
An Analysis of the State of the Art of Machine
Learning for Risk Assessment in Software Projects

André Sousa1, João Pascoal Faria2, João Mendes-Moreira2
1Master’s in Software Engineering, 2Departament of Informatics Engineering

Faculty of Engineering of the University of Porto
Porto, Portugal

{up201902618, jpf, jmoreira}@fe.up.pt

Abstract—Risk management is one of the ten knowledge
areas discussed in the Project Management Body of Knowledge
(PMBOK), which serves as a guide that should be followed
to increase the chances of project success. The popularity
of research regarding the application of risk management in
software projects has been consistently growing in recent years,
particularly with the application of machine learning techniques
to help identify risk levels or risk factors of a project before
the project development begins, with the intent of improving the
likelihood of success of software projects.

This paper provides an overview of various concepts related
to risk and risk management in software projects, including
traditional techniques used to identify and control risks in
software projects, as well as machine learning techniques and
methods which have been applied to provide better estimates
and classification of the risk levels and risk factors that can be
encountered during the development of a software project. The
paper also presents an analysis of machine learning oriented risk
management studies and experiments found in the literature as
a way of identifying the type of inputs and outputs, as well as
frequent algorithms used in this research area.

Index Terms—Risk Management, Risk Assessment, Software
Projects, Machine Learning, Classification

I. INTRODUCTION

According to the Project Management Body of Knowledge,
a project risk is “an uncertain event which, if it occurs, has a
positive or negative effect on one or more project objectives”
[1]. Software projects are notoriously complex development
activities, and thus the concept of risk cannot be ignored when
considering this type of projects.

In 2015, the Standish Group International’s CHAOS Report
[2], a study of the success of software projects, reported a
29% success rate for the roughly 5000 projects investigated.
A project is considered successful if it is completed within its
allocated budget, original delivery deadline, and with all of
the features that were planned at the start of its development
life cycle [3]. It also reported a 19% failure rate for the set of
projects investigated, meaning the projects suffered from cost
or time overruns, or lacked content that was initially specified.

However, it is in the category of challenged projects that
we can find the largest percentage of projects. From 2011 to
2015, 49%, 56%, 50%, 55%, and 52% of the software projects,
respectively, were considered challenged, meaning they were

DOI reference number: 10.18293/SEKE2021-097

completed but either over-budget, over the allocated time esti-
mates, or offering fewer features than originally planned. The
consistently high percentage of challenged projects indicates
that there is room for improvement in the success rate of a
large amount of these projects. This is where the concepts of
risk and risk management are important to consider.

Risk management is a process used for early identification,
analysis, planning, and control of risks in a project [4], with
the goal of minimizing negative risks and maximizing positive
risks [5], also referred to as opportunities. By identifying
the risks and creating mitigation plans to deal with them if
they occur before the project development starts rather than
coming up with strategies to deal with risks in the moment
they materialize, project managers and development teams are
better prepared to handle risks and their effects on a project,
which in turn can lead to more projects being completed on
time and within their allocated budgets. However, it is typically
the first activity to be removed from the project management
activities when a project falls behind schedule [6].

In recent years, there has been an increasing use of machine
learning algorithms and techniques for risk assessment, par-
ticularly supervised learning ones where the model is trained
using a data set, and then the same model is used to predict
information on a new set of data (in this area, it could be
to predict possible risk factors of a project based on its
characteristics, such as team members, time, and allocated
budget). Commonly used algorithms for supervised learning
include Decision Trees, Naive Bayes classifiers (NB), Neural
Networks (NN), and Support Vector Machines (SVM).

The purpose of this paper is to provide an overview of
the state-of-the-art in topics related to risk and risk man-
agement with regards to their application in the management
of software projects, including traditional processes as well
as the growing application of machine learning techniques
to tackle the problems associated with risk assessment in
software projects. The remaining sections of the paper are
structured as follows. An overview of the concepts of risk and
risk management in software projects, and different types of
risks and risk management processes are presented in section
2. In section 3, a literature review of the application of ma-
chine learning techniques for risk management is performed,
showing examples of their use in the prediction of risk levels
of software projects. Lastly, section 4 concludes the paper.



II. RISK AND RISK MANAGEMENT IN SOFTWARE
PROJECTS

Risk in software projects can be seen as “the potential that a
chosen action or activity will lead to a loss or an undesirable
outcome” [5]; “a set of factors or conditions that can pose
a serious threat to the successful completion of a software
project” [7]; or “the probability and impact of an event on a
project” [8]. From these definitions, it is possible to identify
some common themes, such as a risk possibly leading to a
loss. In a software project, a loss can manifest itself through
lower quality of the final product, increased costs, changes to
the release date of the product, or, in a worst-case scenario,
failure and cancellation [9].

Software projects can be impacted by various types of risks
[10]:

• Technical risks - problems with the programming lan-
guages and frameworks of choice, project size, or pro-
cesses. This type of risk can occur as a result of lack of
experience or lack of maturity of the technologies used.

• Management risks - these risks can occur due to prob-
lems in communication with top management and cus-
tomers, lack of planning, or lack of project management
experience.

• Financial risks - problems regarding budget, cash flow,
or doubts about the return on investment of the project.

• Contractual and legal risks - problems regarding ad-
justing the schedule or the requirements to fit the market,
government regulations, or health and safety problems.

• Personnel risks - these can be due to conflicts among
staff, ethical and moral issues, or productivity issues
resulting from a combination of the aforementioned risks.

• Other resource risks - these occur due to situations that
are generally not a responsibility of the project team, such
as unavailability of computer resources or equipment.

When it comes to the most frequent specific risks in
software projects, Boehm, regarded by many as one of the
most important authors in this research area, listed risks such
as personnel shortfalls, unrealistic schedules and budgets, and
developing the wrong functions and/or user interface as some
of the most frequent risks that have a direct effect on the
success of software projects [8].

The high percentage of challenged projects seen in the Stan-
dish Group International’s CHAOS reports [2] is consistent
with the information presented by Boehm [8], as the first and
second most frequent risk items listed (personnel shortfalls
and unrealistic schedules and budgets) are directly related
to the concept of challenged projects, and often come as a
consequence of the majority of the remaining risk items listed
occurring during the development of a project.

To reduce the high percentage of challenged projects in
the software industry, project managers must consider a wide
variety of knowledge areas in order to manage their projects
towards successful completion. One of those areas is risk
management, as risks can be identified in various areas of
a software project. In a software development project, risks

can be influenced by the business domain, the business style,
culture of the organization, and characteristics of the members
involved in the project [11], so it is important to identify
risks according to the environment in which the project is
being developed. To facilitate this process, risk factor and
item classifications found in the literature can be used. These
classifications usually list the most frequent risk items that
can affect a project’s path towards success, and teams can use
these to evaluate if there is a possibility of any of those risks
occurring during the development of their own projects, and
if so, what could be their impact on the project. Essentially,
those are the 2 parts that make up a risk: the likelihood of the
risk happening, and the degree of impact it has on the project
if it does occur.

Wallace’s categorization [7] of risk items according to six
risk dimensions (Team, Organizational Environment, Require-
ments, Planning and Control, User, and Complexity) is still
widely used in this research area. Not only does it present
common risk items in software projects, but by grouping
them according to a specific dimension within the areas that
project managers have to consider in the development of a
software project, it makes it so they can identify what areas
are more likely to be problematic throughout the course of the
development of the project and prepare their risk management
strategies accordingly.

Those are just some examples of risk classifications that
can negatively affect specific areas during the development of
a software project. In reality, there are a lot more risks that
can be identified, and doing it at an early stage of the project
(ideally before development starts) is crucial for a successful
development life cycle, as it means the project manager as
well as the development team can start to plan actions to take
if these risks materialize during the project development.

A good way of classifying the identified risks according to
their priority is through the use of a portfolio chart, such as
the one presented by Dr. Ernest Wallmüller [12], which can
be seen in table I.

TABLE I
RISK PRIORITIES ACCORDING TO THEIR PROBABILITY AND IMPACT

Impact
High B A A
Medium C B A
Low C C B

Low Medium High Probability

Identifying, classifying, and prioritizing actions for risks
according to their priority are just some of the phases of a
process called risk management, which is defined by Standard
ISO/IEC/IEEE 24765:2010 as “an organized process for” iden-
tifying and handling risk factors; assessing and quantifying the
identified risks; and developing plans to deal with the identified
risks [13].

In a very simplified way, the goal of risk management is
to increase the probability of positive events on a software
project, while at the same time decreasing the probability
of negative events on the same project [4]. To do that, risk



management is often divided into two key activities: risk
assessment and risk control, which are composed of more
specific steps.

In [8], Boehm split risk assessment into three phases -
identification, analysis, and prioritization - and risk control
into three other phases: management planning, resolution (or
mitigation), and monitoring. Other researchers may change the
categories to which these steps belong to, such as in [14],
where risk assessment is made up of phases for identification,
analysis, prioritization, planning, and resolution, and risk con-
trol is made up of only one phase, which is monitoring, but
the key concepts and phases remain the same.

Risk assessment begins with the risk identification phase,
where a list of risk items related to the project that have
a higher chance of affecting the success of the project is
created. Common techniques in this phase include checklists
and decision-driven analysis. Afterwards, the loss probability
and impact of each identified risk item is assessed in the risk
analysis phase. Analysis of factors such as quality, reliability,
and availability is a common task in this phase. However, there
is usually some uncertainty when it comes to estimating the
losses that are a result of the occurrence of a risk [8], so
the assessments done are very often subjective, and often the
result of interviewing domain experts [8]. Next, in the risk
prioritization phase, the identified risks are ordered through
the use of techniques such as the analysis of risk exposure
and risk reduction.

With the first three phases of risk management (according
to Boehm) completed, the risk control activities can begin
with the risk management planning step, which addresses
the risk items identified through processes such as buying
information (e.g., investing in a prototype to better understand
the specific risk), risk avoidance, risk reduction, risk transfer,
and risk plan integration. Common techniques used in this
step are checklists of risk-resolution techniques, cost-benefit
analysis, and risk management plan outlines. Afterwards, in
the risk resolution phase, the identified risk items are analyzed
and decisions are taken regarding what action to take against
the risks in order to mitigate them. Boehm identified several
fundamental risk mitigation strategies, such as understanding
the risk or removing the risk from the project’s critical path
[4].

Lastly, in the risk monitoring phase, the project’s progress
is tracked towards completion by resolving the previously
identified risk items and taking corrective action whenever
necessary through the use of techniques such as milestone
tracking and risk assessment.

Boehm’s risk management model is frequently referenced
in the literature, but there are several other traditional risk
management models and processes that can be found in the
literature. The authors in [15] analyzed several risk manage-
ment models and processes, such as:

• Team Risk Management (TRM) [16] - risks are man-
aged in the full software development life cycle, and all
members and stakeholders are involved, improving the ef-
ficiency of the decision-making process. TRM frequently

ensures continuous risk management through regular re-
views and monitoring of the implemented processes.

• Softrisk management technique [17] - this technique
is constructed on the basis of documentation and gives
special focus to extreme risks by focusing on what can be
leading to those risks. Re-estimation, re-prioritization, re-
assessment, and re-documentation are performed to also
guarantee continuous risk management.

• Wallmüller’s Risk Management Process [12] - risk
management activities are conducted by the project team
at the same points where the cost, time, quality, and re-
quirement management activities are performed. A major
point of difference compared to the previous models is the
introduction of risk management roles which are assigned
to different members of the team, thus making sure the
entire team contributes to the risk management tasks and
is up-to-date on the status of risks in the project.

There is another area that has been gaining a tremendous
amount of attention, particularly in recent years, with the goal
of improving risk management processes in software projects,
and that is the application of machine learning techniques and
methods to improve the risk management workflow in software
development companies.

III. LITERATURE REVIEW OF MACHINE LEARNING
APPROACHES IN RISK MANAGEMENT

Machine learning in risk management has obtained increas-
ing popularity in recent years, and a lot of different approaches
have been used. For the purposes of the analysis of the state
of the art performed in this paper, the focus was on finding
practical applications of machine learning to predict possible
project risks or an overall risk level of a project. From there, it
was possible to identify not only some of the most frequently
used algorithms and evaluation metrics, but also the type of
information used as inputs used to train the models.

Throughout the creation of this paper, bibliographic
databases such as Scopus and DBLP were used to search
for various articles, scientific papers, and surveys related to
this topic. Searches were performed using keywords such as
“risk assessment”, “machine learning”, and lastly “software
projects” to reduce the scope of the results to the application
of machine learning for risk assessment specifically in the
software development industry. By reading the abstracts and
briefly analysing the contents of the search results, the ones
that were considered more relevant were read and analysed in
more detail. Some examples of studies and experiments done
in this research area are described below, and can be seen in
greater detail in terms of inputs and outputs used in table II.

In [18], an Artificial Neural Network model was created
to predict deviations in new software projects. The inputs to
the model were the risk factors detected in the projects, and
the outputs were the differences found in time, budget, and
number of personnel, number of completed work packages,
and success of the project under investigation. This experi-
ment showed the applicability of Neural Networks when the
intended information spans more than one category (in this



case, the deviations in five attributes related to the project), as
well as the fact that the model can have a great performance
and accuracy, as seen in its results.

A Neural Network model was also created in [19], together
with a Support Vector Machine model to compare both ap-
proaches and their accuracy in evaluating the risk level of
software projects. The input used was a vector of risk factors
of 120 software projects, collected after several interviews
with experts in the industry, which were then grouped ac-
cording to six different risk categories (Environment Com-
plexity, Project Requirement Complexity, Cooperation, Team,
Project Management, and Engineering). The output was the
predicted outcome of the project (“successful”, “failed”, or
“challenged”). The Support Vector Machine model had a
higher accuracy compared to the Neural Network method
(80% vs %70, respectively) due to NN’s tendency in finding
a local optima [19], but after changes were made to the NN
method by optimizing it with a Genetic Algorithm (GA), this
made it so the NN-GA method surpassed SVM in accuracy
(85% vs 80%, respectively) by reducing the search for a local
optima.

In [20], the author proposes a Neural Network architecture
with a back propagation algorithm to learn the patterns of
a data set of projects completed in the past, which also
includes 22 project risk factors of areas such as estimations,
requirements (e.g., frequent changes to requirements), and
team organization (e.g., lack of skills or experience). The
output of the model was a classification of the risk level
of the project: “risky” or “not risky”. The model developed
was found to have a higher accuracy and sensitivity when
compared to a Logistic Regression model developed from and
applied on the same data set.

The authors in [11] developed an approach to predict
runaway projects (projects that greatly exceed budget and
deadlines and have failed to produce an acceptable deliverable)
in an organization through the use of a questionnaire to iden-
tify the characteristics of projects, and then classify them into
“runaway” or “success” projects through the use of a Naive
Bayes classifier. These characteristics are classified according
to five different categories: requirements (e.g., ambiguity of re-
quirements), estimations (e.g., lack of stakeholders present for
estimation process), planning (e.g., unspecified milestones),
team organization (e.g., lack of skills or experience), and
project management (e.g., inadequate project monitoring). 10-
fold cross validation was used to evaluate the effectiveness of
their solution, showing a predictive accuracy of 82.5%, with
33 out of 40 projects classified correctly.

Bayesian classifiers were also used in [21] and [22]. In
the former, a Bayesian Belief Network (BBN) was used to
build a software risk estimation model that was used for the
main software risk indicators for risk assessment in software
projects. In the latter, a model was created using a Bayesian
network with causality constraints to identify and analyze
risks in software development projects through data collected
from 302 software projects. The authors found that it had
an accuracy of 1% to 7% higher than the other models

tested (Logistic Regression, Decision Tree, and Naive Bayes),
which they attributed to the incorporation of expert domain
knowledge and causality discovery into the BBN.

In [23], the authors used a Support Vector Machine to model
risk classification in software projects. The model classified
projects as either high risk or low risk. SVM was also used
in [24] to predict the risk level of different projects as either
“low”, “medium”, or “high”. A Neural Network was used for
comparison, and the authors found that the SVM was more
accurate (85% accuracy of SVM compared to 75% of the NN).

Multiple Logistic Regression was used in [25] to classify
different characteristics of software projects as either a “risk”
or a “non risk”. The input data was obtained through question-
naires sent to experts in the software project development and
management fields, which asked them to classify risk factors
from 8 categories (User, Requirements, Estimations, Cost,
Schedule, Planning and Control, Team, Software) according
to their risk level on a scale from 1 to 5.

Lastly, the authors in [26] used Logistic Regression to
classify projects as either “risky” or “not risky”. Responses
to a questionnaire focusing on 5 viewpoints of key risk
factors (Requirements, Estimations, Planning, Organization,
Management) were used as the input data, and the model
developed classified 35 out of 40 projects correctly.

As can be seen, there are a lot of possibilities when it comes
to machine learning models that can be used to predict risks
in software projects. However, there are definitely areas in
this field that can be explored further in order to improve the
applicability of machine learning models for risk assessment.

Some of the papers presented in table II compare different
machine learning algorithms (e.g., [19] and [24]) with the
goal of comparing their predictive performance in the context
of a specific problem. However, a greater focus should be
placed in also comparing them in terms of interpretability
and the performance trade-offs involved in more interpretable
algorithms.

Interpretability in machine learning is defined as “the degree
to which a human can understand the cause of a decision”
[27]. Interpretable machine learning models make it easier to
understand not only the prediction made by the model, but
more importantly why that prediction was made. If a prediction
does not match what was initially expected, developers can
use this information to identify possible issues in the data
set, the model, or possibly both. However, there is a trade-
off involved with interpretable machine learning algorithms,
namely the fact that predictive performance tends to be lower
with these algorithms.

Additionally, considering the popularity of project manage-
ment software such as JIRA and Asana, one of the next areas
of focus in this research field could be the creation of machine
learning models that can be integrated with these tools. This
integration with tools used for daily project management tasks
could make it so risk management becomes just another step
in the project management cycle, rather than a process which
requires a large overhaul in an organization’s workflow in
order to integrate it in their processes.



TABLE II
STUDIES AND EXPERIMENTS ON THE USE OF MACHINE LEARNING TECHNIQUES FOR RISK ASSESSMENT

Reference Inputs Outputs Algorithm(s) Evaluation metric(s)

A Novel Model for Risk Estimation
in Software Projects using Artificial
Neural Network [18]

45 risk factors of 20 software projects (70%
of data used for training, 30% for testing)

Deviations in project duration, cost,
number of personnel, completed work
packages, project success

Neural Network

Training R1= 0.9978
Testing R = 0.9935
Validation R = 0.996
MSE2 = 0.001

Software Project Risk Management
Modelling with Neural Network and
Support Vector Machine Approaches [19]

Data of 120 software projects collected through
questionnaires distributed in cities in China (83.3%
of data used for training, 16.7% for testing)

Classification of projects as either
“successful”, “challenged”, or “failed”

Neural Network Accuracy = 70%
Genetic Algorithm NN Accuracy = 85%
Support Vector Machine Accuracy = 80%

Discriminating Risky Software Project
Using Neural Networks [20]

22 attributes of 40 projects in the OMRON
database (80% of data used for training, 20% for
testing)

Risk level of the project - “risky” or
“not risky”

Neural Network

Accuracy = 82.2%
Precision = 81.82%
TPR3 = 81.82%
TNR4 = 82.61%

Logistic Regression

Accuracy = 87.5%
Precision = 100%
TPR = 66.7%
TNR = 100%

An Empirical Evaluation of Predicting
Runaway Software Projects Using
Bayesian Classification [11]

Responses on a 4 point Likert scale to a
questionnaire focusing on 5 viewpoints of
key risk factors in 40 SSBC projects (10-fold
cross-validation used for testing)

Project classification as either “runaway”
or “success” Bayesian classifiers Accuracy = 82.5%

A Probabilistic Software Risk
Assessment and Estimation
Model for Software Projects [21]

Assessment of 27 risk factors (low, medium
or high) in 12 software projects

Probability of the project being of low,
medium, or high risk Bayesian classifiers MMRE5 = 0.03842

BMMRE6 = 0.03911

Software Project Risk Analysis using
Bayesian Networks with Causality
Constraints [22]

Software project data from 302 projects collected
through questionnaires (10-fold cross-validation
used for testing)

Classification of project’s performance
based on risks identified as “low” or “high”

Bayesian network with
causality constraints Accuracy = 75.15%

Decision Trees Accuracy = 70.86%
Naive Bayes Accuracy = 72.85%
Bayesian classifiers Accuracy = 74.17%

Classification of Risk in Software
Development Projects using Support
Vector Machine [23]

530 samples of a data set created from
information of software development
projects (70% of data used for training
and 30% for testing)

Project risk classification as either
“low risk” or “high risk” Support Vector Machine Accuracy = 99.51%

AUC7 = 98%

An Intelligent Model for Software
Project Risk Prediction [24]

64 risk factors of data from 120 projects (83.3%
of data used for training, 16.7% used for testing)

Classification of projects as either
“successful”, “challenged”, or “failure”

Neural Network Accuracy = 75%
Support Vector Machine Accuracy = 85%

Prediction of Risk Factors of Software
Development Project by Using
Multiple Logistic Regression [25]

Data obtained from questionnaires regarding
the risk level of 70 software projects

Classification of characteristics of a
software project as “risk” or “non risk” Multiple Logistic Regression Accuracy = 90%

An Empirical Approach to Characterizing
Risky Software Projects Based on
Logistic Regression Analysis [26]

Responses on a 4 point Likert scale to a
questionnaire focusing on 5 viewpoints
of key risk factors in 40 SSBC projects

Classification of projects as either
“risky” or “not risky” Logistic Regression Accuracy = 87.5%

1 Defined by the authors as Regression value, indicating the correlation between the predicted values and the observed values. A higher value indicates better results.
2 Mean Squared Error. A smaller value indicates better results.
3 True Positive Rate - the percentage of positive cases that were correctly identified. A higher value indicates better results.
4 True Negative Rate - the percentage of negative cases that were correctly classified. A higher value indicates better results.
5 Mean Magnitude of Relative Error. A lower value indicates better predictive performance.
6 Balanced Mean Magnitude of Relative Error. Due to the fact that MMRE penalizes overestimates more than underestimates, a balanced MMRE is also used in this experiment. As with MMRE, a lower value
indicates better predictive performance.
7 Area Under the ROC Curve - the probability of the model ranking a random positive example higher than a random negative one. AUC returns a value between 0 and 1, where the higher the AUC, the better
the model is at distinguishing positive and negative classes.



Lastly, the use of accuracy as the sole evaluation metric to
assess the quality of the models developed (e.g., [19], [25],
[26]) is sometimes not enough. The usefulness of accuracy
as an evaluation metric depends on the balance of the classes
in the problem at hand. As an example, if there are three
possible risk levels (e.g., low, medium, and high) to choose
from in the data set’s dependent variable, and 70% of the
samples are of class “low”, 10% are of class “medium”, and
the remaining 20% are of class “high”, the model can easily
obtain a high training accuracy by just predicting the majority
of the testing samples to be of class “low”. In classification
problems, additional metrics such as AUC, True Positive Rate,
and True Negative Rate should also be closely looked at to
determine if the model is truly returning good results, or if
it is only achieving a high accuracy by predicting the testing
samples as being of the majority class most of the time.

IV. CONCLUSION

As software projects can face a lot of different problems
before they are released to the market, it is important to at
least identify possible risks that can occur before development
starts, making it possible to start planning risk management
and mitigation strategies if the risks materialize, rather than
dealing with the problems as they appear. Risk management in
software projects is a research area with consistently growing
popularity, especially when combined with machine learning
approaches to create models that can identify or predict risks
before project development starts, with the goal of identifying
risks in a software project, and ultimately develop and imple-
ment strategies to prevent or limit the impact of the identified
risks if they materialize during the project’s development.

Explainable AI is also a research field with increasing
research that should be considered to explain the prediction of
black-box models, such as Neural Networks or Support Vector
Machines. One of the next steps in this research area should
be to focus on understanding the predictions that are made
by the models by using interpretable models or black-box
models but, in the latter case, with their predictions explained
by explainable AI. Which would be the best?

Lastly, the creation of machine learning models in software
packages that can then be integrated with popular project
management tools such as JIRA or Asana should be analysed
more closely.

REFERENCES

[1] PMI, A Guide to the Project Management Body of Knowledge (PMBOK
Guide), 4th Edition. Project Management Institute, 2008.

[2] T. S. Group, “Chaos report 2015,” 2015. [Online]. Available: https://
standishgroup.com/sample research files/CHAOSReport2015-Final.pdf

[3] M.-Y. Hsieh, Y.-C. Hsu, and C.-T. Lin, “Risk assessment in new software
development projects at the front end: a fuzzy logic approach,” Journal
of Ambient Intelligence and Humanized Computing, vol. 9, 04 2016.

[4] B. Boehm, “Software project risk and opportunity management,” Soft-
ware Project Management in a Changing World, pp. 107–121, 03 2014.

[5] P. Chawan, J. Patil, and R. Naik, “Software risk management,” Inter-
national Journal Of Computers & Technology, vol. 6, pp. 60–66, 05
2013.

[6] Y. Kwak and J. Stoddard, “Project risk management: Lessons learned
from software development environment,” Technovation, vol. 24, pp.
915–920, 11 2004.

[7] L. Wallace, M. Keil, and A. Rai, “Understanding software project risk:
a cluster analysis,” Information & Management, vol. 42, no. 1, pp. 115
– 125, 2004. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0378720604000102

[8] B. Boehm, “Software risk management: principles and practices,” IEEE
Software, vol. 8, pp. 32–41, 1991.

[9] R. C. Williams, G. J. Pandelios, and S. Behrens, “Software risk evalu-
ation (sre) method description (version 2.0),” 2000.

[10] L. Westfall, “Defining software risk management,” 2001. [Online].
Available: http://www.westfallteam.com/sites/default/files/papers/risk
management paper.pdf

[11] O. Mizuno, T. Hamasaki, Y. Takagi, and T. Kikuno, “An empirical eval-
uation of predicting runaway software projects using bayesian classifi-
cation,” in Product Focused Software Process Improvement, F. Bomarius
and H. Iida, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004,
pp. 263–273.

[12] E. Wallmüller, “Risk management for it and software projects,” 01 2002,
pp. 165–178.

[13] M. Felderer, F. Auer, and J. Bergsmann, “Risk management during
software development: Results of a survey in software houses from
germany, austria and switzerland,” 04 2017, pp. 143–155.

[14] T. Hussain, “Risk management in software engineering: What still needs
to be done,” in Intelligent Computing, K. Arai, S. Kapoor, and R. Bhatia,
Eds. Cham: Springer International Publishing, 2019, pp. 515–526.

[15] M. Pasha, G. Qaiser, and U. Pasha, “A critical analysis of software risk
management techniques in large scale systems,” IEEE Access, vol. PP,
pp. 1–1, 02 2018.

[16] R. Higuera, D. Gluch, A. Dorofee, R. Murphy, J. Walker, and
R. Williams, “An introduction to team risk management. (version 1.0),”
p. 55, 05 1994.

[17] M. F. Rabbi and K. Mannan, “A review of software risk management
for selection of best tools and techniques,” 09 2008, pp. 773–778.

[18] M. H. Calp and M. A. Akcayol, “A novel model for risk estimation
in software projects using artificial neural network,” in Artificial Intelli-
gence and Applied Mathematics in Engineering Problems, D. J. Hemanth
and U. Kose, Eds. Cham: Springer International Publishing, 2020, pp.
295–319.

[19] Y. Hu, J. Huang, J. Chen, M. Liu, and K. Xie, “Software project risk
management modeling with neural network and support vector machine
approaches,” in Third International Conference on Natural Computation
(ICNC 2007), vol. 3, 2007, pp. 358–362.

[20] W.-M. Han, “Discriminating risky software project using neural
networks,” Computer Standards & Interfaces, vol. 40, pp. 15 – 22,
2015. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0920548915000136

[21] C. Kumar and D. K. Yadav, “A probabilistic software risk assessment and
estimation model for software projects,” Procedia Computer Science,
vol. 54, pp. 353 – 361, 2015, eleventh International Conference
on Communication Networks, ICCN 2015, August 21-23, 2015,
Bangalore, India Eleventh International Conference on Data Mining
and Warehousing, ICDMW 2015, August 21-23, 2015, Bangalore, India
Eleventh International Conference on Image and Signal Processing,
ICISP 2015, August 21-23, 2015, Bangalore, India. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1877050915013654

[22] Y. Hu, X. Zhang, E. Ngai, R. Cai, and M. Liu, “Software project risk
analysis using bayesian networks with causality constraints,” Decision
Support Systems, vol. 56, pp. 439 – 449, 2013. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167923612003338

[23] M. Zavvar, A. Yavari, S. M. Mirhassannia, M. R. Nehi, and A. Yanpi,
“Classification of risk in software development projects using support
vector machine,” Journal of Telecommunication, Electronic and Com-
puter Engineering, vol. 9, pp. 1–5, 2017.

[24] Y. Hu, X. Zhang, X. Sun, M. Liu, and J. Du, “An intelligent model for
software project risk prediction,” vol. 1, 12 2009, pp. 629–632.

[25] T. Christiansen, P. Wuttidittachotti, P. Somchai, and S. Vallibhakara,
“Prediction of risk factors of software development project by using
multiple logistic regression,” ARPN Journal of Engineering and Applied
Sciences, vol. 10, pp. 1324–1331, 01 2015.

[26] Y. Takagi, O. Mizuno, and T. Kikuno, “An empirical approach to char-
acterizing risky software projects based on logistic regression analysis,”
Empirical Software Engineering, vol. 10, pp. 495–515, 10 2005.

[27] C. Molnar, Interpretable Machine Learning, 2019, https://christophm.
github.io/interpretable-ml-book/.

https://standishgroup.com/sample_research_files/CHAOSReport2015-Final.pdf
https://standishgroup.com/sample_research_files/CHAOSReport2015-Final.pdf
http://www.sciencedirect.com/science/article/pii/S0378720604000102
http://www.sciencedirect.com/science/article/pii/S0378720604000102
http://www.westfallteam.com/sites/default/files/papers/risk_management_paper.pdf
http://www.westfallteam.com/sites/default/files/papers/risk_management_paper.pdf
http://www.sciencedirect.com/science/article/pii/S0920548915000136
http://www.sciencedirect.com/science/article/pii/S0920548915000136
http://www.sciencedirect.com/science/article/pii/S1877050915013654
http://www.sciencedirect.com/science/article/pii/S0167923612003338
https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/

	Introduction
	Risk and Risk Management in Software Projects
	Literature Review of Machine Learning Approaches in Risk Management
	Conclusion
	References

