, pp. 219–276, 2013.

[10] K. Kawamoto and O. Mizuno, “Predicting fault-prone modules using
the length of identifiers,” in Procs. of the Intl. Workshop on Emp.
Softw. Eng. in Practice (IWESEP), 2012, pp. 30–34.

[11] S. Butler, M. Wermelinger, Y. Yu, and H. Sharp, “Relating identifier
naming flaws and code quality: An empirical study,” in Procs. of the
Working Conf. on Reverse Eng. (WCRE), 2009, pp. 31–35.

[12] V. Levenshtein, “Binary codes capable of correcting deletions, inser-
tions and reversals,” Sov. Phys. Doklady, vol. 10, pp. 707–710, 1966.

[13] T. Menzies, R. Krishna, and D. Pryor, “The promise repository of
emp. softw. eng. data,” 2015.

[14] T. K. Ho, “The random subspace method for constructing decision
forests,” IEEE Trans. on Pattern Analysis and Machine Intelligence,
vol. 20, no. 8, pp. 832–844, 1998.

[15] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and
I. H. Witten, “The weka data mining software: An update,” SIGKDD
Explorations Newsletter, vol. 11, no. 1, pp. 10–18, 2009.

[16] I. H. Witten, E. Frank, and M. A. Hall, Data Mining: Practical Ma-
chine Learning Tools and Techniques, 3rd ed. Morgan Kaufmann
Publishers Inc., 2011.

[17] R. Baeza-Yates and B. Ribeiro-Neto, Modern Inf. Retrieval.
Addison-Wesley, 1999.

[18] B. W. Matthews, “Comparison of the predicted and observed sec-
ondary structure of t4 phage lysozyme,” Biochimica et Biophysica
Acta (BBA) - Protein Structure”, vol. 405, no. 2, pp. 442–451, 1975.


