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Abstract—Constraint solving is a key challenge in symbolic
execution. Usually, symbolic execution uses the fixed-size bit-
vector theory to precisely model the program’s behavior and
generates the bit-vector formula to query the SMT solver. To
solve such bit-vector formula, SMT solvers usually adopt a bit-
blasting and conjunctive normal form (CNF) conversion step,
transforming the original formula into a equi-satisfiable CNF
formula, and then check the formula’s satisfiability. However, the
different CNF conversions can significantly affect the efficiency
of SAT solving. We observe that each CNF encoding algorithm
has its suitable applications, while adopting a specific CNF
conversion algorithm for all formulas is often not optimal.
Therefore, we propose to intelligently select a suitable CNF
encoding algorithm for each logical formula. We have integrated
our selection algorithm into the symbolic execution framework
based on KLEE and STP, which are the state-of-the-art symbolic
execution engine for C programs and its default underlying
constraint solver, respectively. The experimental results, based
on extensive evaluation of 86 real-world C programs in Coreutils
benchmark, indicate that our method can effectively improve
the efficiency of symbolic execution. On average, our method
increases the number of the explored paths by 27.2%.

Index Terms—CNF, SAT, Machine learning, Symbolic execu-
tion

I. INTRODUCTION

Symbolic execution [8], [11] is a widely used program
analysis technique to systematically explore the path space
of programs. Its applications covers many fields of software
engineering, including automated test generation, software ver-
ification and bug detection. Symbolic execution is processing
on symbolic inputs instead of concrete inputs. Therefore, the
operations in program are recorded as the computation be-
tween symbolic expressions. For each program path, symbolic
execution maintains a path condition (PC) that is updated
whenever a branch instruction is encountered. Only if cur-
rent branch is reachable is the corresponding path condition
updated. Otherwise, the branch is unreachable and symbolic
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execution terminates the exploration. Note that the feasibility
of a program path is determined by the result of constraint
solving, i.e., determining whether the path condition which
is a quantifier-free first-order logic formula [13] is satiable. In
this way, symbolic execution can explore the path space of the
program systematically and understand the program precisely.
Due to these advantages, many successful symbolic execution
engines emerge, such as KLEE [3], Pex [23], and SPF [18],
to name a few.

Obviously, constraint solving is a critical component of
symbolic execution, as it is used to check the feasibility of
a path and generate the test to execute the corresponding path
if feasible. However, there exists many obstacles for constraint
solving, which further limits the development of symbolic
execution. On the one hand, the number of paths to be explored
grows exponentially with the increase of program size and
some syntactic constructs like loops can even lead to infinite
paths. Therefore, symbolic execution engines will issue a bulk
of queries to the underlying solver for complex programs.
On the other hand, because of complex features in real
world programs, i.e., non-linear arithmetic and array operation,
symbolic execution engines will build complex queries which
are quite hard to solve. In brief, constraint solving is the most
time-consuming part and limits the scalability of symbolic
execution.

In general, symbolic execution uses bit-vector arithmetic
SMT theory combining with other SMT theories (e.g., array
theory) to precisely model the behavior of program. When
solving the bit-vector formula, bit-blasting is a key step in
most SMT solvers which reduces a bit-vector formula into
a pure propositional SAT formula. Unfortunately, such SAT
formula won’t be solved by SAT solvers immediately. Modern
SAT solvers [7] mainly take the input as a conjunctive normal
form (CNF) formula in which the solver is able to apply highly
efficient solving algorithms. Consequently, SMT solvers have
to convert the SAT formula after bit-blasting into an equi-
satisfiable CNF formula, which can be efficiently solved by



SAT solver.
Currently, there are two common CNF transformation al-

gorithms: Tseitin algorithm [25] and the algorithm based on
technology mapping [6]. The former adds a new variable to
each logic gate of the original formula, and then constrains
the variable with a new clause to form a new CNF. This
algorithm has a lower complexity, but the generated CNF
is often huge and difficult to solve. The latter divides AIG
(And Inverter Graph) into logical nodes wherein there is no
more than K inputs for each node, and extracts CNF for each
node based on a look-up table. The algorithm has a higher
complexity, but it can generate CNF that is more concise and
easier to solve. We have the following key observation of
CNF conversion in SMT solvers: almost every SMT solver of
QF BV logic always uses one of the specific CNF conversion
algorithms above. However, each CNF conversion algorithm
has its suitable applications, and the efficiency of using a
specific CNF conversion algorithm as the solution of all
formulas is often not optimal.

If the propositional formulas can be classified according
to their suitable CNF conversion algorithm, then the solving
efficiency of SMT solver can be improved distinctly. There-
fore, an intuitive idea is to extract the features of propositional
formulas, and divide propositional formulas into two different
categories, the one with higher efficiency of SMT solving
using Tseitin algorithm and the one using Technology mapping
algorithm. Then using machine learning to train a model which
well classify such two different categories. Machine learning
[12], [29] is a branch of artificial intelligence that focuses
on building models that learns from data and improve their
accuracy over time. In machine learning, models are trained
to find the law of large amounts of training data, so that
the model’s predictions on new data can be made as correct
as possible. Machine learning algorithms can be divided into
supervised learning, unsupervised learning and reinforcement
learning according to learning methods. In real world, the
application of machine learning is very extensive, such as:
data mining and analysis, pattern recognition and many other
fields. As for SMT solving, machine learning also has many
combined applications [1], [21].

This paper proposes to select a suitable CNF encoding
algorithm for each given formulas. Our key idea is to use
the existing SMT formulas in the SMT-LIB benchmark repos-
itory [2] as training data to train a machine learning model
offline, so as to automatically choose a more appropriate CNF
encoding algorithm for the formula in the process of SMT
solving, hoping to improve the efficiency of SMT solving. We
have implemented our approach on KLEE and STP, which are
the state-of-the-art symbolic execution engine for C programs
and its default underlying constraint solver, respectively. The
experimental results, based on extensive evaluation of 86 real-
world C programs in Coreutils benchmark, indicate that our
method can effectively improve the efficiency of symbolic
execution. On average, our method increases the number of
the explored paths by 27.2%

The remainder of the paper is organized as follow. Section

2 shows the related work. Section 3 illustrates our method in
details. Section 4 gives the evaluation and Section 5 discuss
the limitation. Finally we draw a conclusion of the paper.

II. RELATED WORK

Our work is closely related to the constraint solving opti-
mizaitons in symbolic execution and machine learning tech-
niques in constraint solving. We will discuss them in detail.

A. Constraint Solving Optimizaitons in Symbolic Execution

The ability of constraint solving is the main bottleneck
for the scalability of symbolic execution. Therefore, lots of
research focus on accelerating constraint solving in symbolic
execution. A typical idea is optimizing constraint solving in
the context of symbolic execution, which mainly focuses on
the optimizations of symbolic expression and invokes the
underlying solver in a black-box manner [3], [10]. CUTE [22]
has implemented a mechanism of fast unsatisfiability check
based on the syntactical contradiction of symbolic expression,
which reduces invocations of constraint solver by 60-95%.
KLEE [3] uses three kinds of optimizations to speed up
constraint solving, including caching the counter-examples to
avoid calling the underlying solver in certain situations, rewrit-
ing the constraint into simpler one, e.g. strength reduction
and linear simplifications, just like what a compiler does,
and splitting the constraint into disjoint sets of independent
constraints for better reusing. Aiming at array constraint,
KLEE-Array [20] proposes some novel optimizations based
on repeated values in constant arrays to simplify the symbolic
expressions. In addition, there exists some works which syn-
thesize symbolic execution and constraint solving and then
use the constraint solver in a white-box manner. For example,
multiplex symbolic execution (MuSE) [31] collects all partial
solutions generated by the underlying constraint solver in
one time of solving and constructs multiple program inputs
according to these solutions.

B. Machine Learning Techniques in Constraint Solving

Recently, machine learning is a hot topic in academia
and industry, with new methods invented all the time. Re-
searchers in different research areas benefit from emerging
machine learning techniques a lot. In constraint solving, some
researchers try to improve the ability of constraint solver
by combining machine learning techniques. Portfolio-based
approach is an well-known way to improve the efficiency
of constraint solver with machine learning methods, such
as SATZilla [27], CPHydra [17] and MachSMT [21]. The
basic idea is picking a solving algorithm from a set of
solving algorithms, which is a typical classifier problem that
machine learning method is good at. MLB [15] transforms
the feasibility problem of the path condition in symbolic
execution into optimization problem and employs an opti-
mization solver which implements a machine learning guided
sampling and validation method. FastSMT [1] is designed
to generate a faster solving strategy for SMT solving. First,
it uses a combining method of random search and neural



network to learn a set of candidate solving strategies. Then it
synthesizes a combined solving strategy with branches based
on the candidates. Besides, Petr Somol et al. proposed a
search principle for optimal feature subset selection using the
Branch & Bound method [26], which can be used to improve
performance of SAT solvers. Earlier research [14] accelerated
the SMT solving by learning to select branching rules in DPLL
algorithm.

III. THE PROPOSED APPROACH

This section presents the details of our intelligent selection
method. The framework will be introduced first. Then, the
extraction of formula features and the CNF encoding selection
are explained in the next two sub-sections.

A. Framework

Algorithm 1 shows details of our intelligent selection
method of CNF encoding. The inputs are a logical formula
formula represented in the SMT-LIB format [2]. The algo-
rithm first employs AST to translate input formula to Ab-
stract Syntax Tree representation, T (Line 1). Then, we apply
MERGE to merge the leaf nodes of T (Line 2) which represent
same variables or constants. MERGE returns a directed acyclic
graph (DAG) D. Next, the algorithm carries out EXTRACT
(c.f. Algorithm 2) on D. EXTRACT returns the corresponding
feature F . Finally, we use an intelligent selection method on
F to select the most effective CNF encoding for given logical
formula.

Algorithm 1 ISCE(formula)
Input: The SMT formula formula.
Output: The CNF encoding method Result.

1: T = AST(formula)
2: D = MERGE(T )
3: F = EXTRACT(D)
4: Result = SELECT(F )
5: return Result

B. Feature Extraction

Algorithm 2 gives the details of feature extraction from the
original formula. The input is a DAG which represents a logic
formula compactly, the output is the representation in bag of
word model [30].

Specifically, The algorithm considers nodes in DAG as
words, and uses the type of nodes to distinguish them, and
count the number of nodes in different types. Consider the
following example,

x1 =⇒ (x2 ∧ x3) (1)

There are three kinds of node types, i.e. variable, =⇒ and ∧.
The corresponding BoW representation is,

{variable : 3,=⇒: 1,∧ : 1} (2)

which keys are node types and values are the number of nodes
in different types.

Algorithm 2 EXTRACT(D)
Input: The DAG of formula D.
Output: The BoW representation BoW .

1: N = NODES(D)
2: for node ∈ N do
3: BoW [node]← BoW [node] + 1
4: end for
5: return BoW

C. Intelligent Selection

The Algorithm 1 uses SELECT to get the most suitable CNF
encoding algorithm, which improves the solving efficiency
of SMT solver apparently. The input is feature of a logical
formula, which is generated by III-B. The output is Tseitin
algorithm or Technology mapping algorithm which improves
the solving efficiency most of SMT solver.

We employ an offline trained learning model to predict
a CNF encoding algorithm for an logical formula. To train
the model, we generate the training data from the existing
SMT formula in the SMT-LIB benchmark repository [2]. Each
element in the training data is a tuple (E(ϕ), t) consisting
of four parts: E(ϕ) is the embedding feature of the current
formula ϕ, t is the specific CNF encoding algorithm which
improves the speed of SMT solving more than other (c.f. t = 0
means Technology mapping is better and t = 1 means Tseitin
algorithm). Since we are interesting in analyzing computer
programs, we choose the formulas in QF BV and QF ABV
logic, and generate the corresponding embedding feature by
III-B. For t of each element in the training data, we use STP
[7] as SMT solver under Technology mapping and Tseitin
algorithm simultaneously, then set t to the algorithm that
spending less time when solve formula ϕ.

D. Symbolic Execution Framework

This sub-section depicts how our intelligent selection
method can be integrated into the symbolic execution frame-
work. Algorithm 3 gives the symbolic execution framework.
The input is the program under symbolic execution. Our
framework adopts a state-based symbolic execution [11] and
employs a worklist based implementation. In the beginning,
there is only initial state si in the worklist (c.f. Line 1).

The main loop is a worklist based procedure. When ex-
ploring the state space, the symbolic executor selects a state
from the worklist to explore the state space (Line 5). During
symbolic execution, logical formula of corresponding path
condition is generated (Line 6). Then we use our intelligent
selection method to decide which CNF encoding algorithm
should be used so that SMT solver may be speed up (Line
8). Finally, the CNF encoding algorithm Encnf is applying
to speedup the SMT solver and the symbolic executor would
append new states into worklist (Line 18).

The intelligent selection needs to balance the effectiveness
and selection overhead. In principle, we can have a trained
learning model that can recommend the best CNF encoding
algorithm for each logical formula in validation set. However,



Algorithm 3 SE(P )
Input: A program P .

1: worklist = {si}
2: T = 0
3: Saveen = default
4: while worklist 6= ∅ do
5: s = Choose(worklist)
6: C = GenConstraints(P, s)
7: if T < K then
8: Encnf = ISCE(C)
9: if Encnf is Saveen then

10: T = T + 1
11: else
12: T = 1
13: Saveen = Encnf

14: end if
15: else
16: Encnf = Saveen
17: end if
18: worklist← worklist ∪ Execute(s, Encnf )
19: end while

the selection introduces more overhead which consist of fea-
ture extraction and learning model prediction. This balance
is controlled by a variable K. A variable T is initialize to 0.
We use T to count the times our method continuously predicts
the same CNF encoding algorithm. We use Saveen to save the
previous prediction. When T grows to K, we no longer use
our selection algorithm but use the Saveen to reduce overhead.
In our experiments, we set K to 100.

IV. EXPERIMENTS

We have implemented our method on KLEE [3] (i.e. a state-
of-the-art engine for C programs). KLEE’s version is 2.3-pre.
We use STP as the backend solver and bit-vector SMT theory
for encoding the path constraints. STP’s version is 2.3.3. We
train the intelligent selection model by XGBoost [4]. We
implement the AST translation and Bag of Word embedding
based on jSMTLIB [5].

We have conducted extensive experiments to answer the
following two research questions:

• RQ1: what is the performance impact of the XGBoost
intelligent selection algorithm?

• RQ2: how effective is our intelligent selection algorithm?
Here, effectiveness means exploring more paths during
symbolic execution.

A. Experimental Setup

To evaluate the effectiveness of our method, we use Core-
utils as the benchmark. Coreutils is the mainstream benchmark
for the symbolic execution researches whose implementations
are based on KLEE. The used Coreutils’s version is 6.11.
There are 89 programs (46746 SLOCs) in total.

We train the XGBoost model for intelligent selection as
follows. We use the QF BV, QF ABV SMT-LIB2 benchmarks

[2] for generating the data set. We filter the formulas whose
ASTs contain more than 50,000 nodes. We use the bag
of words (BoW) model [30] and the one-hot encoding [9]
as the embedding feature of the logical formulas and the
CNF encoding algorithm, respectively. We use STP [7] under
Tseitin and Technology mapping algorithm to find the most
suitable CNF encoding for every formula in our benchmarks.
The timeout threshold is set to 30 seconds. If timeout occurred
both Tseitin and Technology mapping algorithm, we would
filter the corresponding formula.

We compare our method (which implements based on
XGBoost) with the one employing Multi-layer Perceptron
classifier from sklearn [19], to show what is the performance
impact of the XGBoost algorithm. We have 18,782 formulas
after filtered in above way. We select 50% for training dataset
and the others for validation sets. XGBoost uses default
settings. For MLP in sklearn, we use adam as solver, the
hidden layer sizes is (30, 60, 30, 10) and the activation function
is logistic.

We compare our symbolic execution framework with in-
telligent selection integrating, with baseline KLEE under two
search heuristics, i.e., DFS and BFS. We analyze each Core-
utils program in 30 minutes. We set the end condition of
intelligent selection (c.f. Algorithm 3 Line 8) as intelligent
selection generating same continuous results more then K
times. K is a threshold that we set it to 100 in our experiments.
We used the same options as KLEE mentions in [3]. But
we close three optimizations, i.e., constraint independence,
counterexample cache and branch cache, to generate more
queries to smt solver.

All the experiments were carried out on a Server with
64GB memory and 16 3.1 GHz cores. The operating system
is Ubuntu 14.04.

B. Experimental Results

Answer to RQ1. To answer the first question, we evaluate
our XGBoost based intelligent selection by comparing with
MLP (Multi-layer Perceptron classifier) classifier based ver-
sion in three aspects: accuracy, recall and confusion matrix
[24].

TABLE I
ACCURACY & RECALL.

Model accuracy recall
XGBoost 91% 89%
MLP 91% 83%

Table I shows the accuracy and recall of different machine
learning model. XGBoost has the same accuracy as MLP
but higher recall. Our dataset consists of 3,025 formulas that
is suitable for Technology mapping algorithm and 15,757
formulas for Tseitin algorithm. As our data is imbalance,
where there are different number of samples in each class,
the recall is more important than accuracy.

Table II and III are confusion matrix of XGBoost and MLP,
respectively. The column names and row names, Map or



Tseitin, means the number of formulas that solved efficiently
when encoding to CNF by Technology mapping or Tseitin
algorithm. In Table II, of 3,000 formulas classified to Map
(c.f., first line), XGBoost judged that 2,618 were Map. But
In Table III, MLP judged 2,095 were Map of the same 3,000
formulas. XGBoost predicts 523 samples correctly more than
MLP, which is 17% in Map class.

TABLE II
XGBOOST CONFUSION MATRIX.

Predicted
Map Tseitin

A
ct

ua
l Map 2618 407

Tseitin 1357 14400

TABLE III
MLP CONFUSION MATRIX.

Predicted
Map Tseitin

A
ct

ua
l Map 2095 930

Tseitin 670 15087

Answer to RQ1: XGBoost have better performance than
MLP on recall in the imbalance dataset. More specifi-
cally, XGBoost correctly predicts 17% of the samples on
the minority class.

Answer to RQ2. To answer the second research question,
we compare our symbolic execution framework with intelli-
gent selection integrating, with baseline KLEE. We evaluate
them in path number which have been explored during sym-
bolic execution.

Figure 1&2 show the comparison results of new paths in
BFS and BFS, respectively. The X-axis shows the benchmark
programs ordered by the values in Y-axis. The Y-axis shows
the relative increasing of the explored paths, which is defined
as follows, where NOPT denote the number of paths explored
after employing our method, and NBASELINE represents the
number of original symbolic execution.

NOPT −NBASELINE

NBASELINE
(3)

As shown by Figure 1, our method can improves the
number of explored paths on 62(73%) programs. On the other
hand, there are 24(27%) programs on which we decrease the
number of paths because of the feature extraction overhead;
however, the decreasing is slight, i.e., -2.81% (-5.2%∼-0.14%)
on average. Our method can on average improves the number
of explored paths by 27.2% (-5.2%∼469%).

Figure 2 depicts the corresponding results in DFS. we
improve the number of explored paths on 60(69%) programs.
Our method decreases the number of the explored paths on
26(31%) programs since the feature extraction overhead. The
decreasing is still slight as BFS, -6.1%(-36%∼-0.5%) on
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Fig. 1. Relative increasing of Path number in BFS.

1 15 26 45 60 75 86
−36%

100%

200%

300%

400%

522%

O
u
r
v
s
.
K
L
E
E
(%

)

Fig. 2. Relative increasing of Path number in DFS.

average. Our method improves the number of explored paths
by 26.7% (-36%∼522%).

Answer to RQ2: Our method is effective to improve sym-
bolic execution’s ability of path exploration. On average,
our method increases the number of paths by 27.2%.

V. THREAT TO VALIDITY

The external validity is a major threat to our experimental
results. It is mainly due to the limited benchmark we used
and the generalization of machine learning model. For the
former, although the number and type of benchmark may
be insufficient, Coreutils is a widely used benchmark for
evaluating the performance of symbolic execution [3], [16],
[28], and the current experimental results have demonstrated
the effectiveness of our method. However, we plan to evaluate
our prototypes on more benchmarks in the next step.

VI. CONCLUSION

In this paper, we propose a method to intelligently select a
suitable CNF encoding algorithm for a given logical formula,
which is more efficient for constraint solving than the one
using a specific CNF encoding algorithm for all formulas. Our



approach leverages offline trained machine learning models to
predict the suitable CNF encoding algorithm for a given logical
formula. We integrate our selection algorithm into the sym-
bolic execution framework based on KLEE and STP, which are
the state-of-the-art symbolic execution engine for C programs
and its default underlying constraint solver, respectively. The
experimental results, based on extensive evaluation of 86 real-
world C programs in Coreutils benchmark, indicate that our
method can effectively improve the efficiency of symbolic
execution. On average, our method increases the number of
the explored paths by 27.2%.

ACKNOWLEDGMENT

This work was supported by National Natural Science
Foundation of China (No.61632015)

REFERENCES

[1] M. Balunovic, P. Bielik, and M. T. Vechev, “Learning to solve SMT
formulas,” in Advances in Neural Information Processing Systems 31:
Annual Conference on Neural Information Processing Systems 2018,
NeurIPS 2018, December 3-8, 2018, Montréal, Canada, S. Bengio,
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