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Abstract—Social events are due to gradually changing relations
between entities including citizens, organizations, and national
governments. Predicting multiple co-occurring events of different
types in the future can help analysts understand social dynamics
better and make quick and accurate decisions in advance.
However, due to the overlook of the knowledge (e.g., event
actors and different relations between them), existing methods
are insufficient to model the structural and temporal dependence
of events with different types simultaneously to better realize the
prediction of future multiple co-occurring events. In the paper,
we propose a novel Knowledge-aware attention based temporal
Graph Convolutional Network (KatGCN) for predicting multiple
co-occurring events of different types. We model social events as
temporal event graph and extract static features (e.g., event back-
ground, topic keywords) from event content to enhance semantic
of event graph. We design knowledge-aware attention based
graph aggregation method to capture the structure dependence
of co-occurring events with different types. We apply temporal
encoding to capture the temporal dependence between temporally
adjacent events. Empirical results on five-country datasets show
that KatGCN outperforms state-of-the-art methods. Further
studies verify the effectiveness and interpretability of our model.

Index Terms—multi-event prediction, knowledge-aware atten-
tion, temporal Graph Convolutional Network

I. INTRODUCTION

Social events such as protests, cooperation, and fights occur
frequently and have a significant impact on society. It is
highly desirable to predict multiple co-occurring events of
different types, aka, multi-event, in advance to reduce the
potential social upheaval and damage caused. Prior work
[1] [2] mainly focused on predicting the scale of events or
whether a given-type event will occur in the future. They have
achieved good performance in the prediction of given-type
events. However, as for multi-event prediction, they ignore
the potential dependence of multiple co-occurring events given
that different models are trained for different types of events.

Currently, social events are often extracted from news
articles and structured as temporal knowledge graph with
additional textual features [3], also called temporal event
graph. As shown in Fig. 1, temporal event graph is a sequence
of event graph in ascending time order. Each event graph with
a timestamp is composed of multiple co-occurring events of

∗Corresponding author
DOI reference number:10.18293 / SEKE2021-089

t-kTime: ...

...

t-1

Israeli

Iran

 Abduct, hijack, or 
take hostage

British

 Reject

Use unconventional 
violence

Iran

Israeli

20190701 20190706

American

Threaten

British

Express intent 
to cooperate

Threaten

Iran

t

Iran denies claims 
about seizure of British 

oil tanker in Gulf.

BritishIsraeli

?

? ?

American American

Fig. 1. An example of temporal event graph. It is composed of multiple
co-occurring events of different types under different timestamps.

different types, including event actors (as nodes) and event
types (as edges). For instances, an event that occurred on t−1,
was Iran reject British. Identifying knowledge of temporal
event graph, such as event actors and their relations, can
provide historical clues for predicting multiple co-occurring
events of different types at the future timestamp t. In addition,
event content also contains some important features (e.g.,
background information), such as Gulf, oil tanker etc. Incorpo-
rating such information can enhance the semantic expression
of temporal event graph for better prediction.

However, realizing such multi-event prediction problems in
the real world faces many challenges:
• C1: Unstructured event content can enhance the semantic

expression of event graphs. How to achieve heteroge-
neous data fusion is a challenging issue.

• C2: Multiple co-occurring events imply the structural
dependence. How to adaptively model the local neigh-
borhood information of event graphs to capture structural
dependence remains a challenge.

• C3: Event types among actors in a temporal event graph
change significantly over time. How to model the tempo-
ral dependence between temporally adjacent events with
different types is also a key issue.

To address the aforementioned challenges, we proposed
a novel Knowledge-aware attention based temporal Graph
Convolutional Network (KatGCN) to predict multiple co-
occurring events with different types in the future timestamp.
Specifically, we model the social events from open source
media as temporal event graph, and extract the background
information and topic keywords from event content to en-
hance semantic. To capture the local structural dependence



of multiple co-occurring events, we design the knowledge-
aware attention based graph aggregation method. Finally,
we leverage the long-short term memory network to encode
temporal dependence over temporal event graph for multi-
event prediction.

Our contributions are summarized as follows:
• We design a novel knowledge-aware attention based

graph aggregation method to capture the structural de-
pendence of multiple co-occurring events.

• We develop a new model KatGCN for multi-event pre-
diction, which integrates event content, structural depen-
dences of event graphs and temporal dependence.

• We conduct extensive experiments on five-country
datasets to verify the effectiveness of KatGCN and
demonstrate the interpretability through a case study.

II. RELATED WORK

Our work is closely related to many literatures on events
prediction and knowledge graph learning.

A. Spatio-Temporal Event Prediction

Most existing machine learning methods for event predic-
tion are only suitable for Euclidean or grid like data. For
example, a linear regression model [4] utilized tweet frequency
to predict the occurrence time of future events. Zhao et al [5]
designed a new predictive model based on topic model that
jointly characterizes temporal evolution in terms of both the
semantics and geographical burstiness. Besides, more complex
models, such as multi-task multi-class deep learning model
(e.g., SIMDA [6], MITOR [1]), was proposed to predict the
subtypes of future events and the scale of spatial events.
Recently, Graph Convolutional Network (GCN [7]) has been
proposed to address non-Euclidean data in many domains,
such as social networks. For instance, DynamicGCN [2] was
proposed to encode temporal text features into graphs for
forecasting societal events and identifying their context graphs.
Besides, REGNN [8] was proposed to learn the impact of
historical actions and the surrounding environment on the
current events for real-time event prediction.

B. Knowledge Graph Representation

Knowledge graphs (KG), which store real-world facts, is a
form of multi-relation graphs. Since each fact changes over
time, temporal knowledge graph (TKG) is generated.

Extensive studies have been done on modeling static, multi-
relation graph data. For example, RGCN [9] was proposed
to deal with the multi-relation graph directly by extending
GCN, but it may face over-parameterization as the number
of relations increases. Recently, attention mechanism has
been applied to knowledge graph representation due to high
efficiency and flexibility in modeling graph data. Wang et
al [10] developed a novel model KGAT, which explicitly
models the high-order connectivity in KG, propagating the
embeddings from a node’s neighbors to refine the node’s
embedding. Besides, RGHAT [11] was proposed to effectively
utilize the neighborhood information of an entity. But the

above methods aim to learn the embeddings of nodes and
ignore the embeddings of relations. Therefore, CompGCN [12]
was proposed to jointly embed both nodes and relations in a
multi-relation graph by leveraging a variety of entity-relation
composition operations from knowledge graph embedding
techniques, which solves the over-parameterization problem.

There are also attempts to model TKG. RE-NET [13] was
designed to predict future interactions. EvolveGCN [14] has
been proposed for link prediction to capture the dynamism
of the graph sequence through using an RNN to evolve the
GCN parameters. In addition, a graph learning framework
Glean [3] based on event knowledge graphs was developed
to incorporate both relational and word contexts.

III. METHODOLOGY

We provide the technical details of our proposed model
KatGCN. Fig. 2 shows an overview of KatGCN. The key
objectives are (1) integrating the semantic features of event
content into event graphs; (2) utilizing neighborhood informa-
tion to capture the structural dependencies between multiple
co-occurring events; (3) encoding temporal dependence over
different timestamps for multi-event prediction.

A. Problem Definition

Temporal Event Graph (TE graph). TE graph is built on
a sequence of event graphs in ascending time order [3]. Each
event graph is a multi-relation directed graph with a times-
tamp, where entities represent event actors and relations rep-
resent event types. Let E be a finite set of entities (nodes) and
R be a finite set of relations (edges). An event can be defined
as a quadruple (subject entity, event type, object entity)t,
represented as (s, r, o)t, where s, o ∈ E and r ∈ R. We
denoted a set of events at time t as Gt = {(s, r, o)t}. A TE
graph can be presented as G = {Gt−k,Gt−k+1, . . . ,Gt}.

Problem Formulation. We transform the task of multi-
event prediction into a multi-label classification problem to
model the occurrence probability of different events at t+ 1:

{Gt−k,Gt−k+1, . . .Gt}
model→ P (Yt+1 | Gt−k, ...,Gt) (1)

Where Yt+1 ∈ R|R| is a vector of event types.

B. Semantic Enhancement

For challenge C1 of Section I, we introduce the se-
mantic enhancement module. We use the pre-trained model
sent2vec [15] to get the initial embedding vector h(•) ∈ Rd of
entities, relations and keywords. However, entities, relations
and event content are always closely related. Therefore, we
extract background and topic keywords from the event content
to enhance the semantic expression of event graphs.

1) Entity Semantic Enhancement: We introduce the entity
semantic enhancement to incorporate backgrounds into event
graphs. For instance, as shown in fig. 1, an event (Iran Reject
British) mentioned that Iran denies claims about seizure of
British oil tanker in Gulf. Words such as oil tanker, Gulf, show
the event background, which can further enhance the semantic
integrity of event graphs to improve prediction results.
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Fig. 2. System framework of the proposed model KatGCN for multi-event prediction. Input data consists of temporal event graph based on social events;
We introduce semantic enhancement module to enrich the semantic information of event graph. Then, we design a knowledge-aware attention based graph
aggregation method to capture the structural dependencies between multiple co-occurring events. Finally we feed the sequence of TE graph embedding into
LSTM to capture the temporal dependence, and add a multi-layer perceptron (MLP) to predict the probability of co-occurring events at t+ 1.

For a given entity e in Gt, we obtain the top ten relevant
background words based on TF-IDF algorithm from all the
event content at t to enhance the semantic of e, as follows:

h′e,t = tanh

Wf ·

he,t ;
∑

word ∈Tope10,t

hword

 ∈ Rd (2)

Where Wf ∈ Rd×2d is a learnable weight matrix, and ; is the
concatenation operator. If e has no related words, we use zero
vector to represent semantic. Then we can get the new entity
embedding vector h′e,t (includeing h′s,t or h′o,t) at t.

2) Relation Semantic Enhancement: Event graphs contain
many edges, which represent event types. Obviously, events
with the same event type have similar topic keywords. For
example, protest events usually include such words as demon-
strate, strike, disturbance, etc. But Yield events usually contain
such words as surrender, ousted, etc. To expand the difference
between different event types for better relations embedding,
we extract topic words for each event type based on LDA
model [16] to enhance the semantic of relation r, as follows:

h′r,t = tanh

Wk ·

hr,t ;
∑

word ∈Li,t&r→Li

hword

 ∈ Rd

(3)
Where Li,t = [li,1, . . . , li,n]t is i-th row of topic keywords
matrix Lt generated from LDA model at t, which represents
a set of keywords of n topics for i-th event type in Gt. Thus,
we can get a new relation (edge) embedding vector h′r,t at t.

C. Knowledge-Aware Attention based Graph Aggregation

For challenge C2 of Section I, we design a novel knowledge-
aware attention based graph aggregation method to fully cap-

ture the structural dependence between multiple co-occurring
events.

1) Knowledge-Aware Attention: Considering that the event
graph is a multi-relation graph, the embedding of relations
(edges) cannot be ignored. Motivated by GAT [17], we pro-
pose a new knowledge-aware attention mechanism, including
entity-aware attention and relation-aware attention, to distin-
guish the importance of neighboring entities and relations.

Relation-Aware Attention. Considering that different rela-
tions have different weights when expressing the same entity,
we design relation-aware attention. For entity s, the relation-
aware score represents the weight of each outgoing relation
connected to the entity, defined as:

ats,r = Attention
(
W1h′s,t,W1h′r,t

)
(4)

αts,r =
exp

(
LeakyReL U

(
mT · ats,r

))
∑
rj∈Ns

exp
(

LeakyReLU
(
mT · ats,rj

)) (5)

Where h′s,t, h
′
r,t ∈ Rd are the embedding vectors of entity

s and relation r at t, respectively. W1 and m are training
parameters. Ns is a set of relations with s as the subject entity.
The relation-aware attention score αs,r represents the weights
of outgoing relations r when representing the entity s.

Entity-Aware Attention The weights of neighboring en-
tities under the same relation may also be different, which
inspires the entity-aware attention. We design entity-aware
attention to capture the difference in importance between
different entities based on the same relation. We regard the
object entities based on the same relation as a group, then we
calculate the entity-aware attention score, which is defined as:

bto|s,r = Attention
(
W2a

t
s,r,W2h′o,t

)
(6)



βto|s,r =
exp

(
LeakyReLU

(
nT · bto|s,r

))
∑
oj∈Ns,r

exp
(

LeakyReLU
(
nT · btoj |s,r

)) (7)

Where h′o,t is the embedding of the entity o under relation r
and entity s. Ns,r represents a set of object entities of s under
relation r. W2 and n are training parameters. The entity-aware
attention score βto|s,r shares all the object entities information
of the same subject entity under the same relation at t, which
is beneficial to capture the association between different co-
occurring events under the same relation.

2) Graph Aggregation: The event graph is multi-relation
directed graph. We need to get the embedding of entities and
relations to get the event graph representation. Inspired by
CompGCN [12], we design a novel knowledge-aware attention
based CompGCN to learn the the event graph representation.

Specifically, We leverage the entity-relation composition
operation [18] based on the knowledge-aware attention to
incorporate the embedding of entities and relations into the
GCN. For an entity s in Gt, we apply the knowledge-aware
attention based CompGCN to update its embedding vector:

h
′,(l+1)
s,t = f

 ∑
(r,o)∈N(s)

W (l)
q Φ

(
αts,r h

′,(l)
r,t , β

t
o|s,r h

′,(l)
o,t

)
(8)

Here, Φ : Rd × Rd → Rd is a composition operator. We
choose multiplication as Φ. h

′,(l)
r,t and h

′,(l)
o,t denote feature

embedding in l-th aggragation layer for relation r and entity
o, respectively. Wq is a relation-specific parameter. f(•) is
the ReLU activation function. Next, we update the embedding
vector of relation r in Gt :

h
′,(l+1)
r,t = W

(l)
relh

′,(l)
r,t (9)

Where, W (l)
rel is a learnable transformation matrix in the l-

th layer, which can project all the relations to the same
embedding space as entities, so that the prediction task can
perform operations on the nodes and edges uniformly.

To summarize, the advantage of our graph aggregation
lies in distinguishing the importance of different neighboring
entities and relations. We apply two layers to realize the
aggregation of two-hop neighborhoods. For Gt, we obtain
the embedding matrix He

t of entities and Hr
t of relations.

D. Event Prediction

1) Temporal Encoding: For challenge C3 of Section I,
we utilize a temporal encoding module to capture temporal
dependence between temporally adjacent events. Given a
sequence of embedding matrix of entities and relations, i.e.,{

He
t−k:t,H

r
t−k:t

}
, we apply LSTM to encode historical infor-

mation in the TE graph, aiming to model temporal dependence
from the graph sequence. To reduce the spatial of feature
embeddings and obtain salient feature, we employ the max
pooling operation over the embedding matrix of entities and
relations, respectively. Then, we feed them into the LSTM

model to get the historical global embedding Xt:

Xt = LSTM ([p (He
t ) ; p (Hr

t )] ,Xt−1) (10)

Where, p(•) represents the max pooling operation applied
element-wise over all nodes or edges.

2) Multi-event Prediction: Through temporal encoding, we
have obtained the historical embedding Xt up to time t. Then,
we model the probability of multiple co-occurring events in
the future timestamp t+ 1 based on TE graph:

P (Yt+1 | Gt−k, ...,Gt) = σ (WµXt) (11)

We feed the Xt into a MLP to calculate the probability of
different event types. We define the MLP as a linear softmax
classifier parameterized by Wµ. σ is a nonlinear function.

Next, we adopt the categorical cross-entropy [19] loss:

L = − 1

|R|
∑
i∈R

yi ln

(
exp (ŷi)∑
j∈R exp (ŷj)

)
(12)

Where ŷi is the model prediction for event type i before the
nonlinear function (σ) in (11) .

IV. EXPERIMENTS AND RESULTS

We evaluate the performance of KatGCN for multi-event
prediction. We aim to answer the following key questions:
(1) Whether KatGCN achieve satisfactory predicting results
compared with other baselines; (2) Whether different modules
in KatGCN can improve the experimental results better; (3)
Whether the results of KatGCN have better interpretability.

A. Datasets and Evaluation Metrics

The experimental evaluation was conducted on the Global
Database of Events, Language, and Tone event data (GDELT1).
It contains political events designed to assess national and
international crisis events. These events are divided into 20
main types and 220 subtypes such as Appeal, Yield, Protest
etc. Each event is coded into 58 fields including date, actor
attributes (actor1, actor2), event type, source (event URL) etc.
In this paper, we focus on all subtypes of events and select
country-level datasets from five countries (Iran, Iraq, Saudi
Arabia, Syria, and Turkey) from January 1, 2018 to June 20,
2020. We split the dataset of each country into three subsets,
i.e., train(80%), valid(10%), test(10%). The time granularity
is one day. We use the three metrics to evaluate the results of
the experiment, including F1-score, F2-score and Recall.

B. Comparative Methods

We compare KatGCN with some state-of-the-art baselines:
• DNN: We feed TF-IDF text features to a deep neural

network for events prediction.
• RE-NET [13]: It contains a recurrent event encoder and

a neighborhood aggregator to infer future facts.
• Glean [3]: This is a temporal graph learning method with

heterogeneous data fusion for predicting multi-event.
Next, we conduct ablation studies:

1https://www.gdeltproject.org/



TABLE I
PREDICTION RESULTS OF KATGCN AND BASELINES OVER ALL DATASETS.

Method Iran Iraq Saudi Arabia Syria Turkey

F1 F2 Recall F1 F2 Recall F1 F2 Recall F1 F2 Recall F1 F2 Recall

DNN 49.08 54.71 59.62 53.07 58.44 65.57 47.21 51.72 55.81 54.86 59.07 60.59 57.71 59.46 65.67
RE-NET 56.20 60.21 62.99 55.46 62.04 68.82 54.82 59.06 66.25 56.08 63.58 68.97 60.04 64.77 70.52
Glean 57.20 64.88 73.06 59.05 70.25 74.60 56.18 63.24 70.16 58.65 65.47 73.21 61.55 67.04 73.47

KatGCN-semantic 66.15 77.04 79.62 66.04 72.05 76.50 62.88 67.01 72.99 59.94 67.70 77.03 67.02 70.67 77.52
KatGCN-attention 60.54 68.02 71.93 64.09 69.03 75.29 59.01 62.55 69.55 57.90 62.54 71.20 63.05 68.34 74.37
KatGCN 68.33 78.83 79.95 67.34 72.37 77.59 64.07 68.67 73.69 61.27 68.75 77.25 67.66 72.84 78.26
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Fig. 3. Sensitivity Analysis.

• KatGCN-semantic: without the semantic enhancement
module. We only consider the structure-graph information
and temporal dependency in the TE graph.

• KatGCN-attention: without the knowledge-aware atten-
tion module. We only use the classical CompGCN to
achieve event graph aggregation.

C. Experiments Results

We evaluate the prediction performance of our proposed
model across five datasets. To avoid errors caused by random-
ness, we obtain an average of 10 experiments on each dataset.
Table. I presents comparison and ablation results.

1) Prediction Performance: Our model KatGCN outper-
forms all other baselines on five datasets. From the above
comparison results, we have the following observations:
• The difference of F-score and Recall across different

datasets may be due to the different distribution of event
types in each country.

• The DNN has the weakest performance than other meth-
ods, which shows that simple static features ignore the
potential relations between events with different types and
are less effective in multi-event prediction.

• KatGCN presents the best performance on the five
datasets. The reason is that we introduce a knowledge-
aware attention mechanism to make full use of the
neighborhood information of the event graph.

• Graph based methods (RE-NET, Glean, KatGCN) are ob-
viously better than static features based methods (DNN),
which shows that the graphs can model structural depen-
dence between different events (e.g., sharing actors).

2) Ablation Experiments: From the results of ablation ex-
periments, we can observe the following findings:
• Overall, the results of the variant methods show poorer

performance than KatGCN.
• The performance of KatGCN-attention drops signifi-

cantly, which suggests knowledge-aware attention plays
an important role in the performance improvement.

• The semantic enhancement is also essential, which can
slightly improve the performance of multi-event predic-
tion by enriching the semantics of event graphs.

D. Sensitivity Analysis

We study the parameter sensitivity analysis of KatGCN,
mainly including: the embedding dimensions (d), layers of
graph aggregation (l), and the time step of history (k):

1) Embedding Dimensions: We study how the embed-
ding dimensions affect the model performance. As shown in
Fig. 3(a), the performance improves obviously with d increases
when d is below 100. Higher d will not bring significant
performance improvement and may cost more training time.

2) Layers of graph aggregation: The number of layers
l represents the hops of neighbors that nodes aggregate.
Fig. 3(b) shows the impact of different l. Compared with 1-
layer, 2-layer significantly improves the performance. But the
performance is almost unchanged when l increases. We infer
that there is overfitting due to the increase in parameters.

3) Time Step of History: We need to encode events infor-
mation of past k time step. Fig. 3(c) illustrates the performance
with different k. The performance reaches the best when k is
7. But larger k is not likely to go higher performance.

E. Case Study

We present a case to show how the proposed model identi-
fies historical event information to predict multi-event in the
future. Then we verity the interpretability of knowledge-aware
attention based graph aggregation method via an example.

1) Identify historical events: We select a series of social
events from the Iran datasets as a case. We utilize the TE
graph of past week to successfully predict multiple events on
January 16, 2020. As shown in Fig. 4, we describe a series of
social events about the shooting down of Ukraine International
Airlines Flight. We find that student initiated an event of
demonstrate or rally on January 11. Then, government criticize
or denounce Ukrain on January 12 and citizen try to express
intent or negotiate to Iran and threaten the Tehran on January
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Fig. 4. An example temporal event graph about the social event the shooting down of Ukraine International Airlines Flight for our case study.

13 and 14 respectively. The events that occurred between
different actors and temporal dependence were successfully
captured by our model. In the prediction result, our model
correctly predicted the possible events on January 16.

2) Interpretability: Benefiting from the knowledge-aware
attention, we show the interpretability of our model. As shown
in Fig. 4, We take some co-occurring events on January 13,
2020 as an example. we chose citizen as the central actor, and
calculated different attention scores of neighboring relations
and entities during aggregation. We observe that the event of
Fight with small arms and light weapons has larger attention
score. Besides, for the event of Express intent to meet or
negotiate, the entity Ukrain has a larger attention score than
Iran. This is the result we expected, and also consistent with
the historical events and our prediction result.

V. CONCLUSION

In the paper, we propose a Knowledge-aware attention
based temporal Graph Convolutional Network (KatGCN) for
multi-event prediction. Specifically, we first model social
events as TE graph and extract event background and topic
keywords from event content to enhance semantic expression
of event graphs. Then, we design a knowledge-aware attention
based graph aggregation method to fully use the neighborhood
information and capture structural dependency between co-
occurring events. Finally, we utilize temporal encoding to
capture temporal dependence between temporally adjacent
events. Experiments on five-country datasets show KatGCN
significantly outperforms the state-of-the-art baselines and has
interpretability. Future work will consider predict event actors
of different events to infer a complete social event.
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