
Conv-Reluplex : A Verification Framework For
Convolution Neural Networks

Jin Xu∗, Zishan Li∗, Miaomiao Zhang∗(�), Bowen Du†(�)

∗School of Software Engineering, Tongji University, Shanghai, China
†Department of Computer Science, University of Warwick, Coventry, United Kingdom

Email: miaomiao@tongji.edu.cn; B.Du@warwick.ac.uk

Abstract—In recent years, machine learning has demonstrated
impressive performance in many real-world tasks, especially in
computer vision and natural language processing. However, to
apply them in safety-critical systems one needs formal guarantees
on the neural network outputs. The Reluplex tool is proposed
to verify the safety of deep neural networks (DNNs), and in
case the DNN fails to give a correct output, can generate
adversarial examples. Since the tool can only handle DNNs, it is
necessary to extend the tool to process image data. Therefore, in
this paper, we propose the Conv-Reluplex framework, which is
designed to verify the convolutional layer and pooling layer in
convolutional neural networks(CNNs), and generate adversarial
examples when classification is misguided. We conduct several
experiments on MNIST to evaluate our approaches. The results
show that the original CNN is improved using the adversarial
examples generated by our tool, and the precision of classification
can be increased significantly.

Index Terms—Reluplex Algorithm, Adversarial Robustness,
Verification Framework

I. INTRODUCTION

In recent years, machine learning [1] [2] has been widely
used in various fields, such as image recognition [3], speech
recognition [4] and autonomous vehicles [5]. Neural networks
are trained over a finite training set and are expected to
generalize, i.e., to behave correctly for previously-unseen
inputs. However, Szegedy et al. discovered that the input-
output mapping learned by neural networks is discontinuous
to a large extent [6]. It turns out that perturbed inputs similar
to a correctly classified input could be misclassified by deep
learning models with high confidence, which are generally
called adversarial examples [6]. There is an urgent need for
methods that can provide formal guarantees about neural
networks behavior. Unfortunately, manual reasoning about
large neural networks is impossible, as their structure renders
them incomprehensible to humans. Automatic verification
techniques are thus needed.

Verification of neural networks is difficult as it is experimen-
tally beyond the reach of general-purpose tools such as linear
program (LP) solvers or existing satisfiability modulo theories
(SMT) solvers [7]–[9]. In [10], the authors propose a method
to verify Multi-layer Perceptron (MLP) [11] with sigmoid
activation function. They point out the difficulty in scaling-
up this technique, i.e., only able to tackle small networks with

� Corresponding author

at most 20 hidden nodes [7]. In [9], the authors propose an ap-
proach for verifying the local adversarial robustness of DNNs
based on a systematic exploration of a region. The verification
process is still exponential in the number of features. Katz et
al propose an algorithm called Reluplex, which is efficient to
verify DNNs with ReLU activation functions [12]. This is achi
eved by leveraging the piecewise linear nature of ReLUs and
attempting to gradually satisfy the constraints that they impose
as the algorithm searches for a feasible solution. We call the
algorithm Reluplex, for “ReLU with Simplex”. Compared with
[9] and [10], Reluplex can handle larger deep neural networks
and guarantee that there are no irregularities hiding between
the discrete points.

Reluplex mainly focuses on DNNs. To support image pro-
cessing, it is necessary to extend this tool with CNNs to make
it more practical. To this end, we present a Conv-Reluplex
framework on the basis of Reluplex. The extension is able
to verify network robustness, that is, if Conv-Reluplex finds
that the adversarial robustness is not satisfied, a correspond-
ing counter-example (adversarial example) will be generated
in the form of an image type which shows an abnormal
classification with respect to the network. So, in the Conv-
Reluplex framework, the adversarial examples generation is
conducted during verification process, not alike those in the
existing methods [13]–[15]. As have been shown in [10] [14]
[16] [17], adversarial training can improve the robustness of
models. We thus make some tricks in the tool to produce
a large number of adversarial examples, not just one, for
our later training of CNNs. The experimental results show
that appropriate adversarial training is helpful to enhance the
adversarial robustness of the CNNs.

So, based on the current tool—Reluplex, we give the Conv-
Reluplex framework to verify CNNs, meanwhile generate
adversarial examples. We also have implemented the frame-
work [18] and conducted some experiments. In the following,
we begin with some background on CNNs, and Reluplex in
Section 2. In Section 3, we present Conv-Reluplex verification
framework, also with an emphasis on generation of adversarial
examples, followed by exprerimental results and analysis in
Section 4. We conclude the paper in the last section.

DOI reference number: 10.18293/SEKE2021-085



II. PRELIMINARIES

We first recall some definitions of CNNs, Adversarial ro-
bustness and Reluplex algorithm.

A. Convolutional Neural Networks

A convolutional neural network [19] is comprised of one
or more convolutional layers (often with a subsampling step)
and then followed by one or more fully connected layers as
in a standard multilayer neural network. The architecture of
CNNs is designed to take advantage of the 2D structure of an
input image (or other 2D input such as a speech signal). This
is achieved with local connections and tied weights followed
by some form of pooling which results in translation invariant
features. Another benefit of CNNs is that they are easier to
train and have many fewer parameters than fully connected
networks with the same number of hidden units.

B. Adversarial Robustness

Adversarial robustness [12] is a safety property, which
measures the resilience of a neural network against the inputs
with perturbation. When the input is x0, the output of network
can be denoted as f(x0). A neural network is δ-locally-robust
at point x0 iff

∀x, ‖x− x0‖ ≤ δ ⇒ f(x) = f (x0)

Intuitively, the above formula states that for input x that is
very close to x0, the network assigns to x the same label that
it assigns to x0; “local” thus refers to a local neighborhood
around x0. Larger values of δ imply larger neighborhoods, and
hence better robustness [16].

C. Reluplex Algorithm

Reluplex is an SMT solver for a theory of linear real
arithmetic with ReLU constraints. The technique is based on
extending the Simplex algorithm [17] [18] to support the non-
convex ReLUs in a way that allows their inputs and outputs
to be temporarily inconsistent which will then be fixed as
the algorithm progresses. In other words, DNNs and their
properties can be directly encoded as conjunctions of linear
formulas and ReLU constraints. Here, a ReLU constraint
satisfies xf = max(0, xb), where xf and xb stand for the
connection information of the nodes. To guarantee termination,
some ReLU connections may need to be split upon. However,
in many cases this is not required, resulting in a practically
efficient solution. The details that are crucial to performance
and scalability, such as the use of floating-point arithmetic,
bound derivation for ReLU variables, and conflict analysis,
are discussed in [12]. The success in verifying properties of
the ACAS Xu networks [20] indicates that the technique holds
potential for verifying real-world DNNs.

III. A VERIFICATION FRAMEWORK FOR CNNS BY
CONV-RELUPLEX

The Reluplex is able to verify and improve the adversarial
robustness of networks. If the adversarial robustness is not
satisfied for a classification task, there must exist an x′,

‖x′ − x‖ ≤ δ, with x′ belonging to a label different from
that of x. We call x′ a counter-example, which shows the
violation of the adversarial robustness property. As the tool
is not able to directly verify the CNNs and generate their
corresponding counter-examples, we hereby propose the Conv-
Reluplex framework to boost its ability on CNNs.

CNNs generally consist of three kinds of layers, convo-
lutional layers, pooling layers and fully connected layers.
The convolutional layer extracts rough features from the
original image, the pooling layer is a form of non-linear
down-sampling to generate dominant features, and the fully
connected layer employs these dominant features for classifi-
cation. The fully connected layer closely resembles the basic
component of DNNs, so the Reluplex can be directly applied
to process this layer. However, to tackle convolutional and
pooling layers in the CNNs, in particular for the purpose of
adversarial example generation, we propose a reverse calcula-
tion algorithm.

As illustrated in Fig. 1, the designed Conv-Reluplex frame-
work consists of Reluplex and a reverse calculation algorithm.
Given a trained CNN classifier, there are six steps included in
the framework.
• Step 1: A correctly classified image sample is selected

from the training dataset and input into the CNN.
• Step 2: When the image sample passes through the

convolutional layer and the pooling layer, the rough
features and the dominant features extracted by these two
layers are stored respectively before it passes through the
fully connected layer.

• Step 3: The stored dominant features are regarded as
the input of a DNN, because the structure of the DNN
is almost same as the fully connected layer. A small
perturbation neighbourhood δ of the stored dominant
features is a set, and Reluplex is used to verify the
adversarial robustness of the fully connected layer.

• Step 4: The adversarial robustness of the DNN (the
fully connected layer) is verified from Reluplex. If it is
not satisfied, Reluplex will output a counter-example to
prove that the adversarial robustness is not satisfied. This
example is called as ”intermediate adversarial example”.

• Step 5: The Unpooling algorithm (See Sec.III.A) is
applied to restore the intermediate adversarial example to
the potential rough features before the pooling operation.

• Step 6: The Deconvolution algorithm (See Sec.III.B) is
applied to restore the potential rough features to a image.

Reluplex is able to find out a counter-example (the inter-
mediate adversarial example in our framework), in general,
Conv-reluplex can turn this intermediate adversarial example
into a real image.

A. Unpooling algorithm

The function of pooling layers is to reduce the dimension of
rough features and generate dominant features. The commonly
used types of pooling calculation are Max, Average, Sum, etc.

The Max-pooling is shown in Fig. 2. The input of this
pooling layer is a 4∗4 matrix , the pooling window is a 2∗2



Fig. 1: Main steps of the Conv-Reluplex framework

matrix, and the stride is 2. The first iteration operation of the
pooling layer is Max(1, 1, 5, 6) = 6, then sliding to the right
of 2 cells, the second pooling operation is Max(2, 3, 4, 5) = 5,
and so no. The final output of the pooling layer is a 2∗2 matrix.

Fig. 2: Max-pooling calculation

The Unpooling algorithm is the inverse calculation of pool-
ing operation. The potential rough features can be generated
based on the Unpooling algorithm using the intermediate
adversarial example found in Step 4 and the original rough
features stored in Step 3. Because the CNN is well-trained, the
internal structure and weight parameters is fixed. Our approach
is to make minimal changes to the original rough features so
that it match the intermediate adversarial example.

For the Max-pooling, our Unpooling algorithm goes through
every value in the pooling window. If the value is greater
than the corresponding value in the intermediate adversarial
example, the value is set as the corresponding value. If the
value is less than or equal to its corresponding value, the value
will remain. Assume that x is the value in the original rough
features, and α is its corresponding value in the intermediate
adversarial example, the Unpooling algorithm is defined as
following:

funpooling(x) =

{
x = α, if x > α
x = x, if x ≤ α

An example of the Unpooling algorithm for the Max −
pooling is illustrated as Fig. 3. The left matrix is the original
rough features, the middle matrix is the intermediate adversar-
ial example. Firstly, the values 1,1,5,6 are in the window of the
first pooling operation, and compared with the corresponding
value in the intermediate adversarial example 4. Secondly,
because 5 and 6 are larger than 4, so the valuse of 5 and
6 reduce to 4, and other two values, 1 and 1, are both smaller
than 4, so they remain. The pooling window slides to the next

position iteratively. Finally, the new input matrix on the right
side of Fig. 3 is generated.

Fig. 3: Unpooling calculation of Max-pooling

As mentioned before, the Unpooling algorithm only modi-
fies the value necessarily. Therefore, the minimal changes can
be ensured.

B. Deconvolution algorithm
The function of convolutional layers in CNNs is to extract

the rough features from the original image, and the operation
is demonstrated in Fig. 4. The input of the convolutional layer
is a 5∗5 matrix, the kernel (parameter) of this layer is a
3∗3 matrix, and the stride is 1. When the third iteration of
convolution is performed, The kernel slides to the upper right
corner of the input. The corresponding values in the same
location of these two matrices multiply with each other and the
values of iterations are summed up. The result is shown at the
upper right corner of the output matrix. When the operations
of convolution are completed, the output of the convolutional
layers, a 3∗3 matrix, is obtained.

Fig. 4: Convolution calculation

Generally, a nonlinear activation function follows the con-
volutional layer. ReLU function is a widely used nonlinear
activation function after the convolutional layer, and it can be
expressed as follows.

Yi = ReLU (Xi ·Wi +Bi)



where Xi represents input data of layer i, Wi represents
convolution kernel parameter of layer i, Bi represents bias
of layer i, and Yi represents feature map of layer i.

In order to convert the rough features back to the image
which violate the adversarial robustness, the deconvolution
algorithm should invert both the ReLU operation and the con-
volution operation. The problem of convolution layer inversion
is formulated as a linear constraint solving problem. The kernel
Wi, the bias Bi and the potential rough features Yi is obtained
from Step 2 and Step 5 respectively. Xi is the adversarial
image to be generated. Since the result of the ReLU function
Yi is known, according to Yi and the ReLU definition, the
ReLU constraint can be eliminated from the expression, and
the problem is directly encoded as the following constraints:

Yi = ReLU (Xi ·Wi +Bi)⇔
{

Xi ·Wi +Bi = Yi, if Yi > 0
Xi ·Wi +Bi ≤ 0, if Yi = 0

For the first convolution layer, and the input of this layer
is still the input of the CNN, an additional upper and lower
bound constraint of 0 ≤ Xi ≤ 1 needs to be added for
each variable Xi. Because in preprocessing stage, the pixel
values of 0 to 255 are usually normalised between 0 to 1, the
additional constraints ensure that the generated data obtained
by the inversion can be correctly converted into a image.

Fig. 5: Deconvolution calculation

An example of the Deconvolution algorithm is shown in
Fig. 5. The input data (the normalised image) to be generated
is a 3∗5 matrix, and all values, x1,...,x15, in the matrix are
unknown. The convolution kernel is a 3∗3 matrix, the values of
this kernel are already known, the bias are all 0 for simplicity,
and the potential rough features is also known. Assuming that
this is the first convolution layer, the inequality groups can be
formulated as follows:

x1 + x3 + x7 + x11 + x13 = 5
x2 + x4 + x8 + x12 + x14 = 5
x3 + x5 + x9 + x13 + x15 = 4

0 ≤ xi ≤ 1

The solutions of these constraints are generally not unique,
one of which is: x1 = 1, x2 = 1, x3 = 1, x4 = 1, x5 = 1

x6 = 0, x7 = 1, x8 = 1, x9 = 1, x10 = 0
x11 = 1, x12 = 1, x13 = 1, x14 = 1, x15 = 0

In practice, it is often the case that the constraints admit
multiple solutions. If the number of the solutions is too large,
our algorithm will further to solve an optimization problem
(linear programming), taking the maximum or minimum value
of the sum of all variables xi as the objective function. The
optimum can be directly selected as a solution.

There are various mature algorithms and tools for solv-
ing linear programs. The tool PuLP [21] which is based
on simplex algorithm is employed in our experiments. If
the solution fails, it means that there are obvious conflicts
between the constraints, and the deconvolution algorithm can
not be continued. In this circumstance, the corresponding
“intermediate adversarial examples” is considered as spurious
and will be discarded. If the solution can be found, it means
that the decalculation of the current convolutional layer is
successful. If the previous layer is another pooling layer, the
Unpooling algorithm is used to process again. Otherwise, a
couter-example image might be generated.

IV. EXPERIMENTAL RESULTS

A. Conv-Reluplex experiments

This experiment includes two steps. The first step is to train
a CNN model. The second step is to verify the CNN model by
using the Conv-Reluplex framework and generate adversarial
examples, which demonstrates the effectiveness of our Conv-
Reluplex algorithm.

1) Training a CNN model: The public MNIST data set [22]
is employed for this experiment. MNIST is an image data
set of handwritten numbers 0 to 9, including 60,000 training
samples and 10,000 test samples. Each sample is a grayscale
image with the size of 28∗28 and the grayscale range of 0
to 255. In preprocessing, the grayscale is normalized as data
between 0 and 1. The structure of the CNN model we built is
shown in Fig. 6 with batch size 64 and epoch 10. After the
training step, the test loss is 0.1894 and the test accuracy is
94.98%.

2) Verifying and generating picture adversarial examples
by Conv-Reluplex: An image sample of handwritten numeral
6 is used to verify adversarial robustness. We input the image
sample into the CNN model, extract feature data at the full
connection layer, and set perturbation neighborhood δ from
0.2 to 0.6. (Note: the perturbation neighborhood of 0.2 means
that each generated value is between the original value adding
0.2 and substrating 0.2. For example, the original input is [1.0,
1.5], and the perturbation [0.8, 1.3], [1.2, 1.7] both satisfy the
setting of the perturbation neighborhood of 0.2, but [1.0, 1.8]
is under the 0.3 perturbation neighborhood rather than 0.2.
The verification results are shown in Table. I:

The symbol ”
√

” indicates that there is no adversarial
example here. ”\” indicates that the classification is the real
class of the sample, and verification can be skipped. “Fail”
means that there is at least one adversarial example misclas-
sified as the corresponding class in the specified perturbation
neighborhood. Only when there is no “Fail” in an entire row,
the adversarial robustness in the corresponding neighborhood
is satisfied.



Fig. 6: The structure of the CNN model in the experiment

TABLE I: Verification results of a test sample of number 6
in different perturbation neighborhoods

perturbation
neighborhood

classification
0 1 2 3 4 5 6 7 8 9

δ = 0.2
√ √ √ √ √ √

\
√ √ √

δ = 0.3
√ √ √ √ √

Fail \
√ √ √

δ = 0.4
√ √ √ √ √

Fail \
√ √ √

δ = 0.5
√ √ √ √ √

Fail \
√

Fail
√

δ = 0.6
√ √ √ √ √

Fail \
√

Fail
√

As shown in Table I, when δ = 0.2, the adversarial ro-
bustness is satisfied, and no other classification will appear.
When δ = 0.3, the adversarial robustness is not satisfied, and
the sample of number 6 will be classified as number 5. As
the neighborhood δ increases, the misclassification caused by
perturbation becomes more and more serious. Such as δ =
0.5 or δ = 0.6, the selected sample of number 6 will be
classified as numbers 5 or 8. It is obvious that the number
of misclassification types and the number of intermediate
adversarial examples have further increased.

An intermediate adversarial example misclassified as 5 is
chosen when δ = 0.6 to carry out further analysis. The
intermediate adversarial example is converted to an image by
using the Unpooling and Deconvolution algorithm of Conv-
Reluplex. The comparison between the original image and the
adversarial example image is shown in Fig. 7. Although there
is a lot of noise in the adversarial example picture, it does not
prevent human from recognizing the main content.

Fig. 7: Original picture and adversarial example of number 6

In addition to the number 6, other numbers are also selected,
and the different types of original samples are used to generate
different adversarial examples, as shown in Fig. 8:

Fig. 8: Different adversarial examples

B. Adversarial training experiment

This experiment is designed to enhance the robustness of the
model by adversarial training. The adversarial examples used
in training are all generated by Conv-Reluplex. The numbers 1,
3 and 6 are selected as the main original samples. Each number
has generated 200 adversarial examples, of which 100 are
used for adversarial training and the remaining 100 are used
for testing. In order to prevent the model from forgetting the
characteristics of the original samples in adversarial training,
we randomly selected 900 or 1000 samples from the original
data set of each number, and mixed them with adversarial
examples. Therefore, in the new training set, the numbers 1,
3 and 6 are composed of 100 adversarial examples and 900
original samples. The remaining numbers are composed of
1000 original samples respectively. After preparing the new
training set, the adversarial training is performed based on the
original model, without changing any parameters or structure.
The batch size is 64 and the epoch is 10.

The difference of the accuracy after adversarial training is
shown in Table II. The classification accuracy of adversarial
examples has suddenly increased from 0% to 99.65%, while
the accuracy of original samples has only decreased from
94.98% to 94.89%, and the difference is only 0.09%. It
shows that appropriate adversarial training can enhance the
adversarial robustness of model, at the same time, the accuracy
of original samples will not be affected too much.

TABLE II: Accuracy comparison before and after adversarial
training

accuracy of original sample accuracy of adversarial sample
Original model 94.98% 0%

Adversaria training 94.89% 99.65%

In order to further analyze the difference of the model’s ad-
versarial robustness after adversarial training, we respectively
select one original sample of numbers 1, 3 and 6 as test data,
and input them into the original model and the adversarial
training model, then use Reluplex to verify the adversarial
robustness of CNN’s full connection layer. The verification
results are shown in Table III-V.

TABLE III: Verification results of number 1’s test sample
(δ = 0.6)

classification 0 1 2 3 4 5 6 7 8 9
Original model

√
\
√

Fail Fail
√ √

Fail Fail Fail
Adversaria training

√
\
√ √ √ √ √

Fail
√

Fail



TABLE IV: Verification results of number 3’s test sample
(δ = 0.6)

classification 0 1 2 3 4 5 6 7 8 9
Original model

√ √ √
\
√

Fail
√ √

Fail
√

Adversaria training
√ √ √

\
√ √ √ √ √ √

TABLE V: Verification results of number 6’s test sample
(δ = 0.6)

classification 0 1 2 3 4 5 6 7 8 9
Original model

√ √ √ √ √
Fail \

√
Fail

√

Adversaria training
√ √ √ √ √ √

\
√ √ √

In Table III, when perturbation neighborhood δ = 0.6, the
selected sample of number 1 has five kinds of adversarial
examples in original model, the selected sample may be
misclassified as 3, 4, 7, 8 or 9. However, in the adversarial
training model, the selected sample only has two kinds of
adversarial examples. It may be misclassified as 7 or 9. We
can find that the types of adversarial examples have decreased.

In Table IV, the selected sample of number 3 has two
kinds of adversarial examples in original model, which may be
misclassified as 5 or 8. But in the adversarial training model,
the two misclassification cases have disappeared, the selected
sample has no adversarial examples in the same neighborhood
(δ = 0.6), and the adversarial robustness has changed from
not satisfied to satisfied.

In Table V, the verification situation of number 6’s selected
sample is the same as number 3. It shows that this phenomenon
is not accidental. Adversarial training can indeed repair the
weakness of the model and enhance the adversarial robustness.

V. CONCLUSION

In this paper, to make Reluplex more practical, we propose
a Conv-Reluplex verification framework, which is utilized to
check adversarial robustness of CNNs. In case the robustness
property is not satisfied, it generates adversarial example. Us-
ing these adversarial examples to proceed adversarial training,
can indeed enhance the adversarial robustness of our model.

There are still some further work needed to be done. The
complexity of the general SMT solver algorithm is exponen-
tial. Reluplex proposed its own optimization algorithm to solve
some performance bottlenecks, but the efficiency is severe
limited by the high nonlinearity of the resulting formulas.
So we can only deal with some smaller networks at present.
The network trained by MNIST only has more than 4,000
relu nodes, while the network nodes trained by ImageNet are
too many to handle. We hope to do some work to improve
efficiency so that it can handle more network nodes, and it is
one of our goals to handle color pictures. Finally, the recurrent
neural networks (RNNs) can be taken into the consideration
in both original Reluplex and the extensions of Reluplex.

ACKNOWLEDGMENT

We acknowledge the support of National Natural Science
Foundation of China (NSFC) Project 61972284.

REFERENCES

[1] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,
2016.

[2] M. Riesenhuber and T. Poggio, “Hierarchical models of object recogni-
tion in cortex,” Nature neuroscience, vol. 2, no. 11, p. 1019, 1999.

[3] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[4] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with
deep recurrent neural networks,” in 2013 IEEE international conference
on acoustics, speech and signal processing. IEEE, 2013, pp. 6645–
6649.

[5] D. Zhao, Y. Chen, and L. Lv, “Deep reinforcement learning with visual
attention for vehicle classification,” IEEE Transactions on Cognitive and
Developmental Systems, vol. 9, no. 4, pp. 356–367, 2017.

[6] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” arXiv preprint
arXiv:1312.6199, 2013.

[7] L. Pulina and A. Tacchella, “Challenging smt solvers to verify neural
networks,” Ai Communications, vol. 25, no. 2, pp. 117–135, 2012.

[8] O. Bastani, Y. Ioannou, L. Lampropoulos, D. Vytiniotis, A. Nori, and
A. Criminisi, “Measuring neural net robustness with constraints,” in
Advances in neural information processing systems, 2016, pp. 2613–
2621.

[9] X. Huang, M. Kwiatkowska, S. Wang, and M. Wu, “Safety verification
of deep neural networks,” in International Conference on Computer
Aided Verification. Springer, 2017, pp. 3–29.

[10] L. Pulina and A. Tacchella, “An abstraction-refinement approach to
verification of artificial neural networks,” in International Conference
on Computer Aided Verification. Springer, 2010, pp. 243–257.

[11] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal
representations by error propagation,” California Univ San Diego La
Jolla Inst for Cognitive Science, Tech. Rep., 1985.

[12] G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer,
“Reluplex: An efficient smt solver for verifying deep neural networks,”
in International Conference on Computer Aided Verification. Springer,
2017, pp. 97–117.

[13] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.

[14] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: a simple
and accurate method to fool deep neural networks,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2016,
pp. 2574–2582.

[15] W. Brendel, J. Rauber, and M. Bethge, “Decision-based adversarial
attacks: Reliable attacks against black-box machine learning models,”
arXiv preprint arXiv:1712.04248, 2017.

[16] G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer,
“Towards proving the adversarial robustness of deep neural networks,”
arXiv preprint arXiv:1709.02802, 2017.

[17] R. J. Vanderbei, “Linear programming: Foundations and extensions,”
Journal of the Operational Research Society, vol. 49, no. 1, pp. 94–94,
1998.

[18] G. Dantzig, Linear programming and extensions. Princeton university
press, 2016.

[19] http://ufldl.stanford.edu/tutorial/supervised/
ConvolutionalNeuralNetwork/.

[20] K. D. Julian, M. J. Kochenderfer, and M. P. Owen, “Deep neural
network compression for aircraft collision avoidance systems,” Journal
of Guidance, Control, and Dynamics, vol. 42, no. 3, pp. 598–608, 2018.

[21] https://pythonhosted.org/PuLP/.
[22] Y. LeCun, “The mnist database of handwritten digits,” http://yann. lecun.

com/exdb/mnist/, 1998.


