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Abstract

We study the applicability of graph queries to the cov-
erage analysis of test cases for requirements specifications.
First we show that when the similarity degrees between re-
quirements specifications and test cases are available, they
can be represented in the form of a graph. Then we iden-
tify several queries that are useful for extracting coverage
information and show that all these queries can be writ-
ten in the Cypher query language, a common graph query
language. In a case study we apply these queries to data
obtained from a real-world project in industry. The results
of the case study show that coverage information can be
retrieved in reasonable time. We also compare the graph
queries with SQL queries with respect to conciseness and
processing time.

1. Introduction

In this paper we study the applicability of graph queries
in the field of software engineering. A graph query is
a query for accessing a graph database which manages
data with a graph structure. Graph databases and graph
queries are becoming popular since they are specially tai-
lored to handle data with graph structures, such as social
networks [1]. On the other hand, applications of graph
databases and graph queries to software engineering prob-
lems have not been studied sufficiently. This paper aims to
investigate whether or not graph queries can be effectively
used in analyzing the test coverage of requirements speci-
fications in software system development. In our context,
coverage means how many of the requirements specifica-
tions are tested by the test cases and the extent to which
each of the requirements specification is tested.

There has already been a body of research that can be
used to automatically compute the relevance or similarity
between software artifacts, such as test cases and require-
ments specifications (for example, [2, 3]). In these previ-
ous studies, the similarity degree between two artifacts is
estimated using natural language processing. The obtained
similarity degrees can be used to, for example, infer the ex-

istence of traceability link between them.
In this paper, we assume that using some of these tech-

niques similarity degrees have already been computed be-
tween test cases and requirements specifications. Under the
assumption, we first identify several information items that
are useful for system developers to perform coverage anal-
ysis. Then we show that these items can be naturally speci-
fied in the form of graph queries which are in turn used to re-
trieve coverage information from a graph database. Further-
more we demonstrate practical applicability of these graph
queries through a case study using data obtained from a
real-world industrial product.

The structure of this paper is as follows. In Section 2, we
introduce graph databases and Cypher, a well-known query
language for graph databases. In Section 3, we describe
the basic assumptions about requirements specifications and
test cases and show how they can be represented in the form
of a graph. In Section 4, we list information items that can
be useful for developers to perform coverage analysis. We
also show that these items can be retrieved using Cypher
queries. In Section 5, we show the results of a case study
where a data set from an industrial product is used. In Sec-
tion 6 we describe related research. In Section 7 we discuss
potential threats to validity of the study. Finally, in Sec-
tion 8, we summarize the paper and discuss future research
directions.

2. Graph database and query languages

2.1. Graph database

A graph database is a database that manages data with a
graph structure. In this paper we adopt the model of graph
structures used by Neo4j, a well-known graph database [1].
In the Neo4j’s model, a graph structure consists of nodes,
relationships, and properties. Nodes refer to vertices and
relationships refer to direct edges in graph theoretical terms.
Properties are attributes assigned to nodes and relationships
and can hold data such as numbers and strings in a key-
value format. Furthermore, labels can be assigned to nodes
and relationships. When searching the database, the labels
are useful for specifying data items to be retrieved.
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2.2. Cypher query language

In database management systems, accesses to databases
are performed through execution of queries written in a
query language. Cypher is a common query language for
graph databases [1]. For example, Neo4j uses Cypher as
its query language. Cypher allows for expressive querying
of graph databases. Queries in Cypher create, read, update,
and delete data items. In this paper we basically focus on
read queries since our interest is in analysis over a set of
requirements specifications and test cases that have already
been provided. Read queries in Cypher start with keyword
MATCH followed by a search pattern for finding nodes or
relationships. Additional constraints to the pattern can be
added using keyword WHERE.

Figure 1 shows a graph data representing relationships
among three peoples which represents that Smith is known
to Williams and Johnson. The nodes correspond to the peo-
ple and represent their names by property name. For ex-
ample, a query to retrieve a list of people who know Smith
from this data can be written as follows.

1 MATCH (a:Person)-[:Knows]->(b:Person)
2 WHERE b.name = "Smith"
3 RETURN a

Williams JohnsonSmithKnows Knows

Figure 1: A graph data representing human relationships

3. Requirements specifications and test de-
scriptions

3.1. Traceability data

In this study we assume that a set of requirements spec-
ifications, a set of test cases, and the similarity degrees be-
tween them are available. We collectively call these data
traceability data. Below we formally describe the taceabil-
ity data we assume and show that the data can be repre-
sented as a graph structure.

We consider traceability data that consists of a set R of
requirements specifications, a set T of test cases, and the
similarity degrees between them: The similarity degree is
a real value ranging from 0 to 1 and is defined between
any two requirements specifications and between any pair
of a requirements specification and a test case. Formally,

Table 1: Example of traceability data consisting of seven
requirements specifications and ten test cases. Entities with
0 similarity are omitted.

(a) Requirements
specifications-pairs
r0 r1 0.14
r0 r5 0.08
r0 r6 0.59
r1 r4 0.97
r1 r5 0.84
r2 r3 0.2
r2 r4 0.94
r2 r6 0.34
r4 r5 0.93

(b) Test case and
requirements

specification-pairs
t0 r0 0.13
t1 r0 0.57
t1 r1 0.82
t2 r2 0.35
t3 r2 0.16
t4 r2 0.59
t4 r4 0.21
t5 r4 0.01
t5 r5 0.03
t7 r1 0.91
t7 r2 0.41
t7 r4 0.09
t8 r0 0.06
t8 r1 0.28
t8 r2 0.48
t8 r5 0.5
t9 r1 0.21
t9 r2 0.66
t9 r5 0.54

the similarity degree between a requirements specification
pair is represented as the map S1 : R × R → [0, 1], and
the similarity degree between a test case and a requirements
specification is represented by the map S2 : T ×R → [0, 1]
where [0, 1] is the set of real numbers between 0 and 1.
In this paper, we assume that S1(r, r

′) = S1(r
′, r) for any

requirements specifications r, r′ ∈ R
Table 1 shows a small example of traceability data,

where R = {r0, r1, . . . , r6} and T = {t0, t1, . . . , t9}.

3.2. Graph structure as traceability data

The traceability data can be represented in a graph struc-
ture as follows. The test cases and requirements specifica-
tions correspond to nodes. Nodes of test cases and nodes of
requirements specifications are distinguished by assigning
different labels to them. We call the node corresponding to a
test case a test case node and the node corresponding to a re-
quirements specification a requirement node. The similarity
degree between requirements specifications pair or between
test cases and requirements specifications is represented by
a property assigned to the relationship defined between the
requirement nodes or between the test case node and the
requirement nodes. An exception is when the similarity de-
gree between two nodes is 0, in which case no relationship
is defined between them.



It should be noted that the directions of relationships are
irrelevant to the traceability data we consider. Hence we
set at most one relationship of either direction between two
nodes. This is a standard treatment of undirected edges in
the graph model of Neo4j.

Figure 2 shows a visualization of the above example, ob-
tained using Neo4j’s functions.

Figure 2: Visualization of the example traceability data

3.3. Table representation of traceability data

Compared to graph databases, relational databases have
been much more widely used for a variety of applications.
In a relational database, data are stored in tables which
are rigorously designed to ensure data consistency. SQL
queries are used to retrieve necessary information spanning
across these tables. Here we explain how the traceability
data can be represented as the form of tables here.

We use a total of four tables: two node tables and two
edge tables. One of the node tables stores the requirement
nodes, while the other node table stores the test case nodes.
Each row of the node tables consists of a unique ID and
a name of the corresponding node. The edge tables store
relationships and their attributes, including similarity. One
of the tables stores the similarity degrees between require-
ments specifications, whereas the other manages those be-
tween test cases and requirements specifications. Each row
of the edge table contains the IDs of the end nodes of the
corresponding relationship, as well as the similarity. The
end nodes’ IDs must appear in the node tables and this con-
straint can be imposed with FOREIGN KEY constraints,
which are usually supported by relational database manage-
ment systems.

4. Database queries for coverage analysis

In this section, we list some information items that may
be useful for developers to know how well the test cases
test the requirements specifications. We wrote queries both
in Cypher and SQL for retrieval of all these items. For space
limitations we select two items as examples and present
Cypher queries and SQL queries for extracting them. In
addition the conciseness of the queries is evaluated in terms
of character count.

4.1. Coverage information to be extracted

We identify a total of seven information items that can
be useful for coverage analysis as follows:

1. List of test cases that directly test requirements speci-
fication R

2. List of test cases that directly and indirectly test re-
quirements specification R

3. List of requirements specifications that are directly
tested by test case T

4. List of requirements specifications that are directly or
indirectly tested by test case T

5. List of requirements specifications that are directly
tested by at least one test cases

6. List of requirements specifications that are directly or
indirectly tested by at least one test cases

7. List of requirements specifications that are not tested

Here we say that a test case t directly tests a require-
ments specification r if t and r have similarity degree equal
to or greater than the threshold X . Also we say that a test
case t indirectly tests a requirements specification r1 if r1
and another requirements specification r2 have the similar-
ity degree equal to or greater than the threshold Y and r2 is
directly tested by at least α test cases including t.

In the following of the paper, we set X=0.5, Y =0.7, and
α=2 and hard-code these values in queries for presentation
simplicity.

4.2. Queries for retrieval of coverage information

For each of the above items, we created a Cypher query
and an SQL query to extract it. Due to the limit of space, we
only present the queries for the first and sixth items. Note
that the $s and %s in the queries serve as formal parameters
and are replaced with actual arguments at runtime.

Query 1, the query for the first item, receives the name
of a requirements specification as an actual argument and



returns a list of test cases that directly test that requirements
specification. When the query is executed with r1 being
the actual argument for the running example shown in Sec-
tion 3.1, the query should return two test cases, t1 and t7.

Below we show two queries written in Cypher and SQL.
From the description of the query in Cypher, it is seen
that the Cypher query very succinctly describes the pattern
that matches relationships the target test cases must posses.
On the other hand, the SQL implementation of Query 1 is
slightly more complicated because it requires joining the
node tables and the edge tables in order to obtain the simi-
larity between test cases and the requirements specification.

Cypher query 1
1 MATCH (r:Requirement)-[s:Similarity]-(t

:Testcase)
2 WHERE r.name = $s AND s.value >= 0.5
3 RETURN t.name AS test_name
4 ORDER BY test_name

SQL query 1
1 SELECT test.name AS test_name
2 FROM edge_req_to_test edge
3 JOIN node_req req
4 ON edge.from_id = req.id
5 JOIN node_test test
6 ON edge.to_id = test.id
7 WHERE req.name = %s AND edge.similarity

>= 0.5
8 ORDER BY test_name;

Query 6 for the sixth item obtains a list of all require-
ments specifications that are tested directly or indirectly by
at least one test case. For the running example, the query
yields a set of five requirements specifications: r0, r1, r2,
r4, and r5. In the Cypher implementation of this query, even
more complex pattern matching than Query 1 is described in
an intuitive way. On the other hand, the SQL query is long
and difficult to understand, because many JOIN operation
are performed and similar descriptions need to be repeated
for matching requirements specifications.

Cypher query 6
1 CALL {
2 MATCH (r:Requirement)-[s:Similarity

]-(t:Testcase) WHERE s.value >=
0.5

3 RETURN r.name AS req_name
4
5 UNION
6
7 MATCH (r1:Requirement)-[s1:

Similarity]-(t:Testcase) WHERE
s1.value >= 0.5

8 WITH r1, count(t) AS count WHERE
count >= 2

9 MATCH (r1:Requirement)-[s2:

Similarity]-(r2:Requirement)
WHERE s2.value >= 0.7

10 RETURN r2.name AS req_name
11 }
12 RETURN req_name
13 ORDER BY req_name

SQL query 6
1 (SELECT req.name AS req_name
2 FROM edge_req_to_test edge
3 JOIN node_req req
4 ON edge.from_id = req.id
5 JOIN node_test test
6 ON edge.to_id = test.id
7 WHERE edge.similarity >= 0.5
8 GROUP BY req.id
9 HAVING count(*) >= 1

10
11 UNION
12
13 SELECT req.name AS req_name FROM (
14 SELECT id1, id2 FROM (
15 SELECT edge.from_id AS id1,

edge.to_id AS id2
16 FROM edge_req_to_req edge
17 WHERE edge.similarity >= 0.7
18
19 UNION
20
21 SELECT edge.to_id AS id1, edge.

from_id AS id2
22 FROM edge_req_to_req edge
23 WHERE edge.similarity >= 0.7
24 ) AS rr
25 JOIN edge_req_to_test rt
26 ON rr.id2 = rt.from_id
27 JOIN node_test test
28 ON rt.to_id = test.id
29 WHERE rt.similarity >= 0.5
30 GROUP BY rr.id1, rr.id2
31 HAVING count(*) >= 2
32 ) AS r
33 JOIN node_req req
34 ON r.id1 = req.id)
35
36 ORDER BY req_name;

Table 2 compares the Cypher and SQL queries in terms
of character count. The queries in SQL are approximately
1.5 to 1.9 times longer than those in Cypher.

5. Case study

In this section, we describe the results of executing the
queries shown in the previous section. For the experiment,
we obtained traceability data by analyzing artifacts docu-
mented in a real-world project. The dataset is in a text
format and contains 3,855 test cases and 260 requirements
specifications.

The experiment was conducted on a Windows 10 PC



Table 2: Number of characters in each query

Query type Cypher SQL
Query 1 116 179
Query 2 415 724
Query 3 114 177
Query 4 413 795
Query 5 110 192
Query 6 325 599
Query 7 514 639

with an AMD Ryzen 5 3600 CPU and 16GB of memory.
We used Neo4j graph database management system and
PostgreSQL relational database management system.

To load the traceability data into these databases, we im-
plemented Python scripts which parse given data and call
database APIs to update the databases accordingly. This
process required about 47 minutes for Neo4j and about 4
minutes for PostgreSQL.

Using the databases loaded with the traceability data, we
measured the processing time of the queries. Table 3 shows
the processing time for each query. Since Queries 1 to 4
take a test case or a requirements specification as input, we
measured the processing times for all test cases or require-
ments specifications and averaged them.

For Neo4j, the longest execution time was observed
when Query 7 was executed. This query obtains the list
of specifications that are not tested at all. Considering the
fact that the query has to exhaustively check all require-
ments specifications, the processing time, which was about
13 seconds, is sufficiently permissible. In addition, Queries
1 to 4, which are queries concerning a specific requirements
specification or test case, were all executed in less than 0.6
seconds. For PostgreSQL, on the other hand, the longest ex-
ecution time was observed when Query 4 was executed; but
the time was only approximately 0.1 seconds. PoestgreSQL
exhibited shorter processing time than Neo4j for all cases.

Table 3: Execution time (seconds)

Query type Neo4j PostgreSQL
Query 1 0.004 0.056
Query 2 0.054 0.075
Query 3 0.002 0.054
Query 4 0.047 0.125
Query 5 0.359 0.048
Query 6 5.086 0.098
Query 7 13.440 0.098

6. Related work

Studies that consider the applicability of graph queries in
the area of software engineering include [4, 5, 6]. In refer-
ence [4], four query languages including SQL and Cypher
were compared for test case traceability queries. The re-
sults show that Cypher is superior in terms of expressive-
ness and understandability. Although their work and ours
both concern the applicability of graph queries, the sorts
of data and the purposes of using the queries are signif-
icantly different. For example, [4] considers traversal of
traceability links whereas ours concerns the coverage of re-
quirements specifications by test cases. Reference [5] uses a
network to represent the traceability links between require-
ments, code, and test cases and compares the conciseness of
the SQL and Cypher representations of two types of simple
queries. Their work also considers traversal of trasability
links; they did not deal with the kind of coverage analysis
we did. Reference [6] analyzed the performance of query
processing for large-scale software artifact data: it is shown
that querying a relational database running on Spark, which
is a cluster computing framework, with SQL is more effi-
cient than using Neo4j and Cypher. On the other hand, in
this paper, we showed that even querying Neo4j running on
a single computer exhibited sufficiently practical process-
ing time for a real-world data set. The result does not con-
flict with ours, where PostgreSQL exhibited better perfor-
mance than Neo4j on a single computer; but our results also
show that graph queries can be executed sufficiently fast for
a real-world data set.

In [3, 7] we developed an approach to automatically
find traceability links between test cases and requirements
specifications. This approach first estimates the similarity
degree between two artifacts using natural language pro-
cessing techniques and then infers the existence of trace-
ability links using the estimates. The dataset used in the
case study of this paper was obtained using the first step
of this approach. The problem of measuring similarity or
relevance between software artifacts have also been studied
elsewhere, especially in the context of automatic construc-
tion of traceability links between artifacts. Examples of this
line of studies include, for example, [8, 9, 2, 10, 11].

7. Threats to Validity

A major internal threat to validity stems from the expres-
siveness of Cypher and SQL. In general queries in these lan-
guages have different representations; thus the queries we
presented here might have more intuitive or concise alterna-
tives. Another threat lies in how to compare the conciseness
of the queries. In this paper we measured the conciseness in
terms of character count; but another measure, for example,
the number of tokens, might be more appropriate.



An external threat of validity concerns the representa-
tiveness of the data we used in the case study. Although the
data was obtained from one of the largest projects lead by
our industrial partner, there should be projects that need to
manage data of larger size. Other characteristics of data, es-
pecially, the distribution of similarities can also vary from
projects to projects. In view of these, a care should be taken
when generalizing the findings about query processing per-
formance.

8. Conclusion

In this paper we discussed the applicability of graph
databases and graph queries to coverage analysis between
test cases and requirements specifications. We showed that
traceability data can be represented as a graph database and
that coverage information can be easily retried from the
database with graph queries. We also demonstrated that the
graph queries, which are written in the Cypher query lan-
guage, are often more concise than those in SQL, while the
processing performance is comparable between the graph
database and the SQL database.

Future research include many possible directions. The
case study of this paper concerned a single product. Data
sets from other systems, particularly larger ones, should be
considered in future. Extending the list of queries for cover-
age analysis also deserves further research. To this end we
plan to interview developers from industry to find out other
queries that are useful in practice.
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