
Dynamically Detecting Invariants for Automatic
Testing PLC Programs

Zeyu Lu†, Xia Mao†, Yanhong Huang†§∗, Jianqi Shi†‡, Yang Yang†

†National Trusted Embedded Software Engineering Technology Research Center
East China Normal University, Shanghai, China

‡Hardware/software Co-Design Technology and Application Engineering Research Center, Shanghai, China
§Shanghai Key Laboratory of Trustworthy Computing, Shanghai, China

Email: {zeyu.lu, xia.mao, yang.yang}@ntesec.ecnu.edu.cn, {yhhuang, jqshi}@sei.ecnu.edu.cn

Abstract—Since programmable logic controllers (PLCs) con-
trol safety-critical infrastructures, examining the PLC software
satisfies the high-reliability specifications necessary to ensure
the safeness of PLCs. However, prior works have limitations
in finding defects in the PLC source code. Static verification
techniques suffer from notable false positives without capturing
runtime behavior. The symbolic execution and conformance
testing technique captures the relations of inputs and outputs.
It is not sufficient to consider only the data constraints as
the PLC operates in real-time. In this paper, we propose a
novel approach in the detection of the runtime behavior of
PLC programs with incorporated time constraints. This testing
approach automatically finds implementation errors in PLC
programs by mining invariants from runtime traces. As the
existing tools mine only data or time invariants which are
inadequate to test PLC programs, our approach focuses on the
interplay of data and time invariants. Dynamically detected data-
time invariants are then checked with the safety specifications.
We evaluate the usefulness of our approach in a real-life case.
The experimental results show that the proposed approach can
find errors in PLC programs effectively.

Index Terms—programmable logic controller, program invari-
ant, real-time system, interplay

I. INTRODUCTION

Industrial Control Systems (ICS) have been used widely
in many safety-critical domains, such as smart power grids,
nuclear power plants, and transportation systems. These areas
play an essential role in modern society. A programmable logic
controller (PLC) is an industrial computer that is capable of
being programmed to perform control functions. Now, PLCs
are the most widely-used industrial process control technology.
Since the PLC software controls safety-critical infrastructures,
its inherent defects may have severe consequences, such as
financial and property losses.

To ensure control logic safety, many previous studies [1]–
[4] statically verified PLC programs to discover security bugs.
These studies converted the PLC program to a model checker’s
input language, such as NuSMV [5] or UPPAAL [6], and the
model checker automatically checked whether the program
satisfied the given formal specification. However, these ap-
proaches suffer from notable false positives because the error
checking was performed statically without the program having

*Corresponding Author
DOI reference number: 10.18293/SEKE2021-105

been executed. These approaches found violation paths that
could not be executed at runtime. Besides, these approaches
are at the abstract model level, which is more suitable for
checking design defects rather than implementation errors.

In recent years, several studies [7], [8] used symbolic
execution and concolic testing to automatically generate test
cases for PLC programs. In addition, Provost et al. [9] used
conformance testing to test whether the execution code of the
PLC conforms to the specification. Although these studies can
perform white box testing by using symbolic execution or
black-box testing based on the conformance testing technique,
these techniques focus only on the relationship of inputs and
outputs. It is sufficient to capture data value relations for
typical software without considering the timing of the system
under test. However, it is inadequate for the testing of time-
constrained software since PLC is a real-time system.

To address the difficulties in detecting the runtime behavior
of PLC programs with incorporated time constraints, we
propose a novel approach to test PLC programs. Our approach
is at the code level. It mines program invariants from runtime
traces of the program under test. A program invariant, or
property, is a condition that holds at a given point. Mining
invariants from runtime traces eases the notable spurious
warnings result from the static analyzers. Our technique further
mines time invariants, considering PLCs operate in real-time.

However, existing dynamic invariant detection tools extract
one-dimensional models, such as data or time, without cap-
turing the interplay of them. Both data and time models are
useful in that PLCs to operate in real-time and the data values
of variables also express events that occur in the system. In this
paper, we focus on the interplay of data and time invariants to
find source code defects in PLC programs. Different program
invariants capture different runtime behaviors during execu-
tion. Data Invariant expresses the range of values assigned to
the variables and the relation of values of different variables.
Time Invariant describes the time boundary of events that
occur in a system. Data-Time Invariant illustrates the timing
constraints of data invariants.

Our automatic testing approach is threefold. First, we in-
strument the program under test with the input and output
relations. Second, we mine data-time invariants to observe the
time performance of the implemented control logic. Third,



the dynamically detected data-time invariants are compared
with the manually crafted specification, which expresses the
expected behavior of the PLC software. Besides, we mutate
the existing test suites to obtain adequate test cases to improve
the quality of invariants derived. Once the PLC program has
been tested and satisfies the safety requirements, it will be
downloaded to real PLCs.

We evaluate the effectiveness of our proposed approach on a
real-life case, i.e., cosmetic packing process. The experimental
results show that the dynamically discovered invariants are
efficient to help test PLC programs. We have found a latent
error that is not easy to discover by using the existing approach
such as symbolic execution in our implementation of the
cosmetic packing system. To the best of our knowledge, we are
the first to mine data-time invariants of programs dynamically
in the context of ICS. In summary, this paper makes the
following contributions:

1) We propose a testing technique that uses dynamically
detected invariants to discover implementation errors in PLC
programs at the code level.

2) We propose methods to derive data-time invariants from
execution traces of PLC programs. The data-time invariants
express the runtime behavior of the PLC programs more
accurately.

3) We perform static analysis of the program under test to
derive data invariants specifically tailored to PLC programs.

The rest of the paper is organized as follows. Section
II provides some background and a motivational example.
Section III illustrates our approach. Section IV presents the
evaluation results of our approach. Section V discusses related
work. Section VI concludes the paper.

II. PRELIMINARY AND MOTIVATION

A. Programmable Logic Controller

The program of PLC is executed continuously and each
execution is called a scan cycle. Each scan cycle of a PLC
consists of the following three processes: (1) sensor measure-
ments are read to input variables, (2) the control commands are
computed based on sensor values and the control logic, and (3)
the control commands are sent to actuators which change the
physical processes. The PLC sits in the closed-loop to perform
control functions.

PLC Programming Languages. IEC 61131-3 standard is
the third part of the IEC 61131 standard which provides stan-
dards to programmable controllers. There are five program-
ming languages included in the IEC 61131-3 standard: namely,
ST, IL, LD, FBD, and SFC. The five programming languages
share many common elements and can be transformed with
each other [10]. In this paper, we focus on the Structured
Text (ST) language which offers a flexible way of expressing
complex functionality.

B. Motivation Example

We present an example of a flashing light to illustrate
that the runtime properties detected by existing tools cannot
accurately reflect the behavior of a program. It is essential to

Fig. 1. Code Snippet of a Flashing Light Program

mine the combined data and time properties of PLC programs
to deal explicitly with time measures.

The expected behavior of the PLC program is as follows: if
the weight on the conveyor exceeds a pre-defined constant
value for some time, a warning light PL1 will begin to
flash. Additionally, the solenoid is de-energized. The light PL1
flashes with the time interval of one second. If there is no
anomalous situation, the PL1 light will keep off state. If the
start button is pressed, the motor will start one second later.

The snippet of the implemented ST program is shown in
Figure 1. The program has three input variables, i.e., Weight,
OnOff, and Start, and three output variables, i.e., PL1, Motor,
and Solenoid. The output variable PL1 is connected to a lamp.
The state of PL1 can be judged from whether the lamp lights
up (line 7). The delayed start of the motor is controlled by a
timer (lines 8-9). The state of Solenoid is affected by whether
the weight exceeds the preset value or not (line 10).

To test whether the implemented program satisfies the
expected behavior, we first use Daikon [11] to detect runtime
invariants. After running Daikon, the derived data invariant
of variable PL1 is “Weight >= MaxValue” ==> PL1 one
of {false, true}. Besides, if we specify the MaxValue as 26
and use the approach in [12] to find Weight equals 26 in
the execution trace manually, Perfume [13] will infer the
invariant Weight=26 → PL1 [1s, 2s]. However, Daikon can
only detect invariants of data value relations. It cannot express
the time boundary of the relations. The invariant mined only by
Perfume cannot describe the relationship of predicate Weight
>= MaxValue with variable PL1.

In this example, the derived data-time invariant by applying
our approach is Weight >= MaxValue → PL1 [1s, 2s] when the
scan cycle of the program is 50 milliseconds. This invariant
expresses that, if the weight exceeds a preset value, the light
PL1 will stay off for at least 1 second and will then turn to on
for 1 second. Besides, it shows that the runtime behavior is
correct in the existence of timers, which delays the operation
for one second.

III. APPROACH

A. Overview
Figure 2 shows the core workflow of our approach. The

process of the test workflow can be summarized as follows:



Fig. 2. Automated Test Workflow for PLC Programs

We first use an open-source PLC compiler named matiec
[14] to compile the PLC program to ANSI C code. The
C code is semantically equivalent to PLC programs, and
there are existing works [7], [12] using the matiec compiler
to test PLC programs. For the translated C program, we
instrument it using static analysis to leverage Daikon mining
data invariants. Daikon’s front-end produces a trace file that
records the values of the variables, and Daikon dynamically
detects data invariants based on the trace file. After data
invariants have been derived, we combine Perfume to capture
the time constraints of data invariants. The detected data-time
invariants are checked with the manually crafted specifications.
The mismatches between the detected invariants and the
specifications indicate that the PLC program contains errors.
In addition, to improve the quality of detected invariants, we
mutate test cases generated by symbolic execution to produce
adequate test cases.

B. Instrument ANSI C Programs

To leverage Daikon to detect invariants tailored to PLC
programs, we instrument C code with additional program
points, i.e., instrument code with dummy procedures [11]. The
dummy procedures do not affect the normal execution of the
program and can help Daikon detect invariants concerning
specific variables. The arguments of a dummy procedure
include the variables of which we want Daikon to detect
invariants and the timestamp that records the calling time of
the dummy procedure.

For C or Java program, Daikon infers invariants at the
granularity of function. However, the PLC program is not
composed of functions. There are three types of program
organization units (POUs) in PLC, i.e., Program, Function
Block, and Function. Each PLC program may be comprised
of several POUs. If the invariants are detected at the level of
POU, the granularity is too coarse as there may be hundreds
of lines of code in one POU. By contrast, if the invariants
are generated at the statement granularity, then the number of
detected invariants is huge and some of them do not make
sense. We detect the invariants at the granularity of several
correlated statements. The granularity is coarser compared to
the statement level and finer compared to the POU level. These
statements start with the one that input variables lie in and end
with the one that the output variable sits. The change of the

inputs impacts the output. We perform static analysis to obtain
all input-output relations and instrument the ANSI C code with
these relations.

We first generate the control-flow graph (CFG) of the
PLC program. Every statement in the program is represented
as a node in the CFG. The control-dependence and data-
dependence are computed from the CFG. We then obtain the
program dependence graph (PDG) based on the computed
control and data dependence. We start from each node contain-
ing input variables and then traverse the PDG by depth-first
search (DFS). If the traverse reaches a node that contains the
definition of an output variable, the statements both in the node
and the start node will be output. The traversal will output
all of the input-output node pairs in the form of “if-then”
relations. The statement in the input node is the condition and
the output variable is the return variable. We pass the variables
in the two nodes as arguments to the dummy procedure and
add the “if-then” relations in the dummy procedure body.
For example, the dummy procedure body of the two nodes
“Weight >= MaxValue” and “PL1:= Flash 1.FlashOut” in
the motivation example is:

if (Weight >= MaxValue)
return PL1;

return PL1;
Specifically, there exists a case where a node contains

both input and output variables. In this case, we simply pass
the output variable in the node as arguments to the dummy
procedure.

C. Invariant Types

Perfume mines property types based on the execution log
and formalizes the mined properties using timed propositional
temporal logic (TPTL) [15]. TPTL is a real-time specification
language for the specification of real-time systems.

By default, Perfume mines seven property types, and we
focus on four of them:
◻x.(p→ (◇y.(q ∧ y − x ⩽ t))) / ◻x.(p→ (◇y.(q ∧ y − x ⩾

t))) whenever there is p in a trace, p is followed by q in the
trace at time y with a time difference of at most/least t.
◻x.(p U (◇y.(q∧y−x ⩽ t))) / ◻x.(p U (◇y.(q∧y−x ⩾ t)))

whenever there is q in a trace, p is preceded by q in the trace
at time y with a time difference of at most/least t.

For the motivation example in Figure 1, the TPTL formula
of the detected invariant is
◻x.(Weight >= MaxValue → (◇y.(PL1 ∧ y - x ⩾ 1s))).
In this paper, we use shorthand notations to represent the

TPTL formulae. For the first two TPTL formulae, the notation
is p → q [tmin, tmax]. Similarly, the notation p U q [tmin,
tmax] corresponds to the last two formulae.

Besides the four TPTL property types above, we also lever-
age Perfume to derive other types of invariants as presented
in Table I.

Type 1. The first invariant represents a variable that is
assigned a certain value and kept for the duration of tmax.
The second and the third invariants express that under the
predicate expr, the output holds for the duration of tmax.



TABLE I
TYPE OF DERIVED DATA-TIME INVARIANTS

Type Data-Time Invariant

1 var = [] tmax

expr → var = [] tmax

expr U var = [] tmax

2 var = [] tmin, tmax

3 var = [] → var = [] tmin, tmax

var = [] U var = [] tmin, tmax

4 expr → var = [] tmin, tmax

expr U var = [] tmin, tmax

Type 2. This invariant denotes the time interval that a
variable takes a specific value.

Type 3. The two invariants describe a variable that is
assigned different values with the time bounded by tmin and
tmax.

Type 4. These two invariants express the relationship be-
tween the condition expr and the corresponding variable
assignments in the time difference tmin and tmax.

D. Generate Data-Time Invariants

The invariants dynamically detected by Daikon provide
the relations of values of variables. After data invariants are
generated, we process the trace file produced by Daikon’s
front-end and apply Perfume to derive data-time invariants.

Trace Process. For each data invariant, we first extract all
related data-trace records from the trace file. Each data-trace
record includes runtime value information in one scan cycle.
For the data invariant “Weight >= MaxValue” ==> PL1 one
of {false, true} in the motivation example, we only extract the
data-trace records corresponding to the predicate Weight >=
MaxValue and the variable PL1 from the trace to detect the
time boundary of the data invariant.

Given that the trace only contains the extracted
data-trace records, we convert each record to a tuple
pk = [(name1=value1, name2=value2, ⋯, timestamp),
(name=value, timestamp)], where name1=value1,
name2=value2, ⋯, is the variables’ names and values
in predicate expr, name=value is the name and value of the
output variable var. For convenience, we denote tuple pk as
pk = [expr, var].

A tuple pk contains the values of the variables contained in
both expr and var in one scan cycle. The trace τ comprised of
tuples p1, p2, ⋯, pk, ⋯, represents all possible values that the
variables in both expr and var obtain in one execution. expr
and var will be evaluated true when particular combinations
of input conditions are met.

Deriving Invariants. We propose four methods to derive
different types of data-time invariants. If the predicate expr
evaluates true, we replace name1=value1, name2=value2,
⋯, with the predicate. For instance, the tuple [(Weight=27,
MaxValue=26, timestamp), (PL1=true, timestamp)] is replaced
with [(Weight >= MaxValue, timestamp), (PL1=true, times-
tamp)].

Method 1: We extract sub-trace sn which is comprised of
the tuples p1, p2, ⋯, pk that the output variable var keeps a
certain value and the predicate expr evaluates true. We pass
all of the sub-traces s1, s2, ⋯, sn to Perfume to obtain the
maximum time that the causal relation expr -> var holds.

Method 2: We extract sub-trace sn which is comprised of
the tuples p1, p2, ⋯, pk that the output variable var keeps a
certain value and the predicate expr evaluates true. For the two
consecutive sub-traces (s1, s2), we keep the last tuple pk in s1
and the first tuple p1 in s2. Similarly, for the two consecutive
sub-traces (s2, s3), we keep the last tuple pk in s2 and the
first tuple p1 in s3. The remaining sub-traces are processed so
on and so forth. For the pairs of tuples (s1.pk, s2.p1), (s2.pk,
s3.p1), etc., we pass them to Perfume and obtain the time
interval that the causal relation expr -> var holds.

Method 3: We process the whole trace and only keep
the tuples that represent state transitions. Formally, for the
two consecutive tuples pi−1=(expri−1, vari−1) and pi=(expri,
vari), if one of the values changes in pi compared to pi−1,
then tuple pi keeps; otherwise, it will be removed. After the
process finishes, we extract sub-trace sn which is comprised of
the tuples p=[(expr, var)] and p’=[(expr’, var’)] that the expr
evaluates true and var’ represents the occurrence of output
event. In addition, expr’ does not necessarily evaluate true and
var does not necessarily represent the occurrence of output
event. We pass all of the sub-traces s1, s2, ⋯, sn to Perfume
to mine data-time invariants. The time boundary mined by this
method corresponds to the time of state transition.

Method 4: We extract the sub-trace (sn, tn) which is
comprised of the tuples ps=[(expr, var)] and pt=[(expr’, var’)]
that the expr evaluates true and var’ represents the occurrence
of output event. In addition, expr’ does not necessarily evaluate
true and var does not necessarily represent the occurrence of
output event. We exclude all var from sub-trace sn and exclude
all expr’ from sub-trace tn.

1) The minimum time boundary tmin between expr and
var: for sub-trace (sn, tn), we only keep the first tuple in sn.
The remained tuples in (sn, tn) are (sn.p1, tn.p1, ⋯, tn.pk).
We pass all of the sub-traces (s1, t1), (s2, t2), ⋯, (sn, tn) to
Perfume to mine data-time invariants.

2) The maximum time boundary tmax between expr and
var: for sub-trace (sn, tn), we only keep the first tuple in tn.
The remained tuples in (sn, tn) are (sn.p1 , ⋯, sn.pk , tn.p1).
We pass all of the sub-traces (s1, t1), (s2, t2), ⋯, (sn, tn) to
Perfume to mine data-time invariants.

In particular, there exists a case where the data invariant
only includes one variable. In this case, the tuple pk =
[(name=value, timestamp)], and the above methods also hold.
The trace process is simpler with only one variable involved.
Take the data invariant GreenNS one of {false, true} for
example, we use Method 1 to derive the first Type 1 invariant
and use Method 2 to derive the Type 2 invariant.

E. Specification Mismatch

The data-time invariants are more useful for describing the
runtime behavior of the PLC program because they capture the



TABLE II
MUTATION OPERATORS USED IN MUTATING TEST CASES

Mutation Operator Example

boolean constant replacement var=true −> var=false
numeric constant replacement var = 1.0 −> var = 2.0

unary operator insertion var=5 −> var=-5

time constraints of data invariants. The dynamically detected
invariants describe the behavior of the system, while the
specifications express the expected behavior of a system. After
deriving the data-time invariants, we check the dynamically
detected invariants for errors against manually crafted specifi-
cations.

To examine whether there exists a mismatch between the
observed and expected behavior of a program, for every
generated data-time invariants φi corresponding to the spec-
ifications, we manually check σi ⊧ φi, where σi ∈ Σ is the
actual specifications of PLC programs.

F. Test Case Generation

To generate test cases, we follow the approach of SYMPLC
[7]. The test suites generated by symbolic execution guarantee
the instruction coverage. However, dynamic invariant detection
requires adequate test cases to improve the quality of detected
invariants. In the motivation example, if the automatically
generated test case for the variable Weight is 27, Daikon will
infer data invariant Weight == 27. If there are various values
assign to the variable Weight like 47, -27, 87, 21, 28, 17, 23,
57, etc., the detected data invariant will not include Weight ==
27, which is too concrete and makes no sense.

In this paper, we mutate existing test suites to make it
suitable for dynamic invariant detection. The mutation oper-
ators are shown in Table II. Once the mutated test suites are
generated, we remove the test cases which do not conform
to the variable’s type and allowed value ranges. In addition,
redundant test cases are discarded from the mutated test suites.

IV. EVALUATION

We apply our testing approach to a representative real-life
case study, i.e., cosmetic packing. The production process is
common to find in the automation industry. A code error has
been found in the program of cosmetic packing. The case study
is conducted on the Ubuntu 18.04 LTS operating system.

A. Experimental Setup

The matiec project provides the iec2c compiler which
generates ANSI C code equivalent to the original PLC pro-
gram. Multiple C files are generated after code translation. To
produce basic test suites, we employ KLEE [16] to perform
symbolic execution in the translated C code. We use Python
to create mutated test suites. During the instrument step, we
employ ANTLR [17] to perform static analysis of the PLC
program and then instrument translated ANSI C code with the
result of static analysis. We use the gcc compiler to compile
them into an executable softplc file. The executable softplc

Fig. 3. Cosmetic Packing Process

TABLE III
DETECTED INVARIANTS OF COSMETIC PACKING

Specification Data-Time Invariant

I reached=true [1.5s, 3s]
reached=false U reached=true [1.5s, 1.5s]

II full box → send box [1.57s, 1.57s]

can simulate the run of the PLC program without running on
a real PLC. We write a Python script to process trace files
generated by Daikon’s front-end and apply Perfume to the
processed trace file to derive data-time invariants. The source
code of our implementation is available online [18].

B. Cosmetic Packing

The cosmetic packing system packs cosmetics in a box and
then puts the packed box into a hopper. Figure 3 shows the
whole operation process. There are two conveyor belts C1 and
C2. C1 sends cosmetics to the packing region and C2 sends
the packed box to a hopper. The cosmetics move on C1 at a
constant speed. Once a cosmetic reaches the packaging area,
it will be put into a box. If there are three cosmetics in a box,
the box will be packed one second later and C2 will transmit
the box to a hopper. There are three switches Start, Pause, and
Reset, which start, pause, and reset the process, respectively.

The specifications of the automated packing system are:
I. The time interval for two consecutive cosmetics to reach
the packaging area is 1.5 seconds since the packing process
consumes time. II. The packed box should be present in C2
within one second after the third cosmetic is put into the box.

We execute the code in the simulator for 3000 cycles and
repeats five times. Each scan cycle lasts for 50 milliseconds.
There are total of 7 data-time invariants obtained, and the in-
variants corresponding to the specifications are listed in Table
III. In Table III, the first invariant associated with Specification
I represents that the two consecutive cosmetics reaches the
packaging area for at least 1.5 seconds. The second invariant
associated with Specification I denotes that the minimum time
duration that cosmetics arrive in the packaging area is 1.5
seconds. These two invariants satisfy the specification.

An implementation error has been detected by applying our
approach. In the process of cosmetic packing, it takes one
second to pack the box after the third cosmetic reaches the
packing area. However, for the data-time invariants derived
in one simulation, the time of box packing lasts for nearly
two seconds. As shown in Specification II of Table III, the



detected packing time violates the specification. Issues might
occur since cosmetics repeatedly approach the packing area
every 1.5 seconds.

We analyze the implemented program and simulator to find
the cause of specification violations. The reason is that the
timer of box packing returns to zero when we pause the
packing process after the system operates for 6.5 seconds.
After restarting the system, the timer starts to time from zero,
which is inaccurate since the box packing process can keep
its operation after restarting the system. We update the im-
plementation and the detected invariant full box → send box
[1s, 1s] satisfies the specification. Concretely, in the original
implementation, we use an on-delay timer (TON) to time the
box packing. However, TON does not retain the elapsed time
if the input goes false. We switch TON to retentive on-delay
timer (RTO) which retains the elapsed time when the pause
switch is pressed.

C. Discussion
The scalability problem arises when the number of program

points instrumented increases during performing dynamic in-
variant detection. In addition, the number of scan cycles exe-
cuted also brings time and space costs. To improve scalability
in the automatic testing process, one could reduce either the
number of program points instrumented or the number of
scan cycles. Reducing the number of cycles executed in one
execution and repeating several times execution can tackle the
scalability issue.

V. RELATED WORK

Sallai et al. [19] generate x86-representations of PLC pro-
grams to test, simulate, and visualize PLC programs. They
transform PLC programs into C, Scilab, and Java programs.
The semantically equivalent x86 representation which can
execute on personal computers overcomes the lack of advanced
tools to help PLC programming. Our work converts PLC
programs into C to simulate the execution of the PLC code.

PLCInspector [20] mines either linear temporal logic (LTL)
specification using Texada or data invariants using Daikon
from runtime traces of PLC programs. PLCInspector does not
combine Texada with Daikon to detect data-temporal proper-
ties. Besides, the mined LTL specification cannot describe the
runtime behavior of PLC programs properly. As PLC runs in
real-time, LTL is not suitable to quantitatively express the time
boundary of the event occurring.

The work most related to ours is VETPLC [12], which
infers events from traces based on value changes then uses
Perfume to mine temporal invariants to uncover time intervals
between different events. VETPLC uses mined invariants to
generate timed event sequences that serve as inputs for auto-
mated safety vetting PLC code. Our approach uses Perfume
to find time bounds for the data invariants from the execution
traces.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a novel approach to test PLC
programs by mining invariants from execution traces. Our

approach dynamically detects combined data-time invariants
to observe the time performance of implementation programs.
The derived invariants expressing the runtime behavior of
the PLC programs are checked with the specifications. We
evaluate our approach in a representative real-life scenario.
The evaluation results show that our approach is useful for
discovering implementation errors that are difficult to find
using existing methods.

The dynamic detection technique proposed in this paper
to derive data-time invariants is dedicated to the test of
PLC programs. Since timing constraints are essential in many
embedded systems or cyber-physical systems, we plan to apply
this paper’s method to test a broader class of systems beyond
the scope of industrial control systems as one of the future
works.

Acknowledgment. This work is partially supported by
NKRDP (2019YFB2102602).

REFERENCES

[1] M. Rausch and B. H. Krogh, “Formal verification of PLC programs,”
in Proceedings of the 1998 American Control Conference. ACC (IEEE
Cat. No. 98CH36207), vol. 1. IEEE, 1998, pp. 234–238.

[2] O. Pavlovic, R. Pinger, and M. Kollmann, “Automated formal verifi-
cation of PLC programs written in IL,” in Conference on Automated
Deduction (CADE), 2007, pp. 152–163.

[3] V. Gourcuff, O. De Smet, and J.-M. Faure, “Improving large-sized PLC
programs verification using abstractions,” IFAC Proceedings Volumes,
vol. 41, no. 2, pp. 5101–5106, 2008.

[4] B. F. Adiego, D. Darvas, E. B. Viñuela, J.-C. Tournier, S. Bliudze, J. O.
Blech, and V. M. G. Suárez, “Applying model checking to industrial-
sized PLC programs,” IEEE Transactions on Industrial Informatics,
vol. 11, no. 6, pp. 1400–1410, 2015.

[5] “NuSMV: a new symbolic model checker,” http://nusmv.fbk.eu/.
[6] “UPPAAL Home,” http://www.uppaal.org/.
[7] S. Guo, M. Wu, and C. Wang, “Symbolic execution of programmable

logic controller code,” in Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering, 2017, pp. 326–336.

[8] H. Simon and S. Kowalewski, “Mode-aware concolic testing for PLC
software,” in International Conference on Integrated Formal Methods.
Springer, 2018, pp. 367–376.

[9] J. Provost, J.-M. Roussel, and J.-M. Faure, “Generation of single input
change test sequences for conformance test of programmable logic
controllers,” IEEE Transactions on Industrial Informatics, vol. 10, no. 3,
pp. 1696–1704, 2014.

[10] D. Darvas, I. Majzik, and E. B. Viñuela, “PLC program translation
for verification purposes,” Periodica Polytechnica Electrical Engineering
and Computer Science, vol. 61, no. 2, pp. 151–165, 2017.

[11] “The Daikon Invariant Detector User Manual,”
http://plse.cs.washington.edu/daikon/download/doc/daikon.html.

[12] M. Zhang, C.-Y. Chen, B.-C. Kao, Y. Qamsane, Y. Shao, Y. Lin, E. Shi,
S. Mohan, K. Barton, J. Moyne et al., “Towards Automated Safety
Vetting of PLC Code in Real-World Plants,” in 2019 IEEE Symposium
on Security and Privacy (SP). IEEE, 2019, pp. 522–538.

[13] “Perfume,” https://github.com/ModelInference/perfume-frontend.
[14] “MATIEC-IEC 61131-3 compiler,” https://github.com/nucleron/matiec.
[15] R. Alur and T. A. Henzinger, “A really temporal logic,” Journal of the

ACM (JACM), vol. 41, no. 1, pp. 181–203, 1994.
[16] C. Cadar, D. Dunbar, D. R. Engler et al., “KLEE: Unassisted and

Automatic Generation of High-Coverage Tests for Complex Systems
Programs.” in OSDI, vol. 8, 2008, pp. 209–224.

[17] T. Parr, The definitive ANTLR 4 reference. Pragmatic Bookshelf, 2013.
[18] “Supplementary Material,” https://figshare.com/s/6603090ab26eb5b0e1f6.
[19] G. Sallai, D. Darvas, and E. Blanco, “Testing, simulation, and visualisa-

tion of plc programs using x86 code generation,” CERN, Techical report
EDMS, vol. 1844850, 2017.

[20] J. Xiong, G. Zhu, Y. Huang, and J. Shi, “A User-Friendly Verification
Approach for IEC 61131-3 PLC Programs,” Electronics, vol. 9, no. 4,
p. 572, 2020.


