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Abstract—Artificial intelligence gradually plays the essential role 
in automatic driving, such as 3d object detection. Many state-of-
the-art 3d detection frameworks fuse point cloud data and image 
data to perceive the surrounding environment of the vehicle. 
However, these approaches focus more on vehicle detections, and 
for objects with less point cloud sampling, such as pedestrians and 
cyclists, the performance is moderate. In this paper, we propose 
the multi-fusion framework with two kinds of attention 
mechanisms to solve the above problem and improve the detection 
accuracy of 3d objects. The proposed 3d attention mechanism with 
voxel sparse information is utilized in the framework. This 
framework contains two important modules: point fusion with 2d 
attention and voxel fusion with 3d attention. These modules firstly 
obtain the image features by projecting the lidar point or 8 vertices 
of the voxel to image feature maps. Then, these modules perform 
attentive fusion on the voxelized image features, point-wise image 
features and lidar data. Our evaluation on the challenging KITTI 
dataset, including 3d and bird’s eye view metrics, demonstrates 
great improvements, especially at objects with less point cloud 
sampling. 
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I. INTRODUCTION

With the rapid development of artificial intelligence, great 
breakthrough has been made in the automatic driving. 3d object 
detection is an essential task in the automatic driving. Compared 
with 2d object detection, 3d object detection can obtain richer 
information such as the depth, position and volume, which helps 
to better perceive the surrounding environment of the vehicle. 
Lidar is the most used sensor for 3d object detection. Many early 
researches detect 3d objects from lidar point cloud [1, 2]. 
However, single sensor has its own disadvantages. For example, 
lidar cannot obtain intuitive image information. In this work, we 
focus on the multi-sensor data fusion for 3d object detection. On 
the basis of lidar point cloud data, the fusion of image data is 
helpful to give full play to the advantages of each sensor and 
improve the perception of multiple environments. 

A. Challenges
3d detection algorithms only driven by lidar suffer from the

loss of texture information and the sparsity of point clouds. 
Missing texture information causes many false detections 
between objects of similar size. Very sparse point clouds of 
small or distant objects lead to missed detections.  

To address these challenges, recent researches augment lidar 
point clouds with image features and learn to fuse features. Some 
researches [3, 4] utilize image features to generate 2d proposals, 
and then extract 3d features from the lidar points related to these 
2d proposals. These approaches rely too much on reliable 2d 
detection results. In these methods, for the undetected object in 
the image, even if it has obvious features in the point clouds, it 
is difficult to detect it. Many algorithms [5, 6] project point 
clouds onto image features and then perform feature fusion. 
However, these approaches have high dependency on the 
reliability of high-resolution lidar point clouds and perform 
poorly when the lidar points are not sampled. 

B. Our Contribution
To deal with the above problems, the approach that reduces

the reliance on high-resolution lidar point clouds, and increases 
the weight of image features when the lidar points are extremely 
sparse is expected. In this paper, we propose the multi-fusion 
framework with two kinds of attention mechanisms to achieve 
the above expectations. The proposed approach extends the 
recent algorithm Multimodal VoxelNet (MVX-Net) [6]. 
Specifically, this proposed framework contains two important 
modules: point fusion with 2d attention and voxel fusion with 3d 
attention. These modules obtain the image features by projecting 
the lidar point or vertices of the voxel to image feature maps. 
The combination of these two modules not only ensures the 
accurate association between the image features and the point 
clouds, but also reduces the dependence on the high-resolution 
lidar point clouds. 

General attention mechanisms distribute attention according 
to image features and can’t be directly applied to voxelized 
features. Inspired by the 2d attention mechanism, we propose the 
3d attention mechanism for lidar point clouds. This mechanism 
takes dynamic voxelized data as the inputs, applies sparse 3d 
convolutions and produces a 3-dimensional spatial weight, 
which contributes to the selection of the effective voxelized 
features. What’s more, considering that the sparsity information 
is weak before the attentive fusion, we apply the sparsity feature 
to voxelized image features. 

The main contributions can be summarized as follows: 

• The multi-fusion framework performs attentive fusion
on voxelized image features, point-wise image features
and lidar data. This framework preserves the detailed
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image features without overly relying on the 
effectiveness of the lidar point clouds. 

• 3d attention mechanism is proposed for lidar point 
clouds, which contributes to distributing the attention to 
voxelized features. What’s more, the sparsity of lidar 
point clouds is utilized to enrich the voxelized features 
before the attention mechanism. 

• Experiments on KITTI dataset demonstrates that our 
framework better handles error prone cases, and 
effectively reduces false detections caused by similar 
shape of point clouds, especially for objects with less 
point cloud sampling. 

II. RELATED WORK 

A. 3D Object Detection From Multi Sensors 
The multimodal 3d object detection fuses multi-sensor data, 

such as the LIDAR and RGB data. The realization of the 
multimodal fusion relies on the synchronization of multiple 
sensors in time and the transformation of spatial coordinates. 

Two-Stage Algorithm: These algorithms can be divided 
into three categories: based on multiple views, based on 2d 
proposals and based on semantic segmentation methods.  

Multiple Views Method: Chen et al. [7] proposed the MV3D 
algorithm, which firstly generates the 3d proposals by the lidar 
data and projects them to the bird’s eye view, the front view and 
the image view. Then multi-view feature fusions are performed 
to refine the proposals. Later, many researches perform the 
multi-view fusion of different sensor data based on the 3d region 
proposals.  

2D Proposals Method: Qi et al. [3] developed F-PointNets. 
This algorithm generates a 3d area for each 2d proposal, and 
applies PointNet++ [8] to obtain the point cloud features in the 
area. Zhao et al. [4] proposed the Point-SENet module to predict 
the scale factor and integrated the PointSIFT module to predict 
the direction.  

Semantic Segmentation Method: In these methods, the 
existing semantic segmentation algorithm is used to eliminate 
most of the background points, and high-quality proposals are 
generated on the foreground points. Yang et al. [9] developed 
IPOD to remove most of the background points. Vora et al. [5] 
proposed the PointPainting, which appends the semantic 
features and the semantic prediction scores to the point cloud 
features. The accuracy performance is improved, but the 
inference speed is very slow. 

The main disadvantage of Two-Stage Algorithms is that the 
two-stage operation slows the inference and training speeds, and 
requires higher computing resources for the computer. What’s 
more, Multiple Views Method firstly generates 3d proposals, and 
then utilizes image information to refine the proposals. This 
causes these algorithms to rely heavily on 3d proposals 
generated from point clouds only. Meanwhile, 2D Proposals 
Method pays more attention to reliable 2d detection results and 
weakens the effect of 3d point clouds. Therefore, an algorithm 
that can balance multimodal feature weights and complement 
each other is expected. 

One-Stage Algorithm:  

Sindagi et al. [6] proposed MVX-Net. This algorithm 
projects the non-empty voxels generated by VoxelNet [2] into 
the image, and uses a pre-trained network to obtain image 
features for each projected voxel feature. Then the combination 
of these image features and voxel features generates 3d 
detections. Though, the above method reduces the dependency 
on the availability of lidar points, the voxel projection reduces 
the accuracy of image features. In MVX-Net, authors also 
presented the point fusion. However, this method can’t 
reasonably select effective image features from high dimensions 
and has poor performance in low point cloud sampling. 

B. Attention Mechanism 
Attention plays an important role in human perception. 

Human vision obtains key areas by quickly browsing the whole 
picture, and then devotes more attention resources to the key 
area to obtain more detailed information, while suppressing 
other useless information. The attention mechanism in deep 
learning draws on the human attention and is widely used in 
various types of deep learning tasks such as natural language 
processing, image translation [10] and network pruning [11]. 

Recently, several researches have applied the attention 
mechanism to convolutional neural networks (CNN). Wang et 
al. [12] proposed Residual Attention Network, which stacks 
attention modules to generate attention-aware features. Hu et al. 
[13] proposed SENet which is generated by SE block. This 
architecture focuses on the channel relationship and uses global 
average pooling features to compute channel-wise attention. S 
Woo et al. [14] presented Convolutional Block Attention 
Module (CBAM). This module exploits both spatial-wise and 
channel-wise attentions and then the attention maps are 
multiplied to the feature map for adaptive refinement.  

However, these attention mechanisms operate on 2d 
convolutions and cannot be directly applied to 3d voxel 
operations of point clouds. In addition, the difference between 
the voxel and the pixel is that voxels have different densities, and 
the application of the previous attention mechanism will lack the 
consideration of the density of voxels. 

III. MULTI-FUSION FRAMEWORK WITH ATTENTION 
MECHANISM 

We present a multi-fusion framework with two kinds of 
attention mechanisms to fuse the RGB and point cloud features. 
Inspired by MVX-Net, the presented framework contains two 
important modules: point fusion with 2d attention and voxel 
fusion with 3d attention. These modules firstly obtain the 
corresponding image features by projecting the lidar point or 
vertices of the voxel to image feature maps. Then, these modules 
perform the attentive fusion on the lidar data and the image 
features. The proposed 3d attention mechanism for lidar point 
clouds takes dynamic voxelized data as inputs and applies the 
sparse 3d convolution, which helps to generate the effective 
voxelized features. What’s more, the sparsity distribution of 
voxels is exploited for the attention mechanism, which enriches 
the image features with the sparse information. 

The overall architecture is illustrated in Fig. 1. First, we 
utilize the 2d convolutional neural network which takes RGB  



Figure 1.  The Architecture of the Proposed Multi-fusion Framework 

images as inputs and extracts multi-level image features. Next, 
voxel features are encoded from lidar point clouds and two 
attentive fusion modules are performed to generate fused 
features. Then, the 3d backbone network takes the concatenated 
features as inputs, and the head network outputs the 3d detection 
results. 

A. Image Feature Extraction
Residual Network (ResNet) [15] is made up from residual

blocks with skip connections, which effectively increase the 
depth of network and the ability to extract features. Balancing 
the computing resource and model performance, we eventually 
adopt ResNet with 50 layers (ResNet50) as our image backbone. 

Feature Pyramid Network (FPN) [16] is a feature extractor 
that combines multiple resolution features via a top-down 
pathway and lateral connections, which enriches the outputs 
with multi-dimensional information. We use FPN as the image 
neck network. 

Given RGB images, the image backbone network generates 
multi-scale features. Then, these feature maps are merged by 
element-wise addition in the image neck network, which finally 
outputs several sets of image features with rich semantics. 

B. Voxel Feature Encoding
Voxel feature encoding (VFE) is a voxel feature learning

network from VoxelNet [2]. The input of VFE is the point cloud 
data after the dynamic voxelization, which records the 
coordinates of the voxel where the point cloud is located and the 
raw features of the point cloud. The VFE network first obtains 
point-wise features through FCN learning, and then utilizes max 
pooling to generate the locally aggregated features. These 
features are regarded as the voxel global features, which are 
concatenate to each point-wise feature. 

Stacks of such VFE layers transform low-dimensional point 
cloud features into high-dimensional voxel features, which will 
be the input of the Voxel Fusion with 3d Attention module. In 
order to obtain the input of the Point Fusion with 2d Attention 

module, the voxel features are discretized into the point cloud 
and connected with the initial point cloud feature. 

C. Point Fusion with 2d Attention
This module associates lidar point clouds to image features

and perform the attentive fusion to obtain the point-wise features 
with additional image features. We adopt point fusion strategy 
for the accurate association information, which is described in 
MVX-Net [6]. Moreover, this module applies 2d attention to 
make fused features more expressive. 

The details of this module are illustrated in Fig. 2. Given the 
multi-scale image features produced by the image backbone and 
point features produced by voxel feature encoding, this module 
outputs the attentive fusion features. In details, firstly 5 sets of 
256-dimensional image features at different scales are input into
the module. Then the point-wise image features are calculated:

!"# = %&(−1 + 2 ∗ - .,0,12334
#,5

, !) (1) 

7  denotes the transformation matrix, 8  denotes preprocessing 
parameters,9:;;<  denotes the 3d point cloud coordinates and 
(=, ℎ) is the width and height of the image. ? represents the 
coordinate transformation function and %&  represents the 
bilinear interpolation function. !  denotes the initial image 
features and !"# denotes the point-wise image features. 

The 2d channel attention is performed in the above discrete 
point features, which is inspired by CBAM [14]. In details, as 
shown in Fig. 2, we respectively calculate the channel average 
feature and channel maximum feature of 640 dimensions, and 
use the sigmoid operation to obtain the 640-dimensional weight 
vector. The same attention mechanism is applied to the point-
wise features obtained by VFE to generate the 64-dimensional 
weight vector. Then the fusion feature is generated by the 
concatenation of two attentive features. 

The main advantage of this module is that for point cloud 
features with both raw features and voxel features, the attention 
mechanism can amplify effective features. In addition, the final 



Figure 2.  Point Fusion with 2D Attention Mechanism 

fusion directly performs on the raw point clouds, and this point-
to-point mapping effectively reduces the quantization loss. 

D. Voxel Fusion with 3D Attention
This module extracts the image features projected by non-

empty voxels. Then, we combine the voxel sparsity information 
with the 3d attention mechanism to take full advantage of multi-
modal features. Voxel fusion effectively reduces the dependence 
on the high-resolution point clouds, as described in MVX-Net. 
For voxel operations, we propose a 3d attention mechanism and 
apply the sparsity information, which are conducive to 
extracting effective voxelized features and emphasizing image 
features when voxels are sparse. 

The module is composed of 3 steps. (1) The extraction of 
voxelized image features. (2) The 3d attention mechanism is 
applied to obtain the attention vectors of multi-modal voxelized 
features respectively. (3) We calculate the voxel sparsity, and 
concatenate it with image features. 

In detail, we first obtain all non-empty voxels’ 8 vertex 
coordinates, and utilize the calibration matrix to project these 
point cloud coordinates to pixel coordinates in the image. Then, 
the largest rectangle obtained after the projection is utilized as 
the region of interest (RoI). Considering the different sizes of the 
RoIs, we use RoI Pooling to obtain 128-dimensional feature 
vectors from multi-scale image features. 

From the discretization features obtained above, we design a 
3d attention mechanism to obtain the weights of different voxels, 
which is shown in Fig. 3. Inspired by the spatial attention 
mechanism in CBAM, we respectively calculate the average and 
maximum features of all voxels and perform the concatenation 
operation. Then, combined with the voxel coordinates, the 3d 
sparse convolutions are performed to generate an @-dimensional 
attention vector, where @ represents the number of non-empty 
voxels. The same 3d attention mechanism is applied to the voxel 
features obtained by VFE. 

In addition, we calculate the sparse value inside the voxel to 
optimize the image attention vector: 

AB = C(?&8 !DE, … , !DEGH, IJKLMJN E
OP3QRST

) (2) 

@";UVWX  represents the number of point clouds in a voxel, !D 
indicates the image feature, AB represents the attention weight 

Figure 3.  3D Attention Mechanism 

for image data, C denotes the operation of 3d attention and ?&8 
denotes the multilayer perceptron. 

The main advantage of the proposed 3d attention mechanism 
is the selection of the effective voxelized features, thereby 
adaptively balancing the multimodal feature weights and 
emphasizing the image features when voxels are sparse. What’s 
more, the fusion on voxels reduces the dependence on the lidar 
point clouds. 

E. SECOND Network
The SECOND [17] network improves VoxelNet and refines

3d convolution into 3d sparse convolution. First, we use the 
sparse conv layer and FPN to process the fused voxelized 
features. The structure of submanifold convolution is applied in 
this layer to limit the sparsity of the output, thereby greatly 
reducing the calculation of the convolution operation. Next, the 
region proposal network generates 3d proposals from the outputs 
of sparse conv layers. Then, after regression and refinement, the 
3d detection results are generated. 

IV. EXPERIMENT RESULTS

A. Implementation Details
Network Settings: The image feature extraction takes

images with the resolution of 1280 × 384 as inputs. We apply 
ResNet-50 to subsample the image features and output the 
feature maps of four blocks, of which the dimensions are 256, 
512, 1024, 2048. Then, FPN is applied as the image neck 
network, which outputs five sets of 256-d multi-scale features. 
For lidar point clouds, the ranges are [0, 70.4], [-40, 40] and [-3, 
1] meters respectively along the X, Y and Z axis, while the voxel
size is [0.05, 0.05, 0.1]. The raw features of point clouds are xyz
coordinates and reflectivity. The Dynamic VFE extracts 64-
dimensional voxelized features from raw features. The anchor
sizes of pedestrians, cyclists and cars are respectively [0.6, 0.8,
1.73], [0.6, 1.76, 1.73] and [1.6, 3.9, 1.56] meters.

Training Details: Adam with decoupled weight decay is 
adopted to optimize the network. The learning rate and weight 
decay are set as 0.003 and 0.01. The momentum factors are 0.95 
and 0.99. What’s more, we utilize warm-up for the first 1000 
steps with the initial learning rate 1YZ[. The total epoch is 36 
and the batch size is 2. All experiments are based on the open 
source 3d detection toolbox mmdetection3d [18] with GPU 
NVIDIA GeForce GTX 1080Ti. 



B. Results on KITTI Dataset
We evaluate our method on the KITTI Object Detection 

Benchmark [19]. This dataset contains both 2d and 3d 
annotations of cars, pedestrians and cyclists. There are 7481 
training samples and 7518 testing samples. Following the 
common division rule in [7], the training samples are divided 
into 3712 samples as the training set and 3769 samples as the 
validation set. The evaluation is on the validation set for all three 
object categories. 

 We evaluate 3d object detection performance in accordance 
with the official KITTI evaluation protocol. For cars, 70% 
overlap of the 3d bounding box is required, while for pedestrians 
and cyclists, 50% overlap is required. Depending on different 
sizes, occlusions and truncations, the evaluation has three levels, 
that is easy, moderate and hard. The average precision (AP) at 
different levels are respectively calculated for the comparison. 

Table I shows the performance of our method on the KITTI 
validation set, compared with other state-of-the-art methods. 
Considering that most methods only report the performance on 
the car category, we perform the comparison on the car category. 
Compared with the baseline MVX-Net, improvements in 3d and 
BEV are 6.9% and 6.4% respectively in hard mode. Compared 
with the 2d proposal method F-PointNet [3] and the 3d proposal 
method MV3D [7], the performance of our proposed framework 
has improvement in all three modes, especially in the hard mode. 

In our analysis, the 2d proposal approaches focus on image 
features, which leads to weak processing capabilities in complex 
situations with more occlusions. The 3d proposal methods are 
overly dependent on point cloud data, resulting in the poor 
detection for the objects with less point cloud sampling. 
However, in our method, applying multiple attention 
mechanisms can reasonably select image data and point cloud 
data, and balance the effects of two features. In addition, the 
fusion of point-wise and voxel-wise methods can reduce the 
dependence on point cloud sampling while ensuring the 
accuracy of point cloud feature extraction. Therefore, our 
method has more advantages in difficult scenes with more 

occlusions or less point cloud sampling, which also enables our 
method to achieve better performance in hard mode.  

Detection results are shown in Fig. 4. According to the 
comparison of column 2, 3, and 4, our method can better detect 
objects with low point cloud sampling, such as pedestrians in the 
distance. From the comparison in the first column, our method 
reduces false detections, which are caused by similar point cloud 
shapes. 

C. Ablation Study
Ablation experiments are conducted to evaluate the effects 

of the 2d attention and 3d attention modules. All ablation studies 
are conducted on the pedestrian and cyclist classes, considering 
that these modules have a great improvement for objects with 
less point cloud sampling, as demonstrated before. 

We report the comparison results in Table II. We first 
incorporate the 2d attention mechanism on the point fusion 
module, which increases pedestrian detection by 3% and cyclist 
detection by about 4%, in easy mode. In addition, there are also 
improvements in moderate and hard modes. This shows the 
effectiveness of the 2d attention mechanism.  

We observe that combining the point fusion and voxel fusion 
modules, the detection results have not been greatly improved, 
which demonstrates that simply combining the above two 
modules cannot effectively optimize the detection performance. 
However, the integration of voxel fusion and 3d attention 
mechanism performs notably better both in pedestrian and 
cyclist detections, manifesting the importance of 3d attention 
mechanism for the voxel fusion. 

Then, we investigate the effect of fusing the above four 
modules, that is respectively applying the 2d attention and 3d 
attention to the point fusion and voxel fusion module. Table II 
shows that this approach gets the best result. Compared with the 
baseline experiment, the pedestrian detection is improved by 5% 
and cyclist detection is improved by 4%.  This shows that 2d 
attention and 3d attention mechanisms are beneficial for the 
fusion of image features, voxel features and point cloud features.

TABLE I. PERFORMANCE COMPARISON OF OBJECT DETECTION WITH STATE-OF-THE-ART METHODS ON CAR CLASS OF KITTI VALIDATION SET 

Method 
\]^_ (Car) \]`ab (Car) 

Easy Moderate Hard Easy Moderate Hard 

MV3D (L) [7] 71.2 56.6 55.3 86.2 77.3 76.3 
MV3D (L&I) [7] 71.3 62.7 56.6 86.6 78.1 76.7 
F-PointNet (L&I) [3] 83.8 70.9 63.7 88.2 84.0 76.4 
VoxelNet (L) [2] 82.0 65.5 62.9 89.6 84.8 78.6 
MVX-Net (L&I) [6] 85.5 73.3 67.4 89.5 84.9 79.0 
Our Proposed Method (L&I) 86.4 76.3 74.3 89.2 86.4 85.4 

TABLE II. ABLATION STUDY IN KITTI VALIDATION SET 

Point Fusion 2d attention Voxel Fusion 3d attention 
\]^_ (Pedestrian) \]^_ (Cyclist) 

Easy Moderate Hard Easy Moderate Hard 

� - - - 59.2110 55.5011 50.6946 67.7570 51.2467 48.5160 
� � - - 62.7588 57.7813 51.9383 71.5124 52.5746 49.4193 
� - � - 59.2497 54.6029 50.3430 67.7148 53.0462 50.1806 
� - � � 61.2489 56.6993 51.9426 70.9903 54.1027 50.6354 
� � � � 64.2624 58.2686 52.6567 71.6036 53.9948 51.4825 



Figure 4.  Comparison results on the KITTI validation dataset. For each comparison, the upper is the output of MVX-NET [18], while the under is the output of 
our proposed model. The color of car, cyclist and pedestrian are respectively white, blue and red.

V. CONCLUSION 
A multi-fusion framework is proposed in this paper, which 

implements the attentive fusion on image features and lidar data. 
We propose the 3d attention mechanism for point cloud data to 
amplify the effective voxelized features and contributes to 
emphasizing the image features when voxels are sparse. This 
framework retains detailed image features without overly 
relying on the effectiveness of lidar point clouds. Experiments 
show that the framework can better detect the distant or small 
objects and effectively reduce false detections caused by similar 
point cloud shapes. 
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