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Abstract—Deep Learning (DL) offers a data-driven program-
ming paradigm in which Deep Neural Networks (DNNs) can
be constructed through a set of training data. It has been
widely adopted in many real-world applications. However, many
studies have shown that DL systems suffer from adversarial
attacks, especially when they are applied to security- and safety-
critical domains. Given that formal verification has proved a
great success in many areas such as software engineering, using
it to achieve a high-level security assurance in DL systems is
considered promising. In this paper, we design and implement
DeepAuto which makes the significant bridge between automata
and DNNs. With the aid of DeepAuto, we demonstrate how DNNs
can be modeled as automata and be verified formally in the
widely used model checker UPPAAL. The potential usefulness
of DeepAuto shows the connection between DNNs and automata
and provides a solution for the construction of more trustworthy
DL systems.

Index Terms—Formal Verification, Deep Neural Network,
Timed Automata, DeepAuto

I. INTRODUCTION

Deep Learning (DL) has enjoyed tremendous success over
the past few years, achieving or exceeding human-level perfor-
mance in various areas, including security-critical applications,
such as autonomous vehicles [3], computer vision [6], speech
recognition [10], robotics and competitive games such as
Go [11]. However, DL systems often exhibit incorrect and
unexpected behavior [12], carrying the risk of endangering
human lives such as a fatal accident of self-driving car [9].
Thus, more concerns have been raised about the wide adoption
of DL systems in security- and safety-critical systems.

To mitigate such concerns, one of the most active research
areas in recent years is to design testing coverage for DL
systems. Nevertheless, testing could be a quality metric for
DL systems, but it cannot guarantee the correctness of the
systems, which means numerous blunders may be concealed
in DL systems and the testing approach cannot prove the
absence of such errors. Towards addressing the aforementioned
limitations, the application of formal verification techniques
in DL systems appears to be a potential solution. In those
traditional areas like software engineering, formal verification
has achieved great success in guaranteeing that a system is free
of certain defects or satisfies certain properties, and has played
an important role in ensuring the correctness and reliability of
increasingly complex software and hardware systems [4].

In the DL area, various types of DNNs have been widely
used, such as Feed-forward Neural Networks (FNNs), Con-
volutional Neural Networks (CNNs) and Recurrent Neural
Networks (RNNs). Among these networks, a problem existing
ubiquitously is that the output result may deviate from the
expectation because of small perturbations to the input, which
are so-called adversarial examples [7]. We need to ensure
that DNNs deployed in security- and safety-critical domains
satisfy expected properties against such infinitely many pertur-
bations. In this work, we propose a formal framework named
DeepAuto. It extracts the data flow of DNNs and name the
parameters in DNNs, which results in expressible properties.
It then models the data flow in automata, and converts the
properties of DNNs into the properties of automata.

Since timed automata is a special type of automata and
modeling RNNs needs to consider the temporal properties,
we use timed automata for modeling DNNs in this paper.
We link timed automata and DNNs, model the data flow
process inside DNNs with timed automata. With the help
of timed automata, we can observe the behavior inside the
DNNs step-by-step and verify the properties of DNN-based
systems. The model checker UPPAAL [2] is a tool designed
to verify systems that can be modeled as timed automata. In
UPPAAL, we can assign arbitrary value to input relying on
demand. We use UPPAAL in our work to put DeepAuto into
practice. Overall, our contributions are summarized as follows:
(1) We introduce DeepAuto, the first white-box modeling and
formal verification framework for DL systems. DeepAuto is
practical and universal, and could be used to model trained
DNNs. (2) DeepAuto provides a methodology to reduce the
complex problem of formally verifying DNNs into a model
checking problem which can be addressed by off-the-shelf
model checkers such as UPPAAL. (3) Our work reveals the
connection between DNNs (i.e., FNNs, CNNs and RNNs)
and timed automata, and sheds light on applying formal
verification to DL systems.

II. DATA FLOW AND TIMED AUTOMATA

To systematically ensure the correctness and reliability of
DNNs in safety- and security-critical domains, it is crucial to
apply formal verification techniques on DNNs. We first give
the formal definition of DNNs as follows.
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Definition 1 (Deep Neural Network): A Deep Neural Net-
work is a tuple N = (L,W,F, T ) where L = 〈l1, l2, · · · , ln〉
is a sequence of layers and each layer lk contains sk neu-
rons, W = 〈w1, w2, · · · , wn−1〉 is a sequence of matrices
and the elements of matrices are weights between layers,
F = 〈f2, f3, · · · , fn〉 is a sequence of activation functions,
and T is the time variable which is needed in RNN.

Intuitively, the properties of DNNs can be affected by W
and F . To specify and verify properties of DNNs formally,
we define the data flow, which is a record of variable changes
within a DNN. Let X = 〈X1, X2, · · · 〉 be a sequence of
variable vectors in each stage of the feed-forward process for
a given DNN N , where X1 is a set of variables in input stage
and Xi+1 is dependent on Xi within N . The definition of data
flow is as follows.

Definition 2 (Data Flow): For a given DNN N and each
Xi, there is a function φi mapping Xi to Xi+1, i.e., Xi+1 =
φi(Xi). We call Xi+1 = φi(Xi) a data transformation. The
sequence of all such data transformations is a data flow.

Since there are multiple mapping relationships between
Xi+1 and Xi in different DNNs, we use Xi+1 = φi(Xi)
to represent this data transformation process uniformly. Data
flow records the transformation process of X , and we can
investigate the interior of DNNs thoroughly based on data
flow. We extract the data flow within DNNs and model DNNs
as timed automata. Timed automata [1] are proposed to model
the behavior of systems over time, expanding clock variables
on the basis of finite-state automaton. It is decidable to verify
whether states in timed automata are reachable.

Definition 3 (Timed Automaton): A timed automaton is a
tuple (S, s0, A, C,G,E), where S is a finite set of states,
S0 ⊆ S is a set of initial states, A is a finite set of actions,
C is a finite set of clocks, I : S → Φ(C) assigns invariant
to each state, and E ⊆ S × A × 2C × Φ(C) × S is a set of
transitions between states.

A switch 〈s, a, λ, ϕ, s′〉 represents an edge from state s to
state s′ with an action a, where ϕ is a clock constraint over
C that specifies when the switch is enabled, and λ ⊆ C gives
the clocks to be reset with this transition.

Through the above definitions, we can easily derive the
mapping relationships between DNNs and time automata. The
update processes within DNNs can be mapped to update
assignments (i.e., actions) in automata’s edges, and the layers
of DNN can be mapped to states of automaton.

III. OVERVIEW OF DeepAuto

An overview of the DeepAuto framework for modeling and
verifying DNNs is shown in Fig. 1. We first use weights
and activation function of a given DNN to construct the data
flow. Then, the DNN is modeled by timed automaton, and
its properties are formalized and converted into the properties
of timed automaton. Finally, we can check whether the DNN
meets expected properties. The pseudo-code for DeepAuto is
given as in Algorithm 1.

Algorithm 1 takes the weights of DNN (the W ), activation
function of DNN (the F ), structure information of DNN (e.g.,

Fig. 1. Overview of DeepAuto

Algorithm 1 DeepAuto
Input: Weights of DNN W ; Structure’s information Sl ; Ac-

tivation functions of DNN F ; Expected property φ; Time
information t (optional, needed for RNN)

Output: Formal verification result r
1: Data flow ← construct data flow(W ,F )
2: Automaton← Model(Data flow ,Sl , t)
3: if Finish model(Sl, t) = true then
4: Guard()← convert property into function(φ)
5: Automaton.add(Guard())
6: end if
7: Query ← convert property for automaton(φ)
8: r←Model checker(Automaton,Query)
9: return r

the number of layers in DNN and the activation function
of each layer) and expected property as inputs. In addition,
circulation of time round is also needed for input when
modeling RNN. Lines 1 to 6 of Algorithm 1 describe the
abstract and model process, whose details are given later in
Section IV. After obtaining the automaton, we can convert the
properties and construct queries needed for the model checker,
and finally use the model checker to query whether DNN
meets the expected properties. If so, the DNN must satisfy the
verified properties. Otherwise, users can analyze and debug the
DNN according to unsatisfied properties.

IV. MODELING OF DNN

More details of the modeling process are given in this
section. Since commonly used DNNs (i.e., FNN, CNN, and
RNN) have different internal structures, there are differences
in the specific modeling processes.

A. Modeling of FNN

We use a FNN with a hidden layer as an example. The
hidden layer has two neurons. The weights of the neuron in
the input layer to the two neurons in the hidden layer are
1, -1 respectively. The rest of the weights are all 1. The
activation function is ReLU function. When the input value
is non-negative, the output value is always identical to the
input value.

The given FNN can be modeled as automaton based on Al-
gorithm 2. In all the algorithms of this work, the index of layer
li+1 is i. Using weights, structure information and activation



Algorithm 2 Modeling FNN (CNN) as automaton
Input: The weights of FNN (CNN) W ; List of layers for FNN

(CNN) L = 〈l1, l2, · · · , ln〉; Activation functions of FNN
(CNN) F = 〈f2, f3, · · · , fn〉

Output: Abstract automaton ANN

1: node1 ← L [0]
2: for index i of layers do
3: if L[i] is Convolution layer then
4: Update ← Xi+2 = Wi ∗Xi+1

5: end if
6: if L[i] is Max-pooling layer then
7: Update ← Xi+2 = Max(Xi+1 )
8: end if
9: if L[i] is Activation layer then

10: Update ← Xi+2 = fi(Wi ⊗Xi+1 )
11: else
12: Update ← Xi+2 = Wi ⊗Xi+1

13: end if
14: T(i+1)(i+2) ← Update /*T(i+1)(i+2) is the transition

between nodei+1 and nodei+2 .*/
15: nodei+2 ← L [i+ 1]
16: end for
17: T(n+1)1 ← Guard()
18: return ANN

function, we can obtain the automaton shown in Fig. 2. In this
example, node1 , node2 , and node3 correspond to the states
Input layer, Hidden layer, and Output layer in Fig. 2 respec-
tively. We construct equations, which are actually data flows,
such as Xi+2 = f(Wi⊗Xi+1), Xi+2 = Wi⊗Xi+1. Each of
these equations is assigned to the Update of a transition be-
tween states that are created based on the layer information of
the FNN. Specifically, if Update corresponds to hidden layer,
the data flow assigned should be Xi+2 = f(Wi⊗Xi+1). Oth-
erwise, the data flow assigned should be Xi+2 = Wi⊗Xi+1.
Guard() is a function with an if-else structure, whose re-
turned type is Bool. We abstract the properties that DNNs need
to satisfy into quantitative relationships by the aid of data flow.

Fig. 2. FNN Model

After generating
such quantitative
relationships, we
encode them into
the conditions of
if-else statements,
which enable
us to transform
the verification
of DNNs’ properties into the verification of automata’s
properties. The process of constructing Guard() is similar
to constructing formal specifications in traditional software,
and requires prior knowledge of the system.

B. Modeling of CNN

Algorithm 2 can also be used to model CNNs with the
common structure (i.e., CNNs with convolution layers and
max-pooling layers), which takes the weights of CNN, struc-

Fig. 3. CNN Model

ture information and activation function as inputs and pro-
duces an automaton as output. The data flows in CNNs have
forms like Xi+2 = f(Wi ⊗ Xi+1), Xi+2 = Wi ∗ Xi+1 or
Xi+2 = Max(Xi+1). According to the type of each layer,
the data flows are assigned to the corresponding transition
Updates. Specifically, the above-mentioned data flows corre-
spond to activation layer, convolution layer and max-pooling
layer respectively. The structure of automaton is constructed
using structure’s information.
Guard() is also a function with an if-then-else structure

and its return type is Bool. Based on the properties of CNNs,
we can obtain quantitative relationships. By encoding such
relationships into the condition of the if-then-else statement,
we transform the verification of CNNs’ properties into the
verification of automata’s properties. We use a CNN with one
convolution layer, one activation layer and one max-pooling
layer as the running example. The corresponding automaton
in UPPAAL is as shown in Fig. 3.

C. Modeling of RNN

Using Algorithm 3, we can model Vanilla RNNs of any
size and simulate their running process, so as to check the
properties. Algorithm 3 takes time round of RNN, RNN’s
weights, structure information and activation functions as
inputs and produces an automaton simulating RNN as output.
Based on the number of time round and weights within RNN,
we can construct value update statements Propagate1(time),
· · · , and Propagaten−1(time). Whereafter, time update state-
ment time = time + 1 and Propagate1(time) will be as-
signed to T12. Simultaneously, Propagate2(time), · · · , and
Propagaten−1(time) will be assigned to the corresponding
transitions. We use t <= time&&time < t0 to control rounds
of the RNN. The approach to construct Guard() is the same
as that in FNN and CNN modeling. By adding Guard() to
the transition, we can affect the property of automaton.

Here we use a three-cycle RNN as an example. We as-
sume that weights of the RNN is 〈[1], [1], [1]〉 and activation
function is ReLU . The time round t0 is set as 3. To model
such an RNN, we follow Algorithm 3. We first construct
Propagate1 (time) and Propagate2(time) to simulate the
data processing. Time update statement time = time + 1
and Propagate1(time) are assigned to the transition from
Input layer to Hidden layer, and Propagate2(time)
is assigned to the transition from Hidden layer to
Output layer. Using t <= time&&time < t0, we limit
the number of rounds to 3. After time 3, the transition
from the state Output layer to the state Input layer
will pass from the state Success because of the invari-



Algorithm 3 Modeling RNN as automaton
Input: Time round of RNN t0 ; The weights of RNN W ;

List of layers for RNN L = 〈l1, l2, · · · , ln〉; Activation
functions of RNN F = 〈f2, f3, · · · , fn〉

Output: Abstract automaton ARNN

1: node1 ← L[0]
2: L.append(Success)
3: for Time round of RNN t do
4: Construct Propagate1(time), · · · , P ropagaten−1(time).
5: end for
6: for index i of layers do
7: if i == 0 then
8: T12 ← time = time + 1 ,Propagate1 (time)
9: else

10: T(i+1)(i+2) ← Propagatei+1 (time)
11: end if
12: nodei+2 ← L[i+ 1]
13: end for
14: T(n+1)1 ← t <= time&&time < t0
15: T(n+1)(n+2) ← Guard()
16: return ARNN

ant in Output layer (i.e., t 6 3). Finally, we assign
Guard() to transition from Output layer to Success.

Fig. 4. RNN Model

Now we get the model
of the RNN (as shown
in Fig. 4) and can do
verification in the fol-
lowing. Note that the
number of RNN rounds
can be assigned by any
value, which means our
modeling methods can scale up and be used to model RNNs
of any size.

For LSTM [5], We model the forgotgate, inputgate
and outputgate into automaton. Using idea similar to Al-
gorithm 3, update processes within LSTM can be abstracted
and assigned to corresponding transitions between states.
And we assign time update assignment time = time + 1
to transition between state Wait for input and state
Forget gate and input gate updated . Guard t <= time
&&time < t0, same as Algorithm 3, is constructed to con-
trol the number of rounds. Actually, Guard t <= time
&&time < t0 can be reduced to time < t0. The We model
a two-layer LSTM as the running example. The Automaton
obtained is shown in Fig. 5.

V. FORMAL VERIFICATION

In this section, we show how to verify the properties of
DNNs. Intuitively, the properties of DNNs can be converted
into the properties of automata. These properties can be
verified by existing model checkers such as UPPAAL.

For FNN and CNN, because they have similar structures,
methods of transforming their properties are inspired by the
same idea. To be specific, we use the Guard() function
to control the operation of the automaton and encode the

Fig. 5. LSTM Model

properties of FNN (or CNN) into the condition of if-else
statement. The Guard() is designed in such a way that it
returns True when the properties are as expected, and False
otherwise. In other words, if and only if FNN (or CNN) meets
the property, the automaton is deadlock-free, otherwise the
automaton will deadlock (i.e., stop on state Output layer). As
a result, we are able to verify the properties of FNN or CNN
by using UPPALL to check whether the system is deadlock-
free with the query A[ ] not deadlock.

For Vanilla RNN and LSTM, we construct Guard() in a
similar way. Guard() returns True if the property of the RNN
is as expected. Otherwise, Guard() returns False. Naturally,
when the RNN meets the expected property, the automaton
always returns to the state Success for both Vanilla RNN and
LSTM. Otherwise, the automaton eventually stops in the state
Output layer. With the help of the model checker, we can
check the property “the automaton can always reach the state
Success” with the query E <> Process.Success.

The traditional definition for local robustness based on
distance is ”for every input x1 and x2 such that ||x1−x2||∞ 6
δ, if the network is able to assign the same label to x1
and x2, then the network is robust.” In UPPAAL, we can
assign arbitrary value to input relying on demand. Thus, when
exploring the robustness of the DNN, we could change inputs’
value and observe whether the corresponding property (i.e., the
output situation), could remain unchanged. If so, we could say
the local robustness of the DNN for specific input could be
proved.

VI. CASE STUDIES

To examine the effectiveness of DeepAuto, we conduct case
studies on both primitive operations and medium-sized DNNs.
In our experiments, we extract the parameters required by
modeling from the DNNs, and then use DeepAuto to model
and verify them. To show the practicability of DeepAuto,
there are two critical points that we need to highlight: (1)
We can extract weights of trained DNNs based on Keras with
TensorFlow. (2) The properties of DNNs can be converted into
the properties of automata with the aid of data flow.

We start with a small-scale experiment in which we train
FNNs which are capable of simulating ∧ (and), ∨ (or), ∼
(not) and the Exclusive-OR gate. They are the four primitive
operations the DL seminal work [8] uses neural networks to
simulate. With DeepAuto, the weights of trained FNN can be
automatically imported into UPPAAL, and then the formal
models of these FNNs can be given automatically. Now we can
obtain formal model of FNNs which are capable of simulating



all propositional forms with ∧, ∨ and ∼. We can also model
trained CNN and trained RNN as automaton automatically.

A standardized procedure for modeling and verifying a
trained DNN is presented in Fig. 6. Following the procedure,
we can model and verify the DNN before deployment, and
verify whether the DNN is running according to its expected
properties formally. When the DNN does not meet its expected
properties, the automata can be used to observe the data flow
inside the DNN, so as to point the way for debugging.

Fig. 6. The Standardized Procedure for Modeling and Verifying a Trained
DNN

Theoretically, DeepAuto can be scaled up to verify practical
DNNs. However, UPPAAL doesn’t accept real arithmetic. The
weights of DNNs which we study in experiments are INT.
We show DeepAuto can be scaled up to verify medium-sized
DNNs. Several critical properties, as shown in Table I, can be
verified based on DeepAuto framework. Property P1 states that
if the input is not perturbed by adversarial attacks, the output
of the DNN will always be as expected. Property P2 deals
with the problem whether the output will be affected when the
input is perturbed. Property P3 “when we modify the internal
weights, will the output be as expected?” probes into the
interpretability of DNNs. As presented in Table I, we are able
to verify all these properties based on the DeepAuto frame-
work. The details can be found at https://github.com/Yuteng-
Lu/UPPAAL NN.

The concrete constructing and verifying processes of these
three properties are as follows: (1) For property P1, the
expected relationship of input data and output data could be
written in the Guard(). (2) For property P2, we could change
input’s value based on adversarial attack’s behavior. After
generating the perturbed input, we could check the properties
of our formal model. If the properties change, we could say
the output will be affected when the input is perturbed. (3)
For property P3, we can alter the formal model to modify the
internal weights. After getting the formal model with modified
weights, we could check its properties to indirectly check P3.

TABLE I
CRITICAL PROPERTIES

Specific Properties Capabilities

P1 When the input is not perturbed, the
output is as expected.

X

P2 Whether the output will be affect
when the input is perturbed.

X

P3 What happens to the output when the
internal weights are changed.

X

VII. CONCLUSION

In this paper, we propose the modeling and formal verifi-
cation framework DeepAuto for DL systems. The UPPAAL
model checker is used to implement DeepAuto. The experi-
ments show that DeepAuto can dramatically guide modeling
and verification procedure of DNNs, and the method covers the
three most common DNN structures: FNNs, CNNs and RNNs.
In addition, our work illustrates that there is a connection
between the states of the timed automaton and the DNN’s
neurons. On the other hand, DeepAuto is actually a white-box
verification framework. How can we do formal verification
without all internal information (i.e., black-box or gray-box)
will be considered in future work.
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